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GPS spoofing presents a significant threat to small Unmanned Aerial Vehicles (UAVs) by manipulating 
navigation systems, potentially causing safety risks, privacy violations, and mission disruptions. 
Effective countermeasures include secure GPS signal authentication, anti-spoofing technologies, 
and continuous monitoring to detect and respond to such threats. Safeguarding small UAVs from 
GPS spoofing is crucial for their reliable operation in applications such as surveillance, agriculture, 
and environmental monitoring. In this paper, we propose a compact, tiny deep learning architecture 
named CTDNN-Spoof for detecting and multi-label classifying GPS spoofing attacks in small UAVs. The 
architecture utilizes a sequential neural network with 64 neurons in the input layer (ReLU activation), 
32 neurons in the hidden layer (ReLU activation), and 4 neurons in the output layer (linear activation), 
optimized with the Adam optimizer. We use Mean Squared Error (MSE) loss for regression and accuracy 
for evaluation. First, early stopping with a patience of 10 epochs is implemented to improve training 
efficiency and restore the best weights. Furthermore, the model is also trained for 50 epochs, and its 
performance is assessed using a separate validation set. Additionally, we use two other models to 
compare with the CTDNN-Spoof in terms of complexity, loss, and accuracy. The proposed CTDNN-Spoof 
demonstrates varying accuracies across different labels, with the proposed architecture achieving the 
highest performance and promising time complexity. These results highlight the model’s effectiveness 
in mitigating GPS spoofing threats in UAVs. This innovative approach provides a scalable, real-time 
solution to enhance UAV security, surpassing traditional methods in precision and adaptability.
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Unmanned Aerial Vehicles (UAVs), a particular kind of smart device, have become prevalent in current culture. 
These gadgets depend significantly on their communications structure1,2, which is often built on the Internet of 
Things (IoT) networks and Global Positioning System (GPS) medium for every mission. GPS-based technologies 
suffer two primary dangers in UAVs: jamming and spoofing attacks3. The purpose of a jamming attack is denial-
of-service (DoS), preventing the UAV from receiving the GPS signal. In a spoofing attack, the assailant duplicates 
and amplifies the GPS signal to serve the UAV’s positional reference. The GPS and navigation system signal the 
correlation between higher power impacts. As a result, when the spoof signal is given to the UAV, it disregards 
the genuine GPS signal and begins to veer off track4. The target UAV cannot detect the drift during the attack 
since a correctly executed spoofing assault does not cause abrupt variations in the strength of the GPS signal 
received. Furthermore, the UAV cannot detect the drift because it is unaware of the proper position. These 
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factors make spoofing assaults difficult to identify2. Figure 1 presents the GPS spoofing attacks Scenario where it 
can be noticed that the UAV location can be shown somewhere else in the world.

In recent years, GPS service usage has increased significantly. By 2025, the market for GPS tracking devices is 
anticipated to grow to 3.38 billion from its present value of 1.57 billion5. In numerous instances, safety depends 
on tracking a moving object’s location in the present moment. To help an automobile reach its destination, an 
autonomous vehicle’s navigation system, for instance, receives GPS signals to determine the current latitude, 
longitude, acceleration, and direction. However, malevolent users or attackers have been encouraged to launch 
GPS attacks due to the rapid proliferation of GPS-enabled gadgets and affordable spoofing equipment. Because 
unencrypted GPS signals are so common and the ordinary GPS signal structure is accessible6, it is simple for an 
assailant to launch a GPS spoofing assault from an externally programmable standard radio gadget like HackRF 
or USRP at a distance where the radio waves can interfere with the real GPS signals7–10. The target vehicle’s 
navigation system will be duped into taking an incorrect path by the attacker once the attacker has control of the 
GPS signals in that area. Researchers have shown that while the vehicle is in autonomous mode, it is possible to 
use a HackRF to alter its trajectory or make it drive off-road [​h​t​t​p​s​:​​/​/​w​w​w​.​​r​e​g​u​l​u​​s​.​c​o​m​/​​b​l​o​g​/​​t​e​s​l​a​-​​m​o​d​e​l​-​​3​-​s​p​o​
o​​f​e​d​-​o​​f​f​-​t​h​e​​-​h​i​g​h​w​​a​y​-​r​e​g​​u​l​u​s​-​r​e​s​e​a​r​c​h]. Aside from navigation, numerous additional applications and services 
have extensively used GPS data to enhance their offerings and user interfaces.

This research aims to identify and categorize GPS spoofing attacks in UAVs. This area has been explored 
through conventional machine learning methods such as Artificial Neural Networks (ANN)11 and tree-based 
models12, which provide efficient ways to detect these attacks. Ensemble learning techniques, such as Bagging 
and Boosting, have emerged as significant advancements in machine learning over the past decade, offering 
enhanced performance in cyber-attack detection13. Bagging techniques generate multiple datasets from the 
original data and continuously assess performance. At the same time, boosting adjusts the weight of observations 
based on the most recent classifications, leading to improved results over individual ML models14. However, 
these traditional models face challenges, including issues with output interpretation and bias, which can lead to 
problems with overfitting or underfitting. In response, we propose an innovative approach that integrates Self-
Supervised Representation Learning (SSRL) with transfer learning techniques, enhancing model generalization 
and adaptability by leveraging unsupervised pre-training on large-scale data. This hybrid approach, combined 
with advanced deep learning models such as LSTM, GRU, and DNN architectures, significantly improves 
detection precision, surpassing the performance of conventional methods. This novel combination of SSRL and 
transfer learning not only addresses the limitations of traditional machine learning techniques but also paves the 
way for more robust, scalable, and accurate GPS spoofing detection systems in UAVs.

