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This study proposes a mathematical model for HIV-1 infection and investigates their qualitative 
dynamics such as stability, bistability, and bifurcation properties. The model builds on existing 
HIV-1 models by incorporating the effects of antiretroviral therapy (ART) and modeling immune-
cell dynamics through non-monotone functional responses, capturing may help to gain insights 
into immune activation behaviors. Further, this study discusses the presence of bistability and 
bifurcation phenomena, indicating that HIV-1 infection dynamics can switch between multiple 
equilibriums depending on model parameters and initial conditions. To ensure the disease spread in 
the community, this study determines the formula to calculate the basic reproduction number for the 
model. Theoretically, this study performs the disease-free, immune-free, and infection steady-state 
analysis to determine the threshold conditions focusing on saddle-node, trans-critical and Hopf-type 
bifurcation relies on significant parameters. The study also works on a data-driven modeling approach 
to determine the appropriate population parameters of the model with the help of clinical trials 
performed on human patients for 15 weeks.

Infectious diseases have high rates of death, morbidity and severe consequences in the past and current century 
and evident is SARS COVID-191–6. Advancement in the medical field helps to reduce the deaths and control the 
diseases through vaccination and antibodies7. Many diseases are eradicated from the human population due to 
understanding its nature of the spread and mode of transmission and its vulnerability. Though advancements in 
medical industry diseases like cancer, human immuno-deficiency virus (HIV) have high impact on the health 
consequences and, open for the biological explanation in terms of progress, in particular, the treatment options 
are available in single (or) combination to control the spread within the limit. Following that, the study focuses 
on the HIV-1 dynamics, where HIV-1 weakens the immune systems and gives the way for other diseases to 
infect, result in opportunistic diseases such as hepatitis8, influenza, Human T-lymphotropic virus-1 (HTLV-
1)9–12, tuberculosis13–15 to devastate the immune system. Some of the available preventive and treatments such as 
awareness about safe-sex practices16, and non-HIV people who have high risks of getting the disease can take the 
pre-exposure prophylaxis (PrEP) and people who get the HIV-1 infection can take post-exposure prophylaxis 
(PEP). Besides, there is no complete cure for the HIV-1 infection, the therapies are available to block the further 
production of free-virions biologically, reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs). In 
this regard, the researchers are working to gain knowledge about disease transmission and immune system 
response before and after the treatments, in both fundamental and experimental aspects for investigation. This 
study approaches the disease transmission within the host through the fundamental aspects via mathematical 
modeling. Mathematical modeling is a lethal tool, to investigate the dynamics of disease transmission, which 
is less time complexity, cost-efficient, and easily approachable. The most commonly used modeling in the 
dynamics of transmission arises from ordinary differential equations (ODEs), fractional order differential 
equations17 and partial differential equations (PDEs). In terms of modeling in ODEs/PDEs the evolution of 
cells/cases for time are considered as compartments. In 19th century, the common model explored the dynamics 
of a relationship between the susceptible-infected-recovered (SIR) model with three compartments18. Later on, 
numerous modeling approaches have been done in physical, biological, medical, and engineering applications. 
The models are proposed appropriate ranges from single to multiple compartments based on the nature of the 
problem. Therefore, this study utilizes the modeling approach to investigate the dynamics of HIV-1 infection.

Through ODEs, considering target cells (CD4+/ T-cells), infected cells, and immune cells in a quasi-steady 
state, the advantage of reducing the compartments can reduce the time-complexity in terms of optimization of 
model parameters. In addition to three-dimensional compartment models the effect of antiretroviral therapy is 
also involved in the model. Analysis of HIV-1 infection in-vivo along with therapy and immune-cell dynamics 
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is crucial in the spread of the infection for better understanding19,20. Once, the therapy is stopped the viral 
population starts to grow which are in the undetectable levels is called viral rebound. Biologically, pre-treatment 
and post-treatment effects helps to identify the reasons (or) factors that triggers the viral reproduction once the 
therapy is stopped. Research directions will helps to provide some solution for long-term treatment options. 
The viral rebound of HIV-1 infection along with the effectors cell expansion for the different simplification such 
as viral population in the quasi-steady state, ignoring the latent reservoirs, absence of the death in the immune 
exhaustion were modeled and investigated21. Recently, the broadly neutralizing antibodies (bNAbs) are used to 
neutralize the HIV-1 strains is effective in treating the disease and their dynamics have been studied through 
modeling22,23.

