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In this article, we discuss the qualitative analysis and develop an optimal control mechanism to study 
the dynamics of the novel coronavirus disease (2019-nCoV) transmission using an epidemiological 
model. With the help of a suitable mathematical model, health officials often can take positive 
measures to control the infection. To develop the model, we assume two disease transmission sources 
(humans and reservoirs) keeping in view the characteristics of novel coronavirus transmission. We 
formulate the model to study the temporal dynamics and determine an optimal control mechanism 
to minimize the infected population and control the spreading of the novel coronavirus disease 
propagation. In addition, to understand the significance of each model parameter, we compute the 
threshold quantity and perform the sensitivity analysis of the basic reproductive number. Based on 
the temporal dynamics of the model and sensitivity analysis of the threshold parameter, we develop 
a control mechanism to identify the best control policy for eradicating the disease. We then conduct 
numerical experiments using large-scale numerical simulations to validate the theoretical findings.

Keywords  Epidemiological model, Threshold parameter, Stability analysis, Optimal control theory, 
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Many types of viruses in the coronavirus family can infect people and cause illnesses like the common cold and 
severe acute respiratory syndrome (SARS). Two epidemics of coronaviruses, SARS and Middle East Respiratory 
Syndrome Coronavirus (MERS), have been reported in the past two decades with more than 10 thousand 
confirmed cases and 1600 deaths1–3. Initially, the infection of Middle East Respiratory Syndrome Coronavirus 
(MERS) was identified in Saudi Arabia while spreading in many other countries4. In late 2019, a severe respiratory 
illness identified with a causative agent isolated from a single patient reported in Wuhan, China, known as the 
novel coronavirus (2019-nVoV)5. The scientific data clarify that animals were the virus’s primary transmission 
source, but most cases increase due to interaction between vulnerable and infected people. The signs of a new 
coronavirus infection include fever, cough, exhaustion, breathing issues, etc. The novel coronavirus was a public 
health emergency of international concern, according to the World Health Organization (WHO), which declared 
it a global pandemic due to a pressing issue.

Due to the new nature of the disease, the coronavirus has been identified as a global danger and has drawn the 
interest of numerous researchers. Infectious disease epidemiology has a rich literature (see for detail6–9). Various 
epidemiological models investigated the dynamics and control analysis of different infectious diseases10–12. 
Similarly, the new coronavirus has a rich literature, and numerous articles have been reported to study the 
future spread of the disease dynamics. Particularly, a model was introduced to investigate the new coronavirus 
transmission by Wu et al. in13. To estimate the outbreak based on human interaction, a computational study has 
been reported by Imai et al.14. Further, the infectivity of the newly reported virus has been investigated by Zhu 
et al.15. Likewise, various other studies have been performed to investigate the dynamics of 2019-nCoV virus 
transmission16–20.

The biological interpretation of the novel coronavirus reveals that the pandemic rises due to close contact of 
human interactions but the initial transmission source is an animal. Therefore environmental reservoirs play an 
essential role in the spreading of novel coronavirus transmission. Thus, we assume both transmission sources 
according to the characteristics of the novel infection and follow the classical susceptible-infected-recovered (SIR) 
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model to develop a new mathematical model while studying the temporal dynamics of the novel coronavirus 
disease propagation. More specifically, we assume humans and reservoirs as a source of disease transmission and 
propose an epidemiological model by considering the extending version of the classical susceptible-infected-
recovered (SIR) model. In addition, we formulate an optimal control mechanism to minimize novel coronavirus 
spreading in the community. We first show the model validity to discuss the mathematical and biological 
properties of the epidemic problem that is under consideration. We calculate the threshold parameter and show 
its sensitivity to estimate the role of every epidemic parameter involved in the modeling process of the proposed 
problem. It will clarify the importance and role of every model parameter. We also investigate the stability of the 
model to find the stability conditions using linear stability analysis. Further, we develop a control mechanism 
based on the temporal dynamics of the model and sensitivity analysis to identify the best control policy for 
eradicating the disease. A large-scale numerical simulation will be also performed to validate the theoretical 
results of the model by providing numerical experiments.

Mathematical formulation of the model
We examine the dynamics of the newly reported disease in this section by keeping in view the properties of 
2019-nCoV to propose the model, whose schematic process is given in the flowchart as depicted in Fig. 1. For 
this purpose, the different compartments of humans and reservoirs are taken. We also take multiple transmission 
routes, i.e. from humans and reservoirs. We impose some assumptions on the model stated as: 

	1.	� All the state variables and parameters are taken to be positive or non-negative.
	2.	� The total human population is classified into three different compartments and one class of reservoir.
	3.	� Humans and reservoirs play a crucial role in the rise of the pandemic, so both are taken as a source of disease 

transmission.
	4.	� All newborns will lead to the susceptible group of individuals because there is still no evidence regarding 

vertical transmission of the disease.Thus, the epidemic problem can take the combination of the coupled 
nonlinear differential equation which looks like:

	




dSh(t)
dt

= Π − {β1Ih(t) + β2W (t) + d} Sh(t),
dIh(t)

dt
= {β1Ih(t) + β2W (t)} Sh(t) − {d + σ + d1} Ih(t),

dRh(t)
dt

= σIh(t) − dRh(t),
dW (t)

dt
= αIh(t) − ηW (t),

� (1)

with non-negative initial size of population

	 Sh(0) > 0, Ih(0), Rh(0), W (0) ≥ 0,� (2)

where Π is the proportion of newborns. β1 and β2 are the disease transmission rates occurring from humans 
and reservoirs, respectively. d demonstrates the natural mortality of humans while d1 is the death rate of infected 
humans. The recovery/removal rate of infected individuals is denoted by σ. The parameter α is the ratio at which 
the infected individuals contribute virus in terms of the environmental reservoirs, while η is the removal rate of 
the virus.