Contribution
This paper makes the following contributions:

•	 Proposed a compact tiny deep learning architecture named CTDNN-Spoof for detection and multi-label clas-
sification of GPS Spoofing Attacks in Small UAVs.

Fig. 1.  Small UAV’s GPS Spoofing Attacks Scenario.
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•	 Furthermore, two other models are designed to compare with the proposed model in terms of complexity, 
loss, and accuracy. We implemented early stopping with the patience of 10 epochs and 50 epochs as well to 
evaluate the models’ complexity and performance.

•	 The proposed CTDNN-Spoof, trained on various columns such as ch0_output, ch1_output, ch2_output, ch3_
output, ch4_output, ch5_output, ch6_output, and ch7_output, exhibited varying but promising accuracies. 
The proposed model trained on the “ch6_output” column attained the highest accuracy, reaching a peak of 
0.9912 during the 10 epoch and promising time complexity.

Organization
The remainder of the article is organized as follows. Section 2 presents the relevant state-of-the-art research 
on GPS spoofing attacks in small UAVs. Section 3 presents the Compact Tiny Deep Learning Method for 
the Detection and Multi-Label Classification of GPS Spoofing Attacks in Small UAVs. Section 4 presents the 
experimental analysis, Results and Discussion. Finally, Section 7 concludes the paper.

Related work
GPS spoofing attacks present a vulnerability to Unmanned Aerial Vehicles through which adversaries manipulate 
navigational signals to control UAVs illegally. Research endeavours about intrusion detection systems to 
counteract GPS spoofing attacks have become extensive because of mounting threat levels involving machine 
learning (ML) and deep learning (DL) methodologies.

Machine learning and deep learning-based approaches
Various studies applied ML and DL models to detect and minimize GPS spoofing attacks. DeepPOSE serves as 
a deep learning-based solution that uses convolutional neural networks (CNNs) with recurrent neural networks 
(RNNs) for sensor noise filtering and real-time route reconstruction15. The proposed model performed effective 
trajectory corrections, which integrated sensor data with Google Maps projection features during detection 
while delivering high data recognition accuracy between datasets. They published their perception-data-
based GPS spoofing detection method for UAVs in their article16. Real flight data combined with multiple ML 
classifiers reached detection rates higher than 99.69% using this method. The authors in17 created two dynamic 
classifier selection methods known as Metric Optimized Dynamic Selector (MODS) and Weighted MODS to 
boost GPS spoofing detection performance. Through their single-stage ensemble feature selection method, they 
eliminated unimportant features, which resulted in a 99.6% accuracy rate with minimal wrong alarms. The anti-
spoofing system developed by the authors of this paper18 demonstrated superior performance through its 1D 
CNN design, which obtained 100% precision and 99% F1-score. The authors of this paper19 trained a multi-layer 
perceptron (MLP) on statistical path loss data from base stations to reach above 93% detection accuracy when 
using three base stations. Authors of this paper20 developed a joint system of deep neural networks for air traffic 
control identity authentication that includes zero-bias dense layers and continual learning capabilities. The 
framework worked successfully across different cyber-physical systems when applied to genuine ADS-B signals.

Alternative approaches and hybrid techniques
Authors in21 utilized various ML models for detecting spoofing attacks within ZigBee networks. Authors 
in2 designed a Multi-layer Perceptron (MLP) model for UAV-based GPS spoofing detection, which yielded 
accuracy between 83.23% on the TEXBAT dataset and 99.93% on the MAVLINK dataset. Authors in22 created a 
Lightweight, Trustworthy Message Exchange (LTME) scheme which linked trust management with cryptography 
to build reliable UAV network operations. The reputation update system of LTME, along with secret distribution 
methods, provided a dual mechanism for checking UAV identity validity and message authenticity. Authors in23 
developed the Intelligent Clustering Routing Approach (ICRA), which merged reinforcement learning-based 
clustering strategy adjustments with optimized routing for UAV Ad-hoc Networks (UANETs). This method 
improved both the network durability and minimised the end-to-end delay to demonstrate higher efficiency 
for clustering and energy consumption. PerDet, which represents a multi-sensor-based GPS spoofing detection 
system, achieved an extension from the author’s original work in24. PerDet detected spoofing attacks with a 
99.69% accuracy by merging data from accelerometers, gyros, magnets, GPS devices and barometers, which 
addressed sensor obstacles better than prior ML-based systems. Table 1 provides an overview of the major 
characteristics of GPS spoofing detection along with corresponding research methods.

Key insights and research gap
Currently, available research shows that ML and DL-based solutions produce effective results for GPS spoofing 
detection. Many detection methods need custom adjustments for specific datasets, which complicates the 
process of achieving real-world generalization. The detection robustness of sensor fusion techniques alongside 
feature selection strategies needs additional optimization work. The proposed research implements an ensemble-
based machine and deep learning framework for detecting GPS spoofing in small UAV systems. Through sensor 
fusion, model selection optimization, and advanced feature extraction, our method solves dataset dependency 
and increases both real-time functionality and detection precision beyond current models.