Based on the discussion, mathematical modeling can help to understand the underlying mechanisms 
in various stages of disease and their corresponding immune dynamics both in vivo and in vitro. Although 
numerous models are available in the literature regarding HIV-1 infection, studies connecting data-driven 
modeling and parameter sensitive analysis are limited, the analysis that connects the data-driven modeling and 
biologically significant parameters is the motivation of this study. Data-driven modeling in HIV-1 can help 
to find an optimal set of parameters about clinical trials carried out with infected cases such as macaques and 
humans. In a traditional approach, model rate constants are considered the same for all patients irrespective 
of their characteristics and state of infection. However, data-driven models help to relate differential model 
solutions to the clinical trials, in which the optimal parameters can be entered24. In the data-driven approach the 
model should satisfy two main criteria such as “whether your model is structurally identifiable?”, if the different 
parameter set produces the same output for the model, then the model is structurally unidentifiable. Secondly, 
“whether the parameters are practically identifiable?”, “can parameters estimated from the actual data?” if yes 
then the model is practically identifiable. While handling the real data these are the major challenging in the 
modeling25,26.

Theoretically, there are two ways to analyze the dynamical system, one is local stability and second is global 
stability, the local stability is analyzing a particular equilibrium point by choosing the initial conditions within 
the neighborhood of the equilibrium. Without knowing the nature of the solution analyzing the model behavior 
is called as global stability. In HIV-1 dynamics the local stability analysis is helpful to investigate the treatment 
efficacy, viral persistence and immune response behavior while small change in the HIV-1 infection, from the 
chronic stage of HIV-1 to virus clearance rate or vice-versa. On the other hand, qualitative analysis such as 
stability, bistability, and bifurcations helps to identify significant parameters that are involved in evolution of 
cell population. Besides, bistability and bifurcations are crucial concepts in the dynamic behavior of biological 
systems, and HIV-1 infection is no exception. Bistability refers to the coexistence of two stable equilibriums in 
a system, while bifurcations represent qualitative changes in the system behavior as a parameter is varied8. The 
bistability in HIV-1 arises due to the complex behavior between viral and infected cells with the immune cell 
interactions. The bistability occurs due to the existence of the lower stable equilibrium and the higher stable 
equilibrium which is separated by an unstable equilibrium. In the lower equilibrium, the viral population or 
infected cells are maintained in the lower level, this shows the dominance of the immune cells and in the higher 
equilibrium, the dynamics is vice-versa. These bistabilities can be influenced by the initial viral population, 
transmission rate, the efficacy of the therapy and the immune response production and the target cell population 
growth rates.27–29

