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Unveiling the antiviral inhibitory
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Ebsulfur and ebselen derivatives that were proven to be potent inhibitors against the main protease
(MPr°) of SARS-CoV-2 which is an essential enzyme for viral replication were chosen to study the
quantitative structure-activity relationship (QSAR) analysis using a classical multiple linear regression
(MLR) and a machine learning approach of random forest (RF) and artificial neural network (ANN)

in order to find the relationship between molecular structural properties and biological inhibitory
activities. With the statistical criteria, the R? values of MLR, RF, and ANN models for the training

set were 0.83, 0.82, and 0.92, respectively. The RMSE values of the test were considered for model
evaluation, and the results were 0.27, 0.18, and 0.09 for MLR, RF, and ANN models, respectively.
Therefore, the ANN model was the best-obtained model for predicting the MP™ inhibitory activity of
thirteen new synthetic ebselen analogs that haven’t tested the biological assay before. Notably, our
predicted inhibitory activities against SARS-CoV-2 were then examined using enzyme-based assays
and cytotoxicity tests, which found that compound P8 resulted in a good potential candidate for SARS-
CoV-2 MP inhibitory activity. Furthermore, the molecular dynamics simulations were performed to
study the dynamic interaction of ligand and binding site; the results showed a binding pathway and
mechanism of compound P8 with key residues surrounding the active site of SARS-CoV-2 MP™, which is
useful for further development of ebselen derivatives.
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The coronavirus family, formally known as Coronaviridae, is a large and diverse group of viruses that infect
the respiratory tract with a wide range of hosts, including humans and other mammals'->. This family causes
respiratory illnesses with mild symptoms known as causing severe respiratory diseases such as severe acute
respiratory syndrome (SARS), Middle East Respiratory Syndrome (MERS), and the ongoing global pandemic,
SARS-CoV-2. The coronaviruses genome is a positive-sense single-stranded virus, approximately 26 to 32
kilobases in size®. In this study, one of the best-characterized drug targets is the main protease (M*™, also known
as 3CLP™)>6, which involves viral replication and a highly conservative pocket site of about 80% in clusters of
the coronavirus family’.

The emergence of SARS-CoV-2 in Wuhan, China, in December 2019 was the beginning of a global health
emergency that rapidly evolved into a pandemic. This newly emerging disease, for which there were no existing
protections or medications, caused a surge in fatalities during the early phase of the pandemic®. In response,
the World Health Organization (WHO) announced the official name of the disease as coronavirus disease 2019
(COVID-19), and the new coronavirus has been named severe acute respiratory syndrome 2 (SARS-CoV-2)*1°.
Treatments for COVID-19 are categorized into several approaches, including vaccines such as Pfizer-BioNTech,
Moderna, AstraZeneca, etc.!l. In tandem with vaccination efforts, antiviral medications have played a crucial
role in the therapeutic landscape for COVID-19. For example, Remdesivir, a broad-spectrum antiviral drug like
Ebola, inhibits virus replication within host cells'?. Another innovative antiviral medication is Molnupiravir, an
oral drug designed to introduce errors during viral RNA replication, impeding the virus’s ability to proliferate!>.

Previous studies evaluated the efficacy of ebselen derivatives against HIV!4, HSV'>, HCV'®, and Zika virus
infections!’, and also SARS-CoV-2!8-21, Ebselen derivatives potent and effective inhibition of the main protease
of SARS-CoV-2 via covalent inhibition via S-Se interaction??. Furthermore, it has computational techniques
that were employed in many studies?>~>* to confirm the inhibitory efficiency of ebselen and understand insight,
such as molecular docking and molecular dynamic simulations (MDs) techniques. Moreover, a recent report
presents a new ebselen and ebsulfur series that were synthesized and tested as inhibitors of SARS-CoV-2 MP™
by fluorescence resonance energy transfer (FRET) technique by Sun, Le-Yun et al.?> which would attract some
theoretical research on ligand-based drug design.

Computational approaches have emerged as powerful tools for drug discovery, offering a faster and more cost-
effective alternative is the quantitative structure-activity relationship (QSAR) methodology®. It is useful in drug
discovery to understand and predict the biological activity of compounds based on molecular structure. Drug
discovery, based on extensive laboratory testing and experimentation, is time-consuming and expensive?’-3°. By
integrating QSAR with machine learning algorithms to predict the biological activity of compounds based on
their chemical structure. This allows for the rapid screening and prioritization of potential drug candidates®!~%3,
enabling researchers to focus on molecules with higher probabilities of exhibiting the desired activity against
SARS-CoV-2.