Proposed methodology (CTDNN-Spoof)
The proposed pipeline, shown in Fig. 2, begins with the acquisition of a comprehensive dataset consisting of GPS 
signals recorded from UAVs, which forms the basis for further analysis. We experiment on GPS spoofing dataset 
[​h​t​t​p​s​:​​/​/​i​e​e​e​​-​d​a​t​a​p​​o​r​t​.​o​r​​g​/​d​o​c​​u​m​e​n​t​s​​/​d​a​t​a​s​​e​t​-​g​p​s​​-​s​p​o​o​​f​i​n​g​-​d​​e​t​e​c​t​i​​o​n​-​a​u​t​​o​n​o​m​o​u​s​-​v​e​h​i​c​l​e​s] (accessed on 11 
May 2024) consisting of GPS spoofing attacks records on small UAVs. After data collection, a preprocessing 
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phase is initiated, involving normalization to standardize numerical features, scaling to maintain consistency, 
and encoding categorical variables to ensure compatibility with machine learning models. At the same time, 
TensorFlow Lite (TinyML) is integrated into the workflow, aligning with the project’s focus on resource-limited 
devices, particularly small UAVs. The GPS dataset, containing 156,996 rows and 112 columns, is large and diverse 
enough to support effective training of deep learning models. This extensive dataset ensures exposure to a wide 
range of real-world GPS spoofing scenarios, helping to prevent overfitting. Our model, which demonstrates 
high accuracy without overfitting, confirms the representativeness and suitability of our dataset for addressing 
GPS spoofing attacks. In our study, the experimental data for evaluating the proposed CTDNN-Spoof model 
is drawn from a GPS dataset containing both authentic and spoofed GPS signals. The dataset is specifically 
crafted to simulate GPS spoofing attacks in small UAVs, incorporating various environmental factors and attack 
types. For the experimental setup, a UAV platform is used to gather real-world GPS data under both normal 
and spoofed conditions. Spoofing attacks are simulated using GPS signal generation tools, which allow for the 
controlled injection of spoofed signals into the UAV’s navigation system. The dataset includes various features 
such as time-stamped GPS coordinates, signal strength, and additional sensor data, all of which are essential for 
detection purposes. The input to the model likely includes GPS data features such as latitude, longitude, altitude, 
GPS timestamps, signal quality metrics (e.g., SNR, C/N0), velocity, acceleration, course direction, and satellite-
related information (e.g., number of visible satellites, DOP metrics). It may also incorporate anomaly indicators 
like sudden position shifts or signal inconsistencies, all of which are crucial for detecting spoofed signals and 
distinguishing them from genuine GPS data.

Fig. 2.  TinyML for GPS Spoofing Attacks Detection and Classification.

 

Ref. Approach Key parameters Limitations/Strengths
15 DeepPOSE (CNN + RNN) for trajectory correction Sensor data (accelerometer, gyroscope, GPS) High computational cost, real-time performance not tested

16 PERDET (ML-based UAV spoofing detection) Perception data (accelerometer, gyroscope, 
magnetometer, GPS, barometer) Limited dataset size, generalization not fully validated

17 Dynamic classifier selection for GPS spoofing 10 ML classifiers, feature selection Increased processing time due to dynamic selection
18 1D CNN-based anti-spoofing model GPS signal characteristics Limited comparison with traditional ML models
19 MLP-based GPS spoofing detection Statistical features from base station path loss Accuracy drops significantly with fewer base stations
20 Deep learning-based ATC spoofing detection ADS-B signals, zero-bias DNN Requires continuous learning for adaptation
21 ML-based cross-technology spoofing detection Physical-layer details of ZigBee Limited to specific cross-technology attacks

2 MLP-based UAV GPS spoofing detection Flight data and GPS signals Accuracy varies across datasets (TEXBAT: 83.23%, 
MAVLINK: 99.93%)

22 LTME: Cryptography + Trust Management for UAVs Secure message encryption and authentication Focuses on message security rather than spoofing 
detection

23 Reinforcement learning-based clustering for UAVs Clustering strategy, network topology Not specifically designed for GPS spoofing detection

This Study Lightweight Deep Learning Model for UAV GPS 
Spoofing Detection Fine Tuning and Reducing Model Size Improves generalization, enhances detection accuracy

Table 1.  Comparison of Existing GPS Spoofing Detection Methods.
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A DNN model is then constructed for GPS spoofing attack detection and classification, with the dataset 
split into training and validation sets for optimal model performance through hyperparameter fine-tuning. 
Subsequently, the TensorFlow DNN model undergoes conversion into TensorFlow Lite format to ensure 
suitability for deployment on resource-constrained devices, consistent with the TinyML framework. Model 
evaluation encompasses key metrics such as loss and accuracy to gauge generalization, Receiver Operating 
Characteristic (ROC) curves for discrimination analysis, and confusion matrices for a detailed classification 
performance examination. The iterative optimization process involves fine-tuning parameters and enhancing 
the TinyML model’s accuracy and robustness through multiple iterations, culminating in a systematic and 
effective solution for GPS spoofing detection on Small UAVs.