Figure 1.  The schematic diagram for the transmission of 2019-nCoV.
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Existence analysis and positivity
We show the mathematical and biological feasibility of the epidemic problem that is under consideration. 
Since the sum of the humans population is define as N(t) = Rh(t) + Ih(t) + Sh(t), which implies that 
0 ≤ N(t) ≤ Π

d . Now, from the last equation of the system (1), we can re-write

	
dW (t)

dt
+ ηW (t) = αIh(t),

implies that

	
0 < W (t) ≤ Πα

d

{
N(0) − 1

η − d

(
e−dt − e−ηt

)
+ 1

η

(
1 − e−ηt

)}
+ N(0)e−ηt.

Clearly, W(t) is bounded; thus, all the model solutions are bounded as well as positively invariant, and the 
feasible region is given as

	
Θ1 =

{
(Sh, Ih, Rh, W ) ∈ R4

+ : N ≤ Π
d

and W ≤ Πα

dη

}
.� (3)

In addition, let us assume that t+ > 0 and B represents Banach space, then

	 B = x1(0, t+) × x1(0, t+) × x1(0, t+) × x1(0, t+).� (4)

We define the norm on B as ∥ψ∥ =
∑4

j=1 ∥ψj∥, where ψ = (ψ1, ψ2, ψ3, ψ4) ∈ B and suppose that the 
positive cone of x1(0, t+) is B+, then from Eq.(4), B+ = x1

+(0, t+) × x1
+(0, t+) × x1

+(0, t+) × x1
+(0, t+). 

Thus the state space of the proposed system (1), takes the following form

	
Θ2 =

{
(Sh, Ih, Rh, W ) ∈ B+ : 0 ≤ N ≤ Π

d
and W ≤ Πα

dη

}
.� (5)

Let L is the linear operator and ϕ = (Sh, Ih, Rh, W ), then Lϕ = (L1, L2, L3, L4)T , where

	

L1 =
(

− dSh

dt
− dSh, 0, 0, 0, 0

)
, L2 =

(
0, −dIh

dt
− (σ + d + d1)Ih, 0, 0

)
,

L3 =
(

0, σIh,
dRh

dt
− dRh, 0

)
, L4 =

(
0, αIh, 0,

dW

dt
− ηW

)
,

� (6)

and D(L) is the domain, then 

D(L) =
{

ϕ ∈ B : Sh, Ih, Rh, W ∈ LC[0, t+), ϕ(0) =
(
Sh(0), Ih(0), Rh(0), W (0)

)}
. In which 

LC[0, t+) is the set of absolutely continues functions on [0, t+). Now we define the nonlinear operator M, such 
that M : B → B by

	

Mϕ =




Π −
(
β1Ih + β2W

)
Sh(

β1Ih + β2W
)
Sh

0
0


 .� (7)

Let w(t) = (Sh(., t), Ih(., t), Rh(., t), W (., t)), then the proposed system (1) can be written as

	
dw(t)

dt
= L(w(t)) + M(w(t)), w(0) ∈ B,� (8)

where w(0) = (sh(0), Ih(0), Rh(0), W (0))T . Now to prove the existence of solution of the above system (8), 
we follow21,22, thus we have the following results.

Theorem 2.1  For each w(0) ∈ B+, there exist a maximal interval of existence [0, t0) and a unique continues 
mild solution w(t, w0) ∈ B+, t ∈ [0, t0) for Eq.(8), such that

	
w(t) = w(0)eLt +

∫ t

0
eL(t−τ)M(w(τ))dτ.� (9)
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Proposition 2.1  Let us assume the initial conditions (2) of the proposed model, then the solutions of the pro-
posed model are positive for all t+.

Proof  Let I ⊂ [0, t+), then the solution of the first equation of system (1) looks like

	

Sh(t) = Sh(0) exp
{

− dt −
∫ t

0

(
β1Ih(x) + β2W (x)

)
dx

}

+ Π exp
{

− dt −
∫ t

0

(
β1Ih(x) + β2W (x)

)
dx

}

×
∫ t

0

{
dt +

∫ x

0

(
β1Ih(y) + β2W (y)

)
dy

}
dx > 0.

� (10)

Obviously the L.H.S of Eq. (10) is positive i.e., Sh(t) > 0. Similarly, it can be shown that the solution of the 
second, third, and fourth equations of the model (1) are non-negative. □

Stability analysis
We investigated that the proposed epidemic problem is mathematically and biologically feasible. To discuss 
the temporal dynamics, we perform stability of the model with the aid of linear stability theory. We calculate 
the model equilibria and find the threshold quantity (basic reproductive number). We also derive the stability 
conditions to characterize whether the disease dies out or persists.