Thus, in this work, firstly, the application of QSAR with the three distinct methods, Genetic Function
Approximation-Multiple Linear Regression (GFA-MLR), Random Forests (RF), and Artificial Neural Network
(ANN), was employed to construct the relationship between structural properties and biological activity on
ebselen and ebsulfur derivatives. The validation of our findings would be further confirmed by biological activity
prediction on an external set compound. Insightly, the models further applied on SAR-CoV-2 inhibitory activity
prediction of new ebselen and ebsulfur derivatives reported by Qing-Feng et al.3!, we further investigated
experimental inhibitory activity and toxicity drug evaluation, specifically focusing on drug-likeness and toxicity,
grounded in the chemical structure of newly synthesized compounds. The successful process has led to the
development of new effective inhibitor candidates. An overview of the study’s workflow shown in Fig. 1.

Materials and methods

Data set

A data set of twenty-seven ebselen and ebsulfur derivatives and their MP™ inhibitory activity (IC,,) were
synthesized by Sun et al.>. IC,, was then converted into pIC,, using Eq. (1), as shown in Fig. 2. The data set was
divided by using the Kennard-Stone®>* algorithm, a technique for selecting which data was suitable to be a
training set or test set from the feature value distribution in the whole data set and calculated based on a distance
metric between data points'®. The training set was used to construct the QSAR model. While the test set was
used for QSAR model validation.

1
pICy, = log (1050(1\/1)) (1)

All structures were built and minimized, and their molecular descriptors were then generated using the
Materials Studio version 8.0 program®’, which consisted of thirty-five molecular descriptors listed in Table S1.
The molecular descriptors served as independent variables.

Descriptor selection and model construction

To find descriptors that are critical to significant SARS-CoV-2 MP™ inhibitory activity by two algorithms are
genetic functional algorithms (GFA); the GFA is a novel optimization technique that can be used to search
for variables that are suitable for model construction®®*°. The MLR model used the GFA to select important
descriptors in Material Studio version 8.0. The condition to construct the GFA-MLR model in Material Studio
version 8.0 with the population and maximum generation set at 100 and 500, respectively, and a mutation
probability of 0.100.
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Fig. 1. An overview of the study’s workflow, illustrating the key stages of developing the effective SARS-CoV-2
inhibitors which are composed of ligand based QSAR machine learning, enzyme-based assay on new designed
ebselen, and structure based MD simulations.
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Fig. 2. The 2D structures and pIC, values of ebselen and ebsulfur derivatives®. * is the IC,, (uM) and ® is the
pIC,,. values.

Another one is Gini’s importance?®*!, which is applied to select the crucial features of the RF and ANN
models. The features with the highest Gini importance values indicate that compound structures significantly
impact potency and bioactivity. Gini importance varies between 0 and 1, with 0 representing the lowest and
best possible importance. A higher Gini importance indicates greater. Also, the RF and ANN models used Gini
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importance by Google Colab?2. In addition, Fig. S1 displays the correlation matrix between two descriptors used
to indicate the relationship between the descriptors in the model.

To find the greatest RF model, a hyperparameter for finding suitable conditions should be performed by
varying four parameters: (1) Max feature is the maximum number of features considered for splitting a node.
(2) Min_sample_leaf is the minimum number of data points allowed in a leaf node. (3) Min_samples_split is the
minimum number of data points placed in a node before the node is split, and (4) The number of estimators is
the number of trees in the forest. The optimized hyperparameter of the RF model is shown in Table 1(a).

The ANN is machine learning processing based on artificial neurons, which transform input data into output
predictions via mathematical operations. It is a machine learning algorithm based on the structure and function
of biological neurons and mimics human brain processing, which processes it using a non-linear activation
function. The ANN model construction varied by two parameters: the number of nodes in the input layers,
representing the number of descriptors, and the number of nodes and layers in the hidden layers*’.

To improve the predictive performance and generalization capacity of the ANN model, we optimized the
hyperparameters to obtain the optimal combination. Hyperparameter optimization for the ANN includes
determining the number of hidden layers, the number of neurons, the maximum number of iterations (max_
iter), the learning rate, and the batch size. A range of hyperparameters of the machine learning tools is varied to
obtain the most robust and predictive non-linear models based on an n-fold cross-validation scheme using the
Grid-Search CV of Scikit-learn*»*>. The range of metrics for the grid search, where the five hyperparameters of
the ANN model are examined, is presented in Table 1(b).