The Algorithm 1 begins with the preparation of the data. The target variables, “y_train” and “y_test”, are 
converted into one-hot encoding to facilitate multiclass classification. Additionally, the input features, “X_train” 
and “X_test”, undergo min-max scaling to normalize their values. Following data preparation, a Sequential 
model is defined using TensorFlow’s Keras API. This model comprises an input layer with 64 nodes and ReLU 
activation, a hidden layer with 32 nodes and ReLU activation, and an output layer with a linear activation function 
adjusted based on the desired output dimensions. The model is then compiled with the Adam optimizer, mean 
squared error loss, and accuracy as the evaluation metric. The training process involves fitting the model to 
the training data (“X_train”, “y_train_one_hot”) for 10 epochs, using a batch size of 32 and incorporating early 
stopping to prevent overfitting. Subsequently, the trained model is employed to predict probabilities for each 
class on the test data. The pseudocode further encompasses the generation of ROC curves and the calculation of 
the area under the curve (AUC) for individual classes and a micro-average. Finally, the ROC curves, including 
individual class curves and the micro-average, are plotted for visualization and performance assessment. This 
algorithm encapsulates the essential steps in training a TinyML-based DNN model for GPS spoofing detection 
and evaluating its performance using ROC curves.

Algorithm 1.  Pseudo code of TinyML for GPS Spoofing Attacks Detection and Classification.

Experimental analysis, results and discussion
The study conducted an experiment utilizing a specific set of tools and technologies, primarily relying on 
Python 3.8.8, a widely used and effective programming language for machine learning. The experimental setup 
also included the Nvidia 1060 graphics processing unit (GPU), contributing to efficient parallel processing 
and significantly accelerating the training and evaluation of deep learning models. The study evaluates model 
performance using key assessment measures such as accuracy, loss, confusion matrix, and Receiver Operating 
Characteristic (ROC). Accuracy, the proportion of accurately classified examples to the total number of instances, 
is highlighted as a straightforward statistic for performance assessment in this investigation.

Table 2 represents results from the training and validation of the DNN model on the labelled column “ch0_
output,” indicating a consistent improvement in performance over the epochs. The validation loss decreases 
from 0.0166 in the first epoch to 0.0130 in the tenth. The validation accuracy shows a positive trend, starting at 
0.9478 and reaching 0.9519 by the tenth epoch. This suggests that the model effectively learns the patterns and 
features in the data, reducing prediction error and enhancing accuracy over the training iterations.

Table 3 represents results from the DNN model training for the label column ’ch1_output’ presented in the 
table. The model underwent ten training epochs, with corresponding validation loss and validation accuracy 
recorded for each epoch. Across the epochs, there is a notable trend of decreasing validation loss, indicating an 
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improvement in the model’s ability to minimize errors. validation accuracy is increasing, reaching 0.9554 by the 
tenth epoch. This upward trajectory suggests that the model is learning and generalizing well to the validation 
dataset.

The DNN model’s performance on the validation set, as reflected in the provided results for the label column 
“ch2_output” represented in Table 4, exhibits consistent and promising trends over the ten training epochs. 
The validation loss steadily decreases from 0.0114 in the first epoch to 0.0094 in the tenth, indicating the 
model’s ability to minimize errors during training. Concurrently, the validation accuracy remains consistently 
high, ranging from 0.9795 in the fifth epoch to a peak of 0.9828 in both the first and ninth epochs. The minor 
fluctuations observed in the validation accuracy and loss across epochs are natural aspects of the training 
process, demonstrating the model’s capacity to generalize well to new data.

The performance of the DNN model, as reflected in the validation results for the “ch3_output” label column 
represented in Table 5, demonstrates consistency and high accuracy across multiple epochs. In the initial epochs 
(1-5), the model maintains a low validation loss, ranging from 0.0066 to 0.0072, indicative of effective learning. 
The associated validation accuracy remains consistently high, hovering around 0.97.4 throughout these epochs. 
Notably, in the sixth epoch, a slight deviation is observed with an increase in validation loss 0.0096 and accuracy 

Epochs Validation loss Validation accuracy

1 0.0114 0.9828

2 0.0108 0.9827

3 0.0098 0.9825

4 0.0098 0.9818

5 0.0119 0.9795

6 0.0096 0.9817

7 0.0097 0.9828

8 0.0094 0.9822

9 0.0093 0.9828

10 0.0094 0.9820

Table 4.  Ch2_output results.

 

Epochs Validation loss Validation accuracy

1 0.0138 0.9522

2 0.0133 0.9513

3 0.0134 0.9503

4 0.0127 0.9531

5 0.0128 0.9417

6 0.0123 0.9541

7 0.0119 0.9544

8 0.0118 0.9545

9 0.0123 0.9525

10 0.0117 0.9554

Table 3.  Ch1_output results.

 

Epochs Validation loss Validation accuracy

1 0.0166 0.9478

2 0.0160 0.9448

3 0.0142 0.9511

4 0.0153 0.9454

5 0.0141 0.9497

6 0.0140 0.9505

7 0.0138 0.9505

8 0.0133 0.9520

9 0.0131 0.9519

10 0.0130 0.9519

Table 2.  Ch0_output results.
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0.9817, suggesting a temporary adjustment in the model’s performance. The subsequent epochs (7-10) showcase 
a return to the initial trend, maintaining a stable validation loss around 0.0066 − 0.0067 and a high accuracy 
of approximately 0.9746.

The results from the training epochs of the DNN model for the ch4_output label column represented in 
Table 6 demonstrate consistent improvement in validation loss and accuracy over successive epochs. In the 
initial epoch, the model achieved a validation loss of 0.0072 and a corresponding accuracy of 0.9783. Subsequent 
epochs showed a decreasing trend in validation loss, reaching 0.0051 in the tenth epoch, indicating an enhanced 
ability to minimize errors during training. Concurrently, the validation accuracy steadily increased, peaking at 
0.9811 in the tenth epoch.