Threshold quantity and dynamical analysis of the model equilibria
To find the stability conditions, we study the qualitative behavior of the proposed epidemic problem. We first 
calculate the disease-free equilibrium and then the threshold quantity. For this, we set all the states equations of 
the model equating to zero except Sh = Sh0, which gives X0 = (Sh0, 0, 0, 0, 0) is the disease-free state of the 
considered model, where Sh0 = Π

d .
In addition, the threshold quantity represents the average number of secondary infections produced by a 

single infective whenever introduced into a susceptible population. This will identify what happens if an infected 
agent enters into the population of susceptible. One of the examples of the 2019-nCoV is given by Fig. 2, which 
suggests that the coronavirus spreads faster than the estimation of WHO. This study was organized between Jan 
2020 and Feb 2020, and the estimate ranged from 1.4-6.49 with 3.28 of average and 2.79 of a median23. In this 
case, the estimated threshold value is high, and it is essential to control the pandemic by reducing the weight of 
the reproductive number. So here, we are going to figure out the threshold quantity (R0) of the model that is 
under consideration following the methodology of24. We then discuss the detailed sensitivity of the threshold 
parameter to find the relation of all parameters to the disease propagation. This type of analysis will be beneficial 
to optimize the value of the threshold quantity. Based on the next-generation matrix method, we calculate 
matrix F, and V is given by

	
F =

(
β1Sh0 β2Sh0

0 0
)

, V =
(

σ + d + d1 0
−α η

)
.� (11)

The threshold quantity is the dominant eigenvalue of the matrix (H̄ = F V −1), given by

	
R0 = β1Π

d(σ + d + d1) + αβ2Π
ηd(σ + d + d1) .� (12)

Figure 2.  Estimated values of the threshold quantity (R0) for the 2019-nCoV virus in China.
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From the above Eq. (12), it is clear that the threshold quantity for the proposed problem consists of two parts, 
which describe that there are two different transmission routes, one from the infected individuals and the other 
from reservoirs to the susceptible populations.

Sensitivity analysis
To find the relation of every parameter with the threshold quantity to the disease transmission and then its 
severeness, we use the formula Xγ = γ

R0
∂R0
∂γ  by following25. Once we calculate the indices of the threshold 

quantity, we can analyze the sensitivity of each parameter to the disease transmission and its prevalence. Using 
the above formula, we obtain the following indices

	

Xβ1 = ηβ1

ηβ1 + αβ2
> 0, Xβ2 = Xα = αβ2

ηβ1 + αβ2
> 0,

Xσ = −σβ1η + αβ2

ηβ1 + αβ2
< 0, Xη = − αβ2

ηβ1 + αβ2
< 0.

� (13)

It is very much clear from the Eq. (13) that the relation between R0 and parameters S1 = {β1, β2, σ} is direct. But 
it is indirect with the parameters given by S2 = {σ, η}, which certify that if the parameters value of S1 increases, 
the value of the threshold parameter will also increase significantly. In contrast, a decrease in the parameters 
value of S2 causes increases in threshold quantity. Now to control the spread of coronavirus disease, we focus on 
optimizing the value of the parameters that have a direct relation with threshold quantity and maximizing the 
value of those parameters with an inverse relation. More precisely, we take some feasible values of the parameters 
to find the percentage of the sensitivity indices and their relative impact on the threshold quantity numerically. 
Let us assume the biological feasible values of the parameters, i.e., β1 = 0.05, β2 = 0.000001231, σ = 0.09871
, η = 0.01 and α = 0.000398 to find the numerical value of the sensitivity indices and their relative percentage 
impact on the threshold quantity. Using the above numerical values, we calculate the following indices, i.e., 
Xβ1 = 0.9999990210, Xβ2 = Xα = 0.0000979079, Xσ = −0.0987008824, Xη = 0.0000979079. The 
biological interpretation of these sensitivity indices shows that the increase or decrease in the value of β1, say, 
for example, 10 percent, would increase or decrease the value of R0 by 9.999990210 percent as shown Fig. 4. 
In addition, if we increase or decrease the value of β2 and α by 10 percent, collectively affects the value of the 
threshold quantity by 0.001958158 percent, see Fig. 3b. Similarly, from the sensitivity indices of σ and η, we 
observe that the influence of these parameters on the threshold quantity is negative, in which an increase leads 
to a decrease in threshold quantity. For example, an increase of 10 percent in the value of σ and α would decrease 
the value of the threshold quantity by 0.9870088245 and 0.0009790790415 respectively, for instance, see Fig. 3a,b.

Dynamical analysis
To discuss the model dynamics at the disease-free state using the theory of dynamical systems, we state the 
following results.

Theorem 3.1  If R0 is less than unity, i.e. R0 < 1, then the model is stable asymptotically at X0 = (Sh0, 0, 0, 0, 0)
.

Figure 3.  The graphical results show the sensitivity analysis of the threshold quantity (R0) and its relative 
impact against the variations of various epidemic parameters {β1, β2, α, σ, η}. For this analysis, the numerical 
values of the parameters used are β1 = 0.05σ = 0.09871, η = 0.01, β2 = 0.00000123, Π = 0.0033907997, 
α = 0.000398, d1 = 0.0404720925, d = 0.0003567816.
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Proof  Since the considered model reveals that Rh(t) is not explicitly involved in all other equations, we assume 
only the three equations of the model, while investigating the dynamics of the proposed epidemic problem. Let 
A(X0) is the Jacobian the model (1) at X0, then

	
A(X0) =

(
−d − β1Π

d
− β2Π

d

0 β1Π
d

− σ − d − d1
β2Π

d
0 α −η

)
.� (14)