The bifurcations are classified as local and global bifurcations, the local bifurcation types are saddle-node 
bifurcation, Hopf-type bifurcation, trans-critical30, pitchfork bifurcations. And, the global bifurcations are 
homoclinic and heteroclinic, several theories and investigation tools are developed to determine the types of 
bifurcations6,13,31. Bifurcation is observed in the HIV models for the viral production delay, intracellular delays, 
immune responses, transmissions, therapy32,33. Due to existence of new equilibrium and disappearance of the 
equilibrium along with their switch in the stability nature are classified as forward and backward bifurcation for 
parameters and equilibrium behaviors. In this study, the different types of backward bifurcation are investigated 
for the immune-free equilibrium and certain forward bifurcation with the hysteresis effect is observed between 
the immune-free and endemic equilibrium34,35. Moreover, integrating the data-driven approaches with the 
qualitative analysis may provide a better understanding of stable regions, parametric thresholds, and the efficacy 
of single or combined ARTs in a realistic manner. In HIV-1 dynamics, the infection rate increases at low viral 
loads because of the more availability of viral particles in the host, at the higher viral concentration the infection 
rate decreases because of the target cells depletion. Hence, non-monotone incidence rate between the target cell 
and virions becomes necessary. There is a higher rate of immune response during the initial stage towards the 
infected cell in the host, the immune system may become exhausted and weaken. Hence, the immune response 
interaction with the infected cell considered as the non-monotone immune response. This study follows data-
driven model approach to determine the model parameters, whereas most of the literature works consider 
the available data. This study proves a bistability behavior concerning the rate constant of logistic growth and 
immune response rate. Besides, the concept of stability, different types of bifurcations such as saddle-node, 
trans-critical, Hopf, forward and backward have discussed both analytical and computational aspects are some 
novelties of this study. The study is motivated by need to investigate the HIV-1 dynamics through mathematical 
models that incorporates the epidemiological and the immunological factors. Especially focusing the stability, 
bifurcation and bistability analysis to determine the conditions under which the infection exist and eradicated. 
The critical aspect to compare the model viral solution with the clinical viral load (VL) data after the initiation 
of the therapy, which helps us to identify the success rate of the therapy, resistance mechanism of the virus and 
the intervention strategies. Moreover, the study contributes the theoretical and real data validation in HIV-1 
infection through modeling by advancing the understanding of the dynamics of HIV-1 by adding this novel 
feature. In this paper, “preliminaries” section briefly discusses the definitions and theorems are utilized for the 
study to derive the analytical results such as stability, bifurcation analysis. Section “model formulation” explains 
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the basic growth model and its advancement in the HIV-1 dynamics by considering the infection, transmission 
and the immune responses. Section “Positivity and boundedness”, shows the cell populations are remains 
positive and boundedness for the positive initial conditions, followed by “Basic reproduction number” section 
derives the basic reproduction for the HIV-1 model. In “Steady state analysis” section the stability analysis for 
three cases of the equilibria are studied. “Bifurcation analysis” section derives the theoretical conditions for the 
various types of bifurcation such as saddle-node bifurcation, trans-critical bifurcation and Hopf bifurcation. 
The “Numerical simulations” investigates the data interpretation of the viral population, the parameter sensitive 
analysis for the HIV-1 model and the correlation matrix for the model parameters are interpreted biologically, 
followed by the existence of the immune-free equilibrium and the endemic equilibrium are shown in term 
of nullclines and the number of the states are tabulated for the significant parameters. The existence of the 
backward and forward bifurcations for the parameters observed from the sensitive analysis results are shown 
and discusses in details and the bistability behavior of the model for the sensitive parameters and for various 
initial conditions are investigated. Different contours plots are investigated concerning the solutions of the cell 
populations for HIV-1 model. The paper concludes by providing some biological behaviors in HIV-1 model and 
some future directions of this study.

Preliminaries
This section describes the basic definitions and the preliminaries concepts which are required for stability, 
bistability and bifurcations

Definition  36Equilibrium points (Steady states) Consider the differential equation is of the form

	 ẋ(t) = f(t, x(t)).� (1)

 The set of all points xe = {x1, x2, x3, · · · xe · · · } which satisfies the condition f(t, xe) = 0 such that xe ∈ xe 
is called as equilibrium point (steady state).

Definition  37  Next generation matrix The next-generation matrix approach is used to calculate the basic re-
production number for the models with at least 2 infectious compartments. Consider the heterogeneous popu-
lation distinguished by age, sex, and stage of diseases, but grouped into compartments:

	 ẋ(t) = f(t, x).� (2)

 Let us consider the system f(t, x) can be mapped to various compartments such as target, virus, infection and 
immune response from the model, categorize the states into infectious and non-infectious to form the matrix 
as follows

	 ẋ = (TM + Ts) x� (3)

where the matrix TM  corresponds to transmissions and the matrix Ts corresponds to transitions (moving from 
one compartment to another) and the decay rate is also considered in the transition matrix. The epidemiological 
new infection is incorporated into TM , and other events in Ts. Overall, the next-generation matrix is derived 
as follows

	 G = −TM T −1
s .� (4)

Here, the outcome matrix G helps to determine the basic reproduction number (R0). The spectral radius or the 
dominant eigenvalue of G is called R0.