Model evaluation statistical terms

To investigate the degree of linear correlation between two descriptors by calculating the correlation coefficient
(r)*47. A correlation coefficient of 1.0 or — 1.0 indicates that two variables are highly correlated, while a coefficient
of 0.0 shows no correlation, as shown in Eq. (2). When C o is covariance, which is the joint variance of two
variables, x and y, the variance of a variable X (V,.) and the variance of a variable Y (V).

C(X»y)

SV s @

The variance inflation factor (VIF) indicates collinearity between descriptors in multiple regression models,
indicating statistical significance*®->° as determined by Eq. (3).

VIF = —— 3)

The quality model was validated using statistical parameters, with R-Squared (R?) being a measure of the fit
model’s quality, which should be greater than 0.6. When the predicted y values (ypreq) and the mean values ()

Z?fl (YpredA - y)Q

n —=\2
i=1 (yexp. - y)

R’=1- (4)

Root mean square error (RMSE) is a measure of prediction accuracy calculated as the square root of the average
squared errors. A lower RMSE indicates better prediction quality, ideally closer to zero, as shown in Eq. (5).

n

_ 2
RMSE = Z (yexp. Ypred.) (5)

n
i=1

Enzyme-based assay

The MP™© activity and inhibition assay at 100 pM compound concentration was performed exactly as
previously described®~%*. Briefly, SARS-CoV-2 M™ with no tags at the termini was expressed and purified
as described for SARS-CoV-1 MP54, All assays were performed with BioTek Synergy H1 microplate reader
using PBS containing 1 mM DTT and 1% DMSO as the reaction buffer. The fluorogenic substrate E(EDANS)
TSAVLQSGFRK(DABCYL) (Biomatik) at 25 uM was used with 0.2 uM of MP™ in the total reaction volume of
100 pL. The excitation and emission wavelengths employed were 340 and 490 nm, respectively. The percentage
of the enzymatic activity was calculated from the initial rate of the reaction when the compound being tested

(a) Random forest (b) Artificial neural networks
Hyperparameter | Value tested | Hyperparameter Value tested

n estimators 30, 50, 70,90 | Number of hidden layers | 1,2, 3

Max depth 8,9,10, 11,12 | Number of neurons 2,3,4,5,6,7,8
Min samples split | 1,2,3 Learning rate 0.01, 0.05, 0.1
Min samples leaf | 1,2,3 Batch size 1,3,7

Table 1. Hyperparameters to be tested for (a) RF and (b) ANN.
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was present relative to the initial rate of the reaction without the inhibitor. PF-07321332 at 100 nM was used as
a positive control®. GraphPad Prism 8°® (San Diego, California USA, https://www.graphpad.com) was used for
graphing.

Cytotoxicity testing

Cytotoxic (CC,) tests were evaluated according to the previous description®. Vero E6 cells were seeded and
incubated overnight before the test. The compounds were prepared in DMSO for a final concentration of
500 pM. The compounds were twofold serially diluted to 8 concentrations before addition to Vero E6 cells.
Cells were incubated for 48 h, and cytotoxicity was measured using the CellTiter 96" Aqueous One Solution Cell
Proliferation Assay Kit (MTS) (Promega, Madison, W1, USA) according to the manufacturer’s instructions and
analyzed by spectrophotometry at 490 nm. The concentration required for 50% cell death (CC, ) was determined
by three independent experiments.

The efficacy study was conducted according to the guidelines of the Declaration of Helsinki and Chulalongkorn
University Institutional Biosafety Committee (CU-IBC 003/2021). The Institutional Review Board of the Faculty
of Medicine, Chulalongkorn University certified the protocol exemption (COE 017/2021, IRB No. 297/64).
The SARS-CoV-2 B.1.617.2 (accession number ON381169) were propagated in Vero E6 cells with MEM
supplemented with 1% fetal bovine serum, 100 I.U./ml penicillin, and 100 pg/ml streptomycin, 10 mM HEPES,
NEAA, and sodium pyruvate at 37 °C humidified chamber under 5% CO,. Virus titers were determined as
TCID,/ml in confluent cells in 96-well cell culture plates. All experiments with live SARS-CoV-2 MP* were
performed in a certified biosafety level 3 facility of the research affair-Medical Research Center (MRC), Faculty
of Medicine, Chulalongkorn University.