Obviously, A(X0) has an eigenvalue, λ1 = −d1 < 0. For the remaining, we take the following reduced matrix

	
A(X0) =

(
β1Π

d
− σ − d − d1

β2Π
d

α −η

)
.� (15)

The local dynamics of the epidemic problem depend on the nature of the eigenvalues of the Jacobian matrix. So, 
λ1 is negative while the eigenvalues of (15) will be negative if the Routh- Hurwitz criteria hold. We noted that the 
trace and determinant of matrix (15) are respectively negative and positive if the R0 is less than unity, such that

	
trace(A(X0)) = −(σ + d + d1)(1 − R0) −

(
η + αβ2Π

d

)
� (16)

and

	 det(A(X0)) = η(σ + d + d1)(1 − R0).� (17)

Equations (16)–(17) implies that Routh–Hurwitz criteria satisfies under the condition that R0 < 1, so we 
conclude that the model (1) is stable asymptotically in local sense if R0 < 1.

For the global dynamics around X0, we define a function H1 : R4
+ → R, such that

	 H1(Sh, Ih, Rh, W ) = a1(Sh − Sh0) + a2Ih + a3Rh + a4W.� (18)

In the above Eq. (18), ai, i = 1, 2, 3, 4 are arbitrary positive constants. We differentiate H1 temporally and 
assume the values of the positive constants, i.e., a1 = a2 = σ + d + d1, b3 = ηβ1Sh + β2αSh, then arrives at 
the following equation

	
dH1(t)

dt
= −(σ + d + d1)(Sh − Sh0) − (1 − R0)σIh.

Obviously dH1(t)
dt  is negative if Sh > Sh0 and R0 < 1. Moreover, dH1(t)

dt
= 0 if Sh = Sh0 and 

Ih = Rh = W = 0. Therefore, the well-known LaSalle invariance principle or simply invariance principle26 
implies that X0 is globally asymptotically stable. □

Figure 4.  The graphical results show the sensitivity analysis of the threshold quantity (R0) and its relative 
impact against the variation of various epidemic parameters β1. We use the numerical values of other 
parameters Π = 0.0033907997, α = 0.000398, d1 = 0.0404720925, d = 0.0003567816.
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To determine the dynamics of the model at the endemic equilibrium, we assume that X∗ be the endemic 
equilibrium of the proposed model, which is obtained by setting Sh = S∗

h, Ih = I∗
h , Rh = R∗

h, W = W ∗ at the 
steady state, then the corresponding disease endemic equilibrium leads to X∗ = (S∗

h, I∗
h, R∗

h, W ∗), where the 
following system of equation defines the components of the endemic state:

	

S∗
h = η (σ + d + d1)

ηβ1 + αβ2
, R∗

h = σ

d
I∗

h,

I∗
h = ηd (σ + d + d1) (R0 − 1)

σβ1η + σβ2α + dβ1η + dβ2α + d1β1η + d1β2α
,

W ∗ = αη (σ + d + d1) (R0 − 1)
σβ1η + σβ2α + dβ1η + dβ2α + d1β1η + d1β2α

.

� (19)

It can be noted from the above Eq. (19) that the endemic state of the model exists only in the case whenever 
R0 > 1. Thus we state the following result.

Lemma 3.2  The endemic state X∗ = (S∗
h, I∗

h, R∗
h, W ∗), of the proposed problem (1) exists only in the case 

R0 > 1.

To discuss the model temporal dynamics around the endemic state we prove the following theorem.

Theorem 3.3  If the conditions R0 > 1 and d + d1 > α holds then X∗ = (S∗
h, I∗

h, R∗
h, W ∗) is asymptotically 

stable.

Proof  We use the theory of linear stability analysis to discuss the dynamics of the model at X∗. Let A(X∗) be 
the Jacobian matrix of the model (1) around X∗, then

	
A(X∗) =

(
−(β1I∗

h + β2W ∗ + d) −β1S∗
h −β2S∗

h

β1I∗
h + β2W ∗ β1S∗

h − (σ + d + d1) β2S∗
h

0 α −η

)
.� (20)

To discuss the local dynamics, we find the characteristic polynomial of (20) as

	 X(λ) = λ3 + h1λ2 + h2λ + h3,� (21)

where

	

h1 = (η + d)(ηβ1 + αβ2) + (ηdβ1 + αβ2)(R0 − 1) + αβ2(σ + d + d1)
ηβ1 + αβ2

,

h2 = (ηd2β1 + ηdβ1d1 + η2dβ1 + αβ2d + αβ2d1 + αβ2 + σηdβ1 + ασβ2)(R0 − 1)
ηβ1 + αβ2

+ αβ2d(σ + d + d1) + ηd(ηβ1 + αβ2)
ηβ1 + αβ2

,

h3 = (η2d2β1 + η2dβ1d1 + αβ2d + αβ2d1 + η2dβ1σ + αβ2σ)(R0 − 1)
ηβ1 + αβ2

.