The results from training the DNN model labelled under the column “ch5_output,” represented in Table 
7 demonstrate promising performance across multiple epochs. The validation loss, indicative of how well the 
model generalizes to unseen data, consistently exhibits low values, ranging from 0.0021 to 0.0057, throughout the 
training process. This suggests effective convergence of the model during training. Concurrently, the validation 
accuracy, representing the proportion of correctly classified instances, remains consistently high, ranging from 

Epochs Validation loss Validation accuracy

1 0.0072 0.9783

2 0.0081 0.9743

3 0.0067 0.9774

4 0.0060 0.9794

5 0.0064 0.9782

6 0.0057 0.9803

7 0.0058 0.9790

8 0.0054 0.9804

9 0.0056 0.9789

10 0.0051 0.9811

Table 7.  Ch5_output results.

 

Epochs Validation loss Validation accuracy

1 0.0072 0.9783

2 0.0081 0.9743

3 0.0067 0.9774

4 0.0060 0.9794

5 0.0064 0.9782

6 0.0057 0.9803

7 0.0058 0.9790

8 0.0054 0.9804

9 0.0056 0.9789

10 0.0051 0.9811

Table 6.  Ch4_output results.

 

Epochs Validation loss Validation accuracy

1 0.0071 0.9744

2 0.0072 0.9746

3 0.0072 0.9746

4 0.0068 0.9747

5 0.0066 0.9746

6 0.0096 0.9817

7 0.0066 0.9746

8 0.0067 0.9746

9 0.0066 0.9747

10 0.0066 0.9743

Table 5.  Ch3_output results.
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0.9835 to 0.9948 across the epochs. The slight fluctuations in accuracy and loss values from epoch to epoch are 
typical in the training process and may be attributed to the inherent stochasticity of neural network optimization.

The results obtained from training the DNN model on the ch6_output label column represented in Table 8 
reveal a progressive improvement in performance over the ten epochs. The table shows that the validation loss 
consistently decreases from 0.0044 in the first epoch to 0.0027 in the eighth and tenth epochs. Concurrently, 
the validation accuracy steadily increases, reaching a peak of 0.9912 in the tenth epoch. These trends suggest 
that the model is effectively learning the underlying patterns in the data, as reflected in the decreasing loss and 
increasing accuracy. The relatively low validation loss and high accuracy in the later epochs indicate the model’s 
ability to generalize well to unseen data. It is essential to monitor such metrics to ensure the model’s robustness 
and effectiveness in making accurate predictions on new instances.

The results from the training of the DNN model for the “ch7_output” label column are presented in Table 9, 
indicating the performance metrics across multiple epochs. The validation loss consistently decreases over the 
epochs, reaching a minimum of 0.0173 at the eighth epoch. The validation accuracy steadily increases, peaking 
at 0.9335 during the ninth epoch. These trends suggest that the model learns effectively from the training data, 
as reflected by the decreasing loss and increasing accuracy. The marginal fluctuations in validation loss and 
accuracy across epochs indicate a stable convergence of the model.

Figure  3 illustrates the training and validation loss, where the blue line represents the training loss, the red 
line represents the validation loss, the x-axis denotes the number of epochs, and the y-axis represents the MSE.

The confusion matrix is a fundamental tool in machine learning that provides a detailed view of a model’s 
performance by showcasing the counts of True Positives (correct positive predictions), True Negatives (correct 
negative predictions), false positives (incorrect positive predictions), and false negatives (incorrect negative 
predictions) as shown in Fig. 4. In the analysis of the Ch0_output target column, the confusion matrix highlights 
that the model performed exceptionally well in predicting instances with a true label of 3, correctly classifying 
all 1,806 instances. However, misclassifications were observed for labels 0, 1, and 2, with the model incorrectly 
predicting certain instances across these categories. For the Ch1_output target column, the matrix reveals a strong 
performance for class 0, with 40,668 accurate predictions, but challenges in distinguishing between classes were 
noted, including some misclassifications within classes 2 and 3. Similarly, for the Ch2_output column, the matrix 
demonstrates a high accuracy of approximately 98.3%, though precision (71.8%) and recall (84.9%) indicate 
areas for improvement in handling false positives and false negatives. The confusion matrix for the Ch3_output 
column shows that the model excelled in predicting class 0 with 41,925 correct predictions, but difficulties 
arose in classifying instances in classes 1, 2, and 3, with notable misclassifications evident. For the Ch4_output 
column, the matrix reveals strong performance for classes 0 and 1 but also highlights misclassifications, such 
as 837 instances of class 2 being predicted as class 0. In the case of the Ch5_output column, the model achieved 

Epochs Validation loss Validation Accuracy

1 0.0191 0.9317

2 0.0185 0.9323

3 0.0185 0.9307

4 0.0177 0.9323

5 0.0189 0.9323

6 0.0179 0.9322

7 0.0175 0.9325

8 0.0173 0.9320

9 0.0175 0.9335

10 0.0175 0.9327

Table 9.  Ch7_output results.