Seven ebselen analogs were tested against four strains of SARS-CoV-2 MP™. Briefly, Vero E6 cells at 5x 10*
cells per well were seeded into a 24-well plate and incubated overnight at 37 C under 5% CO,. Cells were infected
with SARS-CoV-2 at 1000TCID,, for 1 h. After infection, cells were washed with phosphate buffer saline (PBS)
and incubated with 1 ml of maintenance medium. The compounds were prepared at the indicated concentrations
in 0.1% DMSO in the maintenance medium during and after infection. Cells were incubated at 37 °C for 72 h
under 5% CO, humidified chamber. Supernatants were collected for analysis of the viral infectivity by TCID, /
ml (v2.1—20-01-2017_MB* by Marco Binder; adapted @ TWC. 5. 6, accessed on 16 May 2022). The compound
was serially diluted to 6-8 different concentrations and was added to final concentrations into SARS-CoV-2-
infected cells. Dimethyl sulfoxide at 0.1% was used as a vehicle, with no inhibition control. Cells were incubated
for 72 h and supernatants were collected for subsequent TCID50/ml analysis****’. Data were plotted and effective
concentration EC, values were calculated using nonlinear regression analysis.

Molecular dynamic simulations

This study used ligand-binding path sampling parallel cascade selection MD (LB-PaCS-MD), an extension
of the original PaCS-MD%’. PaCS-MD was developed to sample the transition paths of proteins between a
set of endpoint structures, where multiple short-timescale MD simulations are repeated from reasonable
structures to promote their conformational transitions from a reactant to a product®-%3. In the case of LB-PaCS-
MD, this technique repeats short timescale (about 100-ps) MD simulations from reasonable protein-ligand
configurations, focusing on ligand-unbinding states. In this application, configurations are ranked based on the
center-of-mass (COM) distance between the Se atom of each ligand and the sulfur atom in the active site (C145)
of SARS-CoV-2 MP™, termed d,, Top-ranked (five) snapshots from each cycle serve as initial structures
for subsequent simulations. LB-PaCS-MD terminates automatically after 100 cycles, with 10 independent
replications conducted by changing their initial velocities to ensure reliable results.

To generate the parameters and perform geometry optimization of the compound P8, the B3LYP/6-31 + G(d,p)
method of calculations® were applied to generate the electrostatic potential (ESP) charges using Gaussian 16%.
Subsequently, the ligand-charged fitting was constructed by restricted ESP and topological parameters of the
ligands (fremod and prep files) using MCPB.py®® in AmberTools21%7, together with the generalized Amber force
field 2 (GAFF2)%. The 3D structure of ebselen covalently bound dimeric SARS-CoV-2 MP™ (PDB ID: 7BAK")
was utilized as the protein receptor. To construct the initial structure for the LB-PaCS-MD simulation, P8 was
placed far from C145 located at the active site of SARS-CoV-2 MP™ on chain A, around 30 A in a cubic box.
The tLEaP module included in the AmberTools21%” was used to set up the complex by adding hydrogen atoms,
TIP3P water molecules, and neutralized ions. This complex was converted to the GROMACS input file format
to conduct the multiple MD simulations under NPT (T'=300 K and P=1 bar) in each LB-PaCS-MD cycle using
GROMACS (version 2019.6)%°. The MD condition was used according to the previously described”®”!.

All 10 LB-PaCS-MD trajectories were used to calculate the free-energy profile (k;T) as a function of the
distances of S(C145)-Se(P8) and Ne(H41)-N(P8), which were then plotted as a two-dimensional free energy
landscape (2D-FEL). The complex sampled from the Global Minimum State (GMS) was evaluated for binding
interaction energy using the LigandScout 4.4.6 program, following standard protocol’>”®. The 3D and 2D
interactions of the complex at GMS were visualized using Visual Molecular Dynamics (VMD) version 1.9.4747
and BIOVIA Discovery Studio Visualizer’®.