� (22)

According to linear stability analysis, the proposed model around endemic equilibrium (19) is stable if all 
eigenvalues of the Jacobian matrix (20) are negative. One may follow the Routh- Hurwitz criteria to discuss the 
properties of the Jacobian matrix (20). Roots (eigenvalues) of the above Eq. (21) are negative, if Routh-Hurwitz 
criteria (H3) i.e. h1 > 0, h3 > 0 and h1h2 − h3 > 0 holds. It can be noted from Eq. (22) that h1 and h3 
are positive under the condition that R0 > 1, while h1h2 − h3 > 0 is calculated and given by the following 
expression

	

h1h2 − h3 = ((η + d)(ηβ1 + αβ2) + (ηdβ1 + αβ2)(R0 − 1)
+ αβ2(σ + d + d1))(αβ2d(σ + d + d1) + ηd(ηβ1 + αβ2))
+ (ηdβ1(1 − η)(d + d1) + η2dβ1(1 − σ) + αβ2 + σηdβ1)(R0 − 1).

� (23)

Clearly h1h2 − h3 > 0, whenever R0 > 1, so H3 satisfied if R0 > 1. Thus, model (1) is asymptotically stable 
at X∗ if R0 > 1.

For the global dynamics, we assume a function H2 : R4
+ → R by the following equation
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H2(Sh, Ih, W ) = 1

2
{

(Sh − S∗
h) + (Ih − I∗

h) + (Rh − R∗
h) + (W − W ∗)

}2
.� (24)

We differentiate H2 and making use of some simple algebra, we get

	

dH2(t)
dt

= −
{

(Sh − S∗
h) + (Ih − I∗

h) + (Rh − R∗
h) + (W − W ∗)

}
{

d(Sh − S0) + (d + d1 − α)Ih − dRh − ηW
}

.

It could be noted from the above equation that dH2(t)
dt

≤ 0 if and only if Sh > S∗
h, d + d1 > α, and Sh = S∗

h, 
Ih = I∗

h , Rh = R∗
h, W = W ∗. Thus we conclude that according to the invariance principle the disease endemic 

state X∗ is globally asymptotically stable, if R0 > a and d + d1 > α. □

Optimal control
Keeping in mind the model dynamics and sensitivity of the threshold parameter, we analyse a control mechanism 
with the aid of optimal control theory. It can be noted that the maximum sensitivity index parameter in the 
epidemic parameters is β1, whose value is 0.9999990210. This indicates that the increase of 10 percent in β1 
causes the increase of 9.999990210 percent in the value of R0. Therefore, the very first step to control the spread 
needs much attention to minimize the value of this parameter. With the help of the control variable, isolation of 
infected and non-infected (u1(t)), we can reduce and optimize the spreading in the community. Similarly, the 
index of β2 is 0.000097079, which affects the threshold quantity by 0.00097079 percent. To minimize the value 
of this parameter, we use the control variable, (u2(t)), which physically represents personal protection, e.g., 
wearing of mass, washing hands, etc. The index of α is 0.000097079, which variates the threshold quantity by 
0.00097079 percent. We must reduce this by taking the u4(t) control variable. Moreover, the collective variation 
of σ and η affect the threshold quantity by 0.9870088245 and 0.0009790790415. Here, we need to increase the 
values of these parameters because the increase would decrease the threshold quantity value. For this, we assume 
u3(t), a control measure representing infected individuals’ treatment. Thus we are now in a position to take the 
set of control variables symbolized by u(t) and define as u(t) = {u1(t), u2(t), u3(t), u4(t)}, where u1(t) is 
used for the isolation of infected individuals from the community, while u2(t) represents the personal protection 
including wearing of masks, washing hands, etc. Similarly, the control variable u3(t) represents the treatment 
of infected individuals, as it is clear that Corona has no proper treatment, so this control means that treatment 
which strengthens the immunity system and u4(t) is the control variable which is used for minimizing the value 
of the parameter α. Placing the control variables, we arrive at the following control problem:

	
J(u, x) = min

∫ T

0

(
ω1Ih(t) + ω2W (t) + 1

2(ω2
3u2

1(t) + ω2
4u2

2(t) + ω2
5u2

3(t) + ω2
6u2

4(t))
)

dt,� (25)

subject to the system, which is the extended version of Eq. (1) as defined by

	

dSh(t)
dt

= Π − β1Sh(t)Ih(t)(1 − u1(t)) − β2Sh(t)W (t)(1 − u2(t)) − dSh(t),

dIh(t)
dt

= β1Ih(t)Sh(t)(1 − u1(t) + β2W (t)Sh(t)(1 − u2(t)

− (σ + d + d1 + u3(t))Ih(t),
dRh(t)

dt
= (σ + u3(t))Ih(t) − dRh(t),

dW (t)
dt

= αIh(t) − (η + u4(t))W (t),

� (26)

 with

	 Sh(0) > 0, Ih(0), Rh(0), W (0) ≥ 0.� (27)

In the above Eq. (25), x = (Sh, Ih, Rh, W ) and ω1, ω2, ω3, ω4, ω5 and ω6 are the weight constants in which ω1 
and ω2 represent the relative cost of the infected population and reservoir, while ω3, ω4, ω5 and ω6 measure the 
associated cost of u1(t), u2(t), u3(t) and u4(t), respectively. The goal of our control problem is very clear from 
the objective functional (25): to control the disease by maximizing the recovered and reducing the infected, and 
the reservoir by taking into account the cost of controls. We obtain the cost function at (u∗

1, u∗
2, u∗

3, u∗
4), such 

that

	 J(u∗
1, u∗

2, u∗
3, u∗

4) = min{J(u1, u2, u3, u4), ui ∈ U, for i = 1 . . . 4}� (28)

subject to the control system (26), where U in the above Eq. (28) is called control set and defined by the following 
equation
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	 U := {(u1, u2, u3, u4)|ui is Lebesgue measurable on [0, T ], 0 ≤ ui(t) ≤ 1, 1 . . . 4}.� (29)