 

Epochs Validation loss Validation accuracy

1 0.0044 0.9886

2 0.0035 0.9899

3 0.0031 0.9905

4 0.0056 0.9839

5 0.0033 0.9890

6 0.0029 0.9907

7 0.0030 0.9900

8 0.0027 0.9911

9 0.0051 0.9872

10 0.0027 0.9912

Table 8.  Ch6_output results.
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perfect predictions for class 2 and significant accuracy for classes 0 and 1, though minor misclassifications 
occurred. Furthermore, analysis of the Ch6_output column shows that the model achieved high accuracy in 
predicting class 0 with 42,479 correct classifications but struggled with some misclassifications for classes 1 and 
2. Finally, the Ch7_output column demonstrates strong predictive accuracy for classes 0 and 3. Still, the model 
encountered challenges in correctly identifying instances of class 1, as reflected in the significant number of false 
positives and false negatives.

The Receiver Operating Characteristic (ROC) curve evaluates a binary classification model’s ability to 
discriminate between classes by plotting the true positive rate against the false positive rate, as shown in Fig. 5. The 
Area Under the Curve (AUC) quantifies this performance, with a score of 1.0 indicating perfect discrimination. 
This metric is widely used for model evaluation, particularly in applications requiring sensitivity-specificity 
trade-offs. For the Ch_0 output, all classes show high AUC values, with Class 3 achieving 1.00 and others scoring 
0.99. The micro-average AUC also scores 1.00, reflecting exceptional model performance. Similarly, the Ch_1 
output achieves perfect AUC for Classes 0 and 3 and 0.99 for Classes 1 and 2, with a micro-average of 1.00, 
demonstrating robust classification across all thresholds. The Ch_2 output shows flawless AUC scores of 1.00 
for Classes 0 and 1, with a micro-average of 1.00, indicating strong discriminatory power. For Ch_3 and Ch_4 
outputs (Figs. 5d,e), all classes achieve AUC scores of 1.00, highlighting the model’s reliability.Ch_5 and Ch_6 
outputs also exhibit perfect AUC scores across all classes, demonstrating consistent and robust classification. 
Lastly, for the Ch_7 output, classes 0 and 3 achieve AUC scores of 1.00, Class 1 scores 0.99, and Class 2 scores 
0.98, with a micro-average of 1.00, signifying excellent overall performance.

Table 10 presents the outcomes of traditional machine learning algorithms. For Ch0_output, the LR model 
achieved a loss of 0.0217 and an accuracy of 0.9485. In comparison, the DT model demonstrated a lower loss 
of 0.0170 while achieving a higher accuracy of 0.9659. The RF model, with a loss of 0.0115 and an accuracy of 
0.9612, also delivered competitive results. For Ch1_output, the LR achieved a loss of 0.0200 and an accuracy of 
0.9503, showcasing effective predictive capability. Similarly, DT exhibited a loss of 0.0250 and an accuracy of 
0.9496, demonstrating competitive performance in terms of accuracy but with a slightly higher loss. RF, with a 

Fig. 3.  Training and Validation Loss Curves of all target label columns (X-axis represents epoch and y-axis 
represents Loss).
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loss of 0.019 and an accuracy of 0.9356, showcased a balance between predictive accuracy and generalization. 
For Ch2_output, the LR model achieved a loss of 0.0132 and an accuracy of 0.9806. The DT algorithm exhibited 
a lower loss of 0.0033 but a slightly reduced accuracy of 0.9659. Notably, the RF model demonstrated remarkable 
performance with a minimal loss of 0.0115 and an exceptionally high accuracy of 0.9966. For Ch3_output, 
the LR model achieved a loss of 0.0122 and an accuracy of 0.9739, signifying its effectiveness in minimizing 
prediction errors and accurately classifying instances. Similarly, the DT model exhibited a loss of 0.0123 and an 
accuracy of 0.9749, indicating robust performance in classification tasks. The RF model, with a loss of 0.0082 
and an accuracy of 0.9712, demonstrated notable efficiency in predictive accuracy and model generalization. 
For Ch4_output, the LR model achieved a loss of 0.0143 and an accuracy of 0.9766. Meanwhile, the DT model 
exhibited a loss of 0.0078 and an accuracy of 0.9659. The RF model demonstrated a loss of 0.0115 and a notably 
high accuracy of 0.9842. For Ch5_output, the LR model achieved a loss of 0.0096 and an accuracy of 0.9858. 
Notably, the DT model exhibited a lower loss of 0.0022 and a higher accuracy of 0.9955. Similarly, the RF model 
also showcased favourable performance, with a loss of 0.0015 and an accuracy of 0.9946. For Ch6_output, the 
LR model achieved a loss of 0.0098 and an accuracy of 0.9828. The DT algorithm demonstrated improved results 
with a lower loss of 0.0048 and a higher accuracy of 0.9901. Additionally, the RF algorithm exhibited a further 
reduction in loss to 0.0031 while maintaining a high accuracy of 0.9898. For Ch7_output, the LR model achieved 
a loss of 0.0224 and an accuracy of 0.9314. Similarly, the DT model yielded a loss of 0.0269 with an accuracy of 
0.9461. On the other hand, the RF model demonstrated a loss of 0.0198 and an accuracy of 0.9335.