Results

Classical QSAR

The Kennard-Stone algorithm was applied to divide the data set into twenty-one training sets and six test sets.
The MLR model was crafted using a selection of 5 descriptors of the training data set determined through the
GFA algorithm, as shown in Eq. (6), and the definition of descriptors was explained in Table S2. This was a
predicted pIC, value, which shows residue values less than 1. The model validation parameters of Eq. (6): R? of
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the training set=0.69, RMSE of the training set=0.16, and RMSE of the test set=0.56, indicating that the model
was predictively accurate and acceptable (Fig. 3).

pIC;, = —0.507 * Molecular flexibility + 0.036 * Zagreb index — 0.057 * E-state keys (sums): S_aaCH
—0.015 * E-state keys (sums): S_dO + 0.336 * Shadow length: LY + 2.897 ©)
After that, investigate the correlation matrix of descriptors and the VIF presented in Table S3. The correlation
matrix between the two descriptors is less than 0.7. Further confirmed, the VIF values for each descriptor were
less than 10, indicating that the five descriptors were not multicollinear and could not lead to problems in model
interpretation and stability.

QSAR-ML

The RF and ANN models were developed utilizing the Gini importance method (Fig. S2), with emphasis on key
descriptors such as shadow length along the Y-axis, AlogP98, shadow area fraction in the YZ plane, and principal
moment of inertia along the Y-axis. Detailed definitions for each descriptor can be found in Table S2. To ascertain
the significance of these descriptors, VIF helps identify multicollinearity among predictors by measuring how
much the variance of an estimated regression coeflicient increases if your predictors are correlated.

The best RF model was constructed by conditions consisting of a max depth of 10, a max feature of 4, a min_
sample_leaf of 2, and a min_samples_split of 2. The number of estimators is 30. The results have the acceptable
statistical parameters: R? of the training set=0.82; RMSE of the training set=0.14; RMSE of the test set=0.18.
(Fig. 3) For the development of better predictive models according to Fig. S2. This method obtained four
descriptors from the same RF model by selecting descriptors based on Gini importance. The good performance
of the ANN architecture was 4-(5-5-5)-1, which represents the number in the first position as one input layer
of four neurons, which is the number of descriptors selected by the Gini importance method. The number in
the second position is three hidden layers with each with five neurons, and the number in the last is one output
layer with inhibitory layers. The artificial neural network (ANN) model in Fig. 3 illustrated robust and stable
performance with the notable statistical parameters: R? of 0.89 for the training set, RMSE of 0.10 for the training
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circles="Training set, Red triangles = Test set, Grey squares = New designed set).

set, and RMSE of 0.05 for the test set. Like the MLR model, the correlation analysis revealed that the four
descriptors did not exhibit high correlations in RF and ANN models, as shown in Table S4. Compared to the
MLR and RF models, the ANN shows much higher prediction accuracy in Table S5.

External validation

To evaluate the predictive ability and robustness of the ANN model developed in the previous step, an external
validation was conducted using ebselen data reported from Amporndanai et al.'®. Three compounds from this
work were selected, including MR6-17-1, D_MR6-18-4, and D_MR6-26-2. The analysis revealed an RMSE of
0.35, which demonstrates good predictive performance (Fig. 4).

Inhibitory activity of the new synthetic ebselen analogs prediction

The structures of thirteen new ebselen analogs were synthesized by Qing-Feng et al.*%. The external set used
in this work came from a collaboration with Osaka University. The molecular descriptors for the new ebselen
analogs calculated by Material Studio version 8.0 were displayed in Table S7. The pIC,, values of each new
ebselen analog were then predicted using the ANN model, and it was found that the pIC,, values (Table S8) were
all within the range of the data set shown in Fig. 5.
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Enzyme based assay

The ebselen analogs were initially tested for their inhibitory activities against SARS-CoV-2 MP™. At 100 pM
concentration, the compounds P1, P3, P4, P5, P7, P8, and P12 showed modest inhibitory activity in Fig. 6A. The
most potent inhibitor is P8 that caused reduction of enzymatic activity to 64.5%. Therefore, these ebselen analogs
could serve as starting points for further modification to improve inhibitory potency.

Toxicity and efficacy testing

The compounds P1, P3, P4, P5, P7, P8, and P12 were tested for cytotoxicity in Vero E6 cells in Fig. 6B.
Cytotoxicity was not observed in P1, P3, P4, P5, P7, and P8 in any tested concentrations to 100 M; therefore, we
concluded that the compounds ‘cytotoxicity was higher than 100 uM. However, the P12 showed a cytotoxic effect
at higher concentrations, calculated to 51.58 +5.90 uM. Moreover, the efficacy was tested against SARS-CoV-2
in the BSL-3 facility. The P3 compound showed 1-1.5 log TCID, reduction from the initial concentration, and
the inhibition was consistent through the higher concentrations. The P4, P5, P7, P8, and P12 showed 1-2 log
TCID,, reduction from the initial concentration, but the inhibitions were reduced in higher concentrations in
Fig. 6C. We speculated that the finding could correlate to the solubility issue as crystals were found in those
respective tested concentrations. Finally, the P1 compound showed fluctuating SARS-CoV-2 titers, suggesting
the inconsistent solubility of the compound.