In addition, first, we prove that such controls exist. Following the methodology given in27, demonstrates the 
existence of a solution for the proposed control system whenever the controls are bounded, and Lebesgue’s 
measurable along with the initial conditions are non-negative. Re-writing the control problem as

	
dΦ
dt

= AΦ + B(Φ),� (30)

In the above system (30), Φ = (Sh, Ih, Rh, W )T , while B(Φ) and A contain the non-linear and bounded co-
efficient, and linearize matrix, respectively, such that

	

A =




−d 0 0 0
0 −(σ + d + d1 + u3(t)) 0 0
0 (u3(t) + σ) −d 0
0 0 α −(η + u4(t))


 ,

B(Φ) =




Π − β1Ih(t)Sh(t)(1 − u1(t)) − β2Sh(t)W (t)(1 − u1(t))
β1Sh(t)Ih(t)(1 − u1(t)) + β2Sh(t)W (t)(1 − u1(t))

0
0


 .

Setting L(Φ) = AΦ + F (Φ), satisfies that

	

|F (Φ1) − F (Φ2)| ≤ n1|Sh1 − Sh2| + n2|Ih1 − Ih2| + n3|Rh1 − Rh2| + n4|W1 − W2|,
≤ N(|Sh1 − Sh2| + |Ih1 − Ih2| + |Rh1 − Rh2| + |W1 − W2|),

where N = max(n1, n2, n3, n4). Also, we have

	 |L(Φ1) − L(Φ2)| ≤ M |Φ1 − Φ2|,

where M = max(N, ||A||) < ∞, so L is uniformly Lipschitz continuous and Sh(t), Ih(t), Rh(t) and W(t) 
having non-negative values which implies the existence of solution to the system (26).

Thus, we describe the existence analysis with the aid of the following theorem regarding.

Theorem 4.1  There exists an optimal solution u∗ = (u∗
1, . . . , u∗

4) ∈ U  to system (25)–(29).

Proof  Obviously, the model states and control functions have non-negative values while set U is closed and con-
vex. In addition, the control system is bounded implying compactness. Also, the integrand in Eq.(25) is convex, 
therefore it investigates the existence of optimal controls. □

Optimality condition
We find the optimal solution to the control problem (25)–(26). We define the Hamiltonian and Lagrangian by 
assuming that if x is the state variable and u is a control function, then

	
L(x, u) = ω1Ih(t) + ω2W (t) + 1

2
(
ω2

3u2
1(t) + ω2

4u2
2(t) + ω2

5u2
3(t) + ω2

6u2
4(t)

)
,� (31)

and

	 H(x, u, λ) = L(x, u) + λf(x, u),� (32)

where λ = (λ1, . . . , λ4) and f = (f1, . . . , f4), and

	

f1 = Π − β1Sh(t)Ih(t)(1 − u1(t)) − β2Sh(t)W (t)(1 − u2(t)) − dSh(t),
f2 = β1Ih(t)Sh(t)(1 − u1(t) + β2W (t)Sh(t)(1 − u2(t)

− (σ + d + d1 + u3(t))Ih(t),
f3 = (σ + u3(t))Ih(t) − dRh(t),
f4 = αIh(t) − (η + u4(t))W (t).

We now use the well-known Pontryagin Maximum Principle28 to find the optimal solution. We assume that if 
(x∗, u∗) is an optimal solution, then there exists a nontrivial function λ, satisfying

	
dx∗(t)

dt
= ∂H

∂λ
, 0 = ∂H

∂u
,

dλ(t)
dt

= ∂H

∂x
,� (33)

and

Scientific Reports |         (2025) 15:7587 9| https://doi.org/10.1038/s41598-025-90915-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
H(x∗, u∗, λ) = max

u∈[0,1]×[0,1]
H,� (34)

which is the maximality condition and λ(T ) = 0, the transversal condition holds. Using Eq. (33) to find the 
adjoint system and optimal value for controls with the aid of the result given below.

Theorem 4.2  We assume that S∗
h(t), I∗

h(t), R∗
h(t), W ∗(t) are the optimal states and (u∗

1, u∗
2, u∗

3, u∗
4) are opti-

mal control functions for the control problem., the adjoint system looks like

	

dλ1(t)
dt

= −
(
λ2(t) − λ1(t)

)(
β1Ih(t)(1 − u1(t)) + β2W (t)(1 − u2(t))

)
+ λ1(t)d,

dλ2(t)
dt

= −ω1 −
(
λ2(t) − λ1(t)

)(
β1Sh(t)(1 − u1(t))

)

+
(
λ2(t) − λ3(t)

)(
σ + u3(t)

)
+ λ2(t)(d + d1) − αλ4(t),

dλ3(t)
dt

= dλ4(t),

dλ4(t)
dt

= −ω2 −
(
λ2(t) − λ1(t)

)(
β2Sh(t)(1 − u2(t))

)
+ λ4(t)

(
η + u4(t)

)
,

� (35)

with terminal conditions λ(T ) = 0. Furthermore, the set of optimal control functions is defined by {
u∗

1 = max{min{l1, 0}, 1}, u∗
2 = max{min{l2, 0}, 1}, u∗

3 = max{min{l3, 0}, 1}, u∗
4 = max{min{l4, 0}, 1}

}

, where

	

l1 = 1
ω2

3

(
λ2(t) − λ1(t)