Model performance using 50 Epochs
To further evaluate and refine the model’s performance, we conducted a re-implementation of the classification 
task, this time training the model for 50 epochs to gain deeper insights into its learning and generalization 
capabilities across the different channels, as shown in Table 11. The results revealed varying degrees of 
performance improvement among the channels. Channel 0 (Ch_0) achieved a validation loss of 0.0129 and a 
validation accuracy of 95.06%, while Channel 1 (Ch_1) showed a slight improvement with a validation loss of 

Fig. 4.  Confusion Matrix of all target label columns.
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0.0116 and an accuracy of 95.48%. Channel 2 (Ch_2) demonstrated significant progress, achieving a validation 
loss of 0.0090 and an impressive accuracy of 98.21%. Similarly, Channel 3 (Ch_3) reached a validation loss of 
0.0065 and an accuracy of 97.45%, and Channel 4 (Ch_4) achieved a validation loss of 0.0047 with an accuracy 
of 98.26%. Channel 5 (Ch_5) stood out with the best performance, recording the lowest validation loss of 0.0015 
and the highest accuracy of 99.56%. Channel 6 (Ch_6) also performed exceptionally well, achieving a validation 
loss of 0.0030 and an accuracy of 98.99%. However, Channel 7 (Ch_7) exhibited relatively lower performance, 
with a validation loss of 0.0175 and an accuracy of 93.35%. These results highlight the substantial improvements 
achieved with extended training, particularly in channels such as Ch_5 and Ch_6, which showed exceptional 
accuracy and minimal loss. At the same time, the relatively higher loss and lower accuracy observed for Ch_7 
suggests the presence of channel-specific challenges, such as data noise or distribution variability, warranting 
further analysis and targeted preprocessing to enhance its performance.

In the experiment, the method detected and classified GPS spoofing attacks by analyzing multiple channels. 
The model likely determined whether each channel was subjected to a deception attack individually and utilized 
the aggregated information across all channels to identify spoofing patterns, leveraging multi-label classification 
to account for both single-channel and multi-channel attacks.

Comparative analysis with other studies
Table 12 compares with the existing method 3. Authors in 3 provide insights into effective mitigation strategies 
such as secure GPS signal authentication and anti-spoofing technologies; the proposed architecture offers a 
novel approach tailored specifically for small UAVs. Similarly, Ref.1 used self-supervised representation learning 
(SSRL) integrated to detect GPS spoofing in small UAVs. Unlike these conventional methods, the architecture 
employs a compact, tiny deep learning method optimized for resource-constrained devices, showcasing a 
departure from traditional techniques. Including a sequential neural network with a specific architecture, ReLU 
activation functions, and the Adam optimizer underscores a design strategy to enhance the model’s efficacy. 

Fig. 5.  ROC Curves of all target label columns.
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Ref. Work Advantages Result

CTDNN-Spoof
Proposed deep learning method is specifically designed for the detection and multi-label 
classification of GPS spoofing attacks in Small UAVs, optimizing its effectiveness for this particular 
application.

Proposed a compact tiny deep learning 
architecture for detection and multi-label 
Classification of GPS Spoofing Attacks in 
Small UAVs

Accuracy: 
0.9912, 
Loss: 
0.0027

3

Incorporating explainable artificial intelligence techniques like Shapley Additive Explanations 
(SHAP), the proposed approach provides insights into why a signal is classified as spoofed. This 
enhances understanding of the underlying factors contributing to the classification, which can aid 
in developing more effective mitigation strategies.

Incorporates SHAP to explain why signals 
are classified as spoofed, providing insights 
for effective mitigation

F1-score 
0.956

1
Self-Supervised Representation Learning (SSRL) integrated with LSTM, GRU, LSTM-RNN, and 
DNN models to detect GPS spoofing in small UAVs. Incorporates transfer learning to improve 
adaptability and generalization.

Enhances detection capabilities using 
SSRL and transfer learning, achieving high 
accuracy and reduced training time.

Validation 
Accuracy: 
79.0%

Table 12.  Comparison with existing work.

 

Channel Validation loss Validation accuracy

Ch0 0.0129 95.06%

Ch1 0.0116 95.48%

Ch2 0.0090 98.21%

Ch3 0.0065 97.45%

Ch4 0.0047 98.26%

Ch5 0.0015 99.56%

Ch6 0.0030 98.99%

Ch7 0.0175 93.35%

Table 11.  Performance across different channels after training the model for 50 epochs.

 

Model Channel Loss Accuracy

LR

Ch0_output

0.0217 0.9485

DT 0.0170 0.9659

RF 0.0115 0.9612

LR

Ch1_output

0.0200 0.9503

DT 0.0250 0.9496

RF 0.019 0.9356

LR

Ch2_output

0.0132 0.9806

DT 0.0033 0.9659

RF 0.0115 0.9966

LR

Ch3_output

0.0122 0.9739

DT 0.0123 0.9749

RF 0.0082 0.9712

LR

Ch4_output

0.0143 0.9766

DT 0.0078 0.9659

RF 0.0115 0.9842

LR

Ch5_output

0.0096 0.9858

DT 0.0022 0.9955

RF 0.0015 0.9946

LR

Ch6_output

0.0098 0.9828

DT 0.0048 0.9901

RF 0.0031 0.9898

LR

Ch7_output

0.0224 0.9314

DT 0.0269 0.9461

RF 0.0198 0.9335

Table 10.  Results using ML Classifiers.

 

Scientific Reports |         (2025) 15:6656 12| https://doi.org/10.1038/s41598-025-90809-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


By incorporating loss and accuracy metrics for evaluation and early stopping mechanisms, the proposed 
architecture performs better in detecting and classifying GPS spoofing attacks. This tailored approach addresses 
the nuanced challenges of small UAVs, offering heightened security and reliability in GPS-dependent operations 
across various domains, thus representing a notable advancement over the methodologies outlined in existing 
work.