P8 binding pathway towards the catalytic dyad region

To sample the plausible binding pathway and configuration of P8 towards the active site of SARS-CoV-2 MP*,
LB-PaCS-MD simulation was conducted for 10 individual replications (#1-10) using the same initial coordinates
but with varying initial velocities (Fig. 7A). The 2D free-energy profile (2D-FEL) for each replication, derived
from LB-PaCS-MD trajectories based on the Markov State Model (MSM), shows the relative free energy (k,T)
of P8 across its conformational space. Analyzing the representative trajectory (#1), P8 reveals a global minimum
state (GMS, Fig. 7B), indicating its search for an optimal conformation facilitating binding at the active site of
SARS-CoV-2. The binding process of the P8 observed in this study was similar to that of ebselen, as recently
reported””. The P8 rearranged its conformation by orienting the Se of the benzoselenazole moiety toward the
S of C145 (Fig. 7C), resulting in a binding interaction energy of —16.15 kcal/mol (Fig. 7D). We found that
chalcogen-bonding interaction between S atoms in P8 and C145, and also a n-donor hydrogen interaction with
N142, could induce and stabilize the binding mode of P8. Additionally, the influence of the naphthalene ring at
R1 of the benzoselenazole ring, introduced from the QSAR-ML study, could maintain ligand binding through
interactions with M49 and M165 via alkyl-mt interaction, as well as van der Waals interactions with residues
within sub-pockets S2 and S4 of the SARS-CoV-2 MP™ active site (Fig. 7C). Our findings are congruent with
previous studies that confirmed the existence of the naphthalene moiety in compound CDD-1733 leads to a
full occupation of the sub-pocket S27%, aligning with raised hydrophobicity. Moreover, the P2 of a-Ketoamide
inhibitors and Nirmatrelvir fit well into the sub-pocket S2, contributing to hydrophobic interactions with
M49, M165, and D1877%%, This sub-pocket S2 could also accommodate the benzene ring of flavonoid and the
bicycloproline moieties of boceprevir and telaprevir through hydrophobic interactions®!-#.

Conclusions

In this study, The QSAR provides a significant understanding of the properties of compounds that significantly
inhibit SARS-CoV-2 MP™ activity (pIC,,) by using several algorithms, including MLR, RF, and ANN. When
comparing all models together, the statistical parameters of the ANN model had the highest R?, which was
0.89, and the lowest RMSE of the test set was 0.05, which indicates that the performance of this model was
accurate. Consequently, the ANN model was used to predict inhibitory SARS-CoV-2 MP™ activity of the
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Fig. 6. (A) and (B) Effect of the new synthetic ebselen analogs in Vero E6 cells viability. (C) Inhibitory activity
of ebselen analogs (100 uM) against SARS-CoV-2 MP™.
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Fig. 7. (A) The P8 binding pathway towards the catalytic dyad region of SARS-CoV-2 MP™ is elucidated using
LB-PaCS-MD with 10 independent runs (#1-10), each individually set by varying their initial velocities. (B, C)
2D-FEL of the representative trajectory is chosen to visualize the binding pathway and the metastable stage at
GMS (x). (D) The binding pattern and interaction of P8 in 3D and 2D are illustrated.

thirteen new synthetics ebselen analogs and then examined the enzyme base activity and toxicity testing found
that the compound P8 was notable inhibitory SARS-CoV-2 MP™ activity and passed the enzyme base activity
examination and non-toxicity. The LB-PaCS-MD study was conducted for 10 individual replications, analyzing
the representative trajectory of P8 that demonstrates a global minimum state with a binding interaction energy
of —16.15 kcal/mol. It can effectively bind to the active site of SARS-CoV-2, while P2 in a-Ketoamide inhibitors
plays a role in hydrophobic interactions with M49, M165, and D187 residues in pocket S2.

Data availability
All other data are available either in the main text or as supplementary materials. The datasets generated during
and/or analyzed during the current study are available from the corresponding author upon reasonable request.
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