)
β1Ih(t)Sh(t), l2 = 1

ω2
4

(
λ2(t) − λ1(t)

)
β2W (t)Sh(t),

l3 = 1
ω2

5

(
λ2(t) − λ3(t)

)
Ih(t), l4 = 1

ω2
6

λ4(t)W (t).
� (36)

Proof  The adjoint variables (35) can be derived from the direct use of the Eq. (33), and the transversal condi-
tions can be obtained from λ(T ) = 0. In addition, to find the optimal value of the controls, we set ∂H

∂u
= 0, and 

solve for u1, u1, u1 and u1. □

Numerical experiments
The verification of our analytical results will be analyzed with the help of some computational findings. The large-
scale simulations are based on both quantitative and qualitative analysis. We take some of the parameters from the 
literature while some are adjusted based on the analytical results. We use purely numerical methods, i.e., Runge-
Kutta method (RKM) of the 4th order to simulate the model based on numerical data along with time interval 
of 0 − 500 units. More precisely, we take the parameters value i.e., β1 = 0.00005, σ = 0.09871, η = 0.01, 
β2 = 0.0000000123, Π = 0.093907997, α = 0.0398, d1 = 0.00404720925 and d = 0.009567816 to verify 
the analytical findings of the model at the disease-free state. We calculate X0 and R0 for the above parameter’s 
value as (9.814987767, 0, 0, 0) and 0.004373289660. Thus, we perform the numerical experiments for the model 
(1) using the above parametric values, and obtain the results as depicted by Fig. 5, which ensures the verification 
of the result stated by Theorem 3.1. Perturbing the initial sizes of the compartmental population along with the 
parametric ratios and interval of time, the solution goes to the disease-free equilibrium irrespective of its initial 
sizes, which ensures that the model is stable at X0. Further, the theoretical interpretation states that in case of 
R0 < 1, each solution curve of the susceptible population approximately taking 300 to 400 days to reach the 
equilibrium value 9.814987767 as shown in Fig. 5a. Similarly, the dynamics of infected and recovered population 
in the case when R0 < 1 describe that the solution curves of Ih and Rh respectively take approximately 50 
and 400 days to reach its equilibrium position as shown in Figs. 5b,c. Thus, the biological interpretation states 
that the elimination of the 2019-nCoV virus from the community will take more time almost 12 to 13 units if 
R0 < 1. So it is essential to optimize and keep the value R0 less than one.

Next, we assume another set of parameters value, i.e., β1 = 0.0005, σ = 0.009871, η = 0.01, β2 = 0.0000123, 
Π = 0.93907997, α = 0.398, d1 = 0.00404720925 and d = 0.009567816 to study the dynamics of the considered 
problem at the endemic state (19). We calculate the associated threshold quantity and endemic equilibrium X∗
, defined as: R0 = 4.135362579 and X∗ = (23.73428588, 30.31567421, 31.27631426, 1261.065047). Here, 
if R0 > 1, we take the same initial sizes of the compartmental populations. We observed that the susceptible 
populations decrease or increase during the initial 100 days of the infection, however after that, there will be no 
effect, which guarantees the stability of the susceptible individuals as shown in Fig. 6a and therefore approaches 
to its equilibrium position 23.73428588. The dynamics of the infected population reveal that initially, the ratio 
of this population increases suddenly during the initial period of the infection, i.e., up to 50 days, while later 
decreases day by day and attains its endemic position, i.e., 30.31567421 as shown in the Fig. 6b. From this, it 
could be noted that the disease will reach its endemic position. The 30.31567421 ratio of the infected population 
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will persist in the community if the proper control measure is not implemented. Moreover, we simulate the 
problem to study the recovered population and reservoir dynamics as shown in Fig. 6c,d. The dynamics of the 
recovered population describe that in the initial days between 0 to 450 days, the ratio of recovered individuals 
increases or decreases while then becoming stabilized and attaining its equilibrium position 31.27631426. To 
control the spread, it should be characterized to increase this ratio. Finally, the ratio of reservoir increases in the 
initial period of the infection, i.e., between 0 to 400 days according to the dynamics of the proposed problem, 
while then becoming stable and reaching to its equilibrium 1261.065047. Special attention will be required to 
sustain the reservoir’s position to zero to control COVID-19.

In order to discuss the impact of control analysis, we use the well-known purely numerical method Runge-
Kutta method (RKM) of order 4th. We solve the optimality system, i.e., numerically, we discretize the model 
(1), the proposed control problem (26), and the adjoint system (35) along with the initial conditions (2)–(4), 
boundary conditions λ(T ) = 0 and characterization of the control problem. Moreover, the value of the parameter 
used for this purpose are β1 = 0.85, σ = 0.04, η = 0.25, β2 = 0.46, Π = 0.0221, α = 0.398, d1 = 0.08 and 
d = 0.0693, while the values of weight constants are assumed to be ω1 = 0.6, ω2 = 0.9, ω3 = 10.44, ω4 = 0.2
, ω5 = 10.90 and ω6 = 10.90. More precisely, the control and without a control system will be solved by the 
forward RKM method of order 4th and then the adjoint system by backward RKM method of order 4th with the 
help of terminal conditions and the solution of system (1). The numerical experiments support the suggested 
control mechanism as shown in Figs. 7 and 8, while in the case if we ignore the control mechanism and don’t 
follow the suitable control measure in the form of precautions and treatment etc., it would significantly increase 
and grow up the spreading of the disease throughout the World. On the other hand, the results describe that the 
infection will be easily eliminated once the control mechanism imposes in the true spirit.