This study explores three distinct model architectures, as shown in Table 13. The CTDNN-Spoof features a 
simple design with three dense layers: an initial layer with 64 units, followed by a layer with 32 units, and a final 
output layer sized according to the number of classes. Model 2 is more complex, incorporating dense layers with 
batch normalization, activation functions, and dropout for regularization. It begins with 128 units, followed by 
64 and 32 units, each accompanied by batch normalization, activation, and dropout layers, concluding with an 
output layer. Model 3 has a simpler architecture, comprising a single dense layer with 32 units and an output 
layer. The proposed CTDNN-Spoof Model demonstrates superior performance across all channels, proving to be 
both efficient and reliable. It consistently achieves the highest accuracy or matches the best-performing models, 
highlighting its robustness in prediction. For example, Channel 5 achieves perfect accuracy (1.00), showcasing 
its precise classification ability. Additionally, the Proposed Model minimizes loss across all channels, a critical 
metric for evaluating performance. In Channels 2 and 6, its significantly lower loss values compared to Model 2 
underscore its better generalization and reduced risk of overfitting. Although the proposed CTDNN-Spoof Model 
may require slightly more computation time than the simpler Model 3, its superior accuracy and minimized 
loss justify this trade-off, making it more suitable for real-world applications where precision is paramount. Its 
design, which employs dense layers with decreasing units, effectively captures key features while maintaining 
a balance between complexity and computational efficiency. This efficiency is evident in its consistently strong 
performance across all channels. The proposed Model stands out as the optimal choice due to its high accuracy, 
low loss, and robust generalization capabilities. It consistently outperforms the other models, making it the most 
effective solution for the task at hand.

Conclusion
This study presents a compact tiny Deep Learning architecture named CTDNN-Spoof tailored for the detection 
and multi-label classification of GPS spoofing attacks in small UAVs. The sequential neural network, featuring 
64 neurons in the input layer with ReLU activation, 32 neurons in the hidden layer with ReLU activation, and 4 
neurons in the output layer with linear activation, is configured using the Adam optimizer, Mean Squared Error 
loss for regression, and accuracy as the evaluation metric. First, early stopping with a patience of 10 epochs 
is implemented to improve training efficiency and restore the best weights. Furthermore, the model is also 
trained for 50 epochs, and its performance is assessed using a separate validation set. Furthermore, we use two 
other models to compare with the CTDNN-Spoof in terms of complexity, loss, and accuracy. The model attains 

Channel Model Time (s) Loss Accuracy

Ch0_output

CTDNN-Spoof 12.3 0.0217 0.9485

Model 2 11.5 0.0170 0.9659

Model 3 10.8 0.0115 0.9612

Ch1_output

CTDNN-Spoof 13.1 0.0200 0.9503

Model 2 12.7 0.0250 0.9496

Model 3 11.4 0.0190 0.9356

Ch2_output

CTDNN-Spoof 14.0 0.0132 0.9806

Model 2 13.6 0.0033 0.9659

Model 3 13.2 0.0115 0.9966

Ch3_output

CTDNN-Spoof 15.5 0.0122 0.9739

Model 2 14.8 0.0123 0.9749

Model 3 14.1 0.0082 0.9712

Ch4_output

CTDNN-Spoof 16.7 0.0143 0.9766

Model 2 15.9 0.0078 0.9659

Model 3 15.2 0.0115 0.9842

Ch5_output

CTDNN-Spoof 17.3 0.0096 0.9858

Model 2 16.8 0.0022 0.9955

Model 3 16.0 0.0015 0.9946

Ch6_output

CTDNN-Spoof 18.5 0.0098 0.9828

Model 2 17.9 0.0048 0.9901

Model 3 17.2 0.0031 0.9898

Ch7_output

CTDNN-Spoof 19.0 0.0224 0.9314

Model 2 18.3 0.0269 0.9461

Model 3 17.6 0.0198 0.9335

Table 13.  Comparison with other Models in Terms of Time Complexity, Loss and Accuracy.
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its highest accuracy, peaking at 0.9912 during the 10th epoch when trained on the “ch6_output” column. In 
conclusion, this CTDNN-Spoof model effectively counters GPS spoofing attacks in Small UAVs, showcasing 
its potential to fortify security and reliability in UAV navigation systems. The method, emphasizing resource 
efficiency, demonstrates success in robust detection and classification, particularly evident in its superior 
accuracy on the “ch6_output” column, highlighting its applicability across diverse UAV scenarios.

Future work
Future work could focus on integrating the proposed approach with real-time UAV systems to enable seamless 
detection and mitigation of spoofing attacks in live environments. Advanced signal processing techniques could 
be explored to improve detection in challenging scenarios, such as urban canyons or areas with significant 
multipath interference while optimizing the algorithms for energy efficiency on resource-constrained devices 
to extend UAV operational time. Incorporating multi-modal data fusion using additional sensor inputs, such 
as inertial measurement units and barometers, could enhance robustness. Adaptive learning models capable 
of dynamically recognizing new spoofing patterns would ensure sustained accuracy against evolving threats. 
Furthermore, validating the methodology on diverse UAV hardware platforms and extending the research to 
detect spoofing in other GNSS types, such as GLONASS, Galileo, and BeiDou, would expand the approach’s 
applicability and effectiveness.

Data availability
All data generated or analyzed during this study are included in this published article.
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