Cost effective optimal control analysis
We discuss the most cost-effective optimal control measure among the single and combined implementation of 
the control measures in order to optimally determine the spread of SARS-CoV-2 at the lowest possible cost. We 
use incremental cost effectiveness ratio (ICER) to explore cost-effectiveness analysis29,30. To avoid dissipation 

Figure 5.  The dynamics of the model in the case whenever R0 < 1 and X0 = (9.814987767, 0, 0, 0). 
For this, we use the value of the parameters: β1 = 0.00005, σ = 0.09871, η = 0.01, β2 = 0.0000000123, 
Π = 0.093907997, α = 0.0398, d1 = 0.00404720925 and d = 0.009567816.
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of available limited resources, ICER is calculated to compare any two competing measures for controlling the 
spread of disease or related problems as given by the ICER formula

	
ICER = Change in total costs between control measures

Change in total number of infection averted by control measures
.

The total cost for each of the single implementation and combined effort of the control measures is calculated 
from the objective functional (25), while the infection averted is obtained by calculating the difference between 
infectious individuals without and with control measures. Let Ci for i = 1, 2, 3, 4 and C14 respectively represent 
the single implementation of each control measure ui(t), and combined effort of the four control measures. 
Table 1 summarizes the ICER for each and combination of the control variables ui(t) in an increasing order of 
the total infection averted.

Using the ICER using the above formula for each Ci (i = 1, 2, 3, 4) and C14 shown in Table 1 are calculated, 
respectively,

Comparing Ci’s, it is seen that ICER(C4) is less than any other ICER(Ci) for i = 1, 2, 3. This means that 
Ci for i = 1, 2, 3 are more costly and less effective than C4. In other words, C1 dominates Ci for i = 1, 2, 3. 
Thus, single implementation of management control is removed from the list. As a consequence, C4 and C14 are 
assessed in Table 2 using similar procedure.

It is revealed in Table 2 that C4 is dominated by C14 since ICER(C4) is greater than ICER(C14). This 
implies that C14 is less costly and more effective than C4. Hence, single implementation of preventive measure 
is excluded from the list. This shows that combined effort of the four control measures is the most cost effective 
intervention capable of diminishing the burden of the novel coronavirus optimally in the host population.

Figure 6.  The dynamics of the model compartmental population in the case whenever R0 > 1 and 
X∗ = (23.73428588, 30.31567421, 31.27631426, 1261.065047). For this, we use the value of the 
parameters are β1 = 0.0005, σ = 0.009871, η = 0.01, β2 = 0.0000123, Π = 0.93907997, α = 0.398, 
d1 = 0.00404720925 and d = 0.009567816.
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Conclusions
In the current work, we studied the pandemic trend of the 2019-nCoV virus transmission. We developed 
an epidemiological model with control mechanism strategies to eradicate/control the virus. We studied the 
fundamental axioms of the model to show the mathematical and biological feasibility. Once the model is well-
possed, we find the threshold parameter (R0) and discuss the detailed sensitivity, which clarifies the role of 
every epidemic parameter involved in the combination of the proposed model. It would be noted that the key 
parameters that strengthen the spread of the disease are β1, which is approximately 99.99 percent, affecting the 
threshold quantity’s value. Moreover, the stability analysis is also performed to determine the conditions for 
stabilizing the disease’s exponential spread. Based on stability analysis, the various perspective of the results is 
investigated numerically, which states that one of the necessary steps is to optimize the threshold quantity value 
and keep less than unity. Similarly, if the disease persists, then the long run of the model suggests that it attains 
its endemic equilibrium, which is very high and not valid for the community. For this, special attention is needed 
to apply some control strategies to keep this minimum. Once we observed all these situations, we designed a 
control mechanism based on sensitivity analysis and the dynamics of the problem, which describe that the 
2019-nCoV virus infection will be easily eliminated once the control program is applied truly. All the theoretical 
works are justified with the aid of numerical experiments. This would be quite easy for the readers to study the 
dynamics of the problem.

In future, we will modify the proposed model by replacing the mass action law with standard incidence to 
study its significance on the novel corona virus disease dynamics.

Figure 7.  The graphical visualization of the control problem with and without controls.
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Data availability
All data generated or analysed during this study are included in this published article.
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Control strategy Total infection averted Total costs ICER

C1 −1.2456 × 105 7.8256 × 106 − 0.2055 %

C14 −1.2455 × 105 9.8133 × 104 − 0.3861 %

Table 2.  Comparison between C4 and C14.

 

Control strategy Total infection averted Total costs ICER

C1 −1.2456 × 105 7.8256 × 106 − 0.2055 %

C2 −6.1523 × 104 1.9854 × 106 − 27.1684 %

C3 −2.4566 × 105 8.6574 × 105 − 0.7759 %

C4 −3.7314 × 104 2.1550 × 106 − 58.1766 %

C14 −1.2455 × 105 9.8133 × 104 − 0.3861 %

Table 1.  ICER in the order of COVID-19 cases averted by control measures.

 

Figure 8.  The plots visualizes the dynamics of time dependent controls measures.
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