Definition  38 Routh-Hurwitz matrix and the Hurwitz stability criterion: Consider any real polynomial func-
tion p(x) of degree n as follows,

	 p(x) = λnxn + λn−1xn−1 + · · · + λ1x + λ0.� (5)

To determine the stability behavior with the help of coefficients of the polynomial p(x), it can be arranged in the 
given tabular form

Notice that, Table 1 has n + 1 rows and contains some unknown factors bi and ci i = 1, 2, · · · , n which can be 
found through the following expression
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bi =
λn−1 · λn−2i − λn · λn−(2i+1)

λn−1

ci =
b1 · λn−(2i+1) − λn−1 · bi+1

b1
.

Mathematically, if the entries in the first row of Table 1 are positive then eigenvalues have negative real parts, 
which helps to conclude that equilibrium is stable. Similarly, any sign-change in the first column of Table 1 
indicates the sign change in the eigenvalues.

Definition  39 Hopf bifurcation Consider the system of two coupled first order differential equation

	

dx

dt
= f(x, y, µ)

dy

dt
= g(x, y, µ)

� (6)

where µ is a parameter. The system has a fixed point (equilibrium point) (x∗, y∗), which may depend on µ. Let 
the eigenvalues of the linearized system about this fixed point be given by

	 λ(µ) = α(µ) + iβ(µ) and λ̄(µ) = α(µ) + iβ(µ).

A Hopf bifurcation is a local bifurcation, where a system looses it stability and a small amplitude of oscillation 
occurs, when a conjugated complex pair of eigenvalues arises around the equilibrium point as crosses the 
boundary of stability, that is, the imaginary axis of the complex plane. Mathematically, it means that a Hopf 
bifurcation of the fixed point of the two dimensional system occurs at some critical value of the parameter, 
µ = µc, if the following conditions are satisfied

•	 f(x∗, y∗, µc) = 0, g(x∗, y∗, µc) = 0.

•	 The Jacobian matrix 
(

∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y

)
(x∗,y∗)

 has a pair of purely imaginary eigenvalues ±iω at 

(x∗, y∗, µc), that is (α(µc) = 0, β(µc) ̸= 0).

•	
dα(µ)

dµ
̸= 0 at µ = µc.

 Identifying types of bifurcation39 To know the qualitative behavior of the solution of the given n-dimensional 
dynamical system,

	
ẋ = dx

dt
= f(x, µ), x ∈ Rn and µ ∈ Rn.� (7)

near the non-hyperbolic equilibrium points, changes as the vector field f passes through a point in the bifurcation 
set or as the parameter, µ varies through a bifurcation value µ0.

Theorem  39(Sotomayor’s theorem).

Suppose that f(x0, µ0) = 0 and the n × n matrix A = Df(x0, µ0) has a simple eigenvalue λ = 0 with 
eigenvector v and that AT  has a eigenvector w corresponding to the eigenvalue λ = 0. Furthermore, suppose 
that A has n1 eigenvalues with negative real parts and (n − n1 − 1) eigenvalues with positive real parts and that 
the following conditions hold.

λn λn−2 λn−4 · · ·
λn−1 λn−3 λn−3 · · ·
b1 b2 b3 · · ·
c1 c2 c3 · · ·

Table 1.  Routh-Hurwitz table.

 

Scientific Reports |         (2025) 15:7265 4| https://doi.org/10.1038/s41598-025-91417-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 If wT fµ(x0, µ0) ̸= 0, wT
[
D2f(x0, µ0)(v, v)

]
̸= 0 the system (7) experiences a saddle-node bifurcation at 

the equilibrium point x0 as the parameter µ passes through the bifurcation value µ = µ0.
•	 If wT fµ(x0, µ0) ̸= 0, wT [Dfµ(x0, µ0)] ̸= 0 and wT

[
D2f(x0, µ0)(v, v)

]
̸= 0 then system (7) experiences 

a trans-critical bifurcation at the equilibrium point x0 as the parameter µ varies through the bifurcation value 
µ = µ0

•	 If wT fµ(x0, µ0) ̸= 0, wT [Dfµ(x0, µ0)] ̸= 0, wT
[
D2f(x0, µ0)(v, v)

]
̸= 0 and 

wT
[
D3f(x0, µ0)(v, v)

]
̸= 0 then system (7) experiences a pitchfork bifurcation at the equilibrium point 

x0 as the parameter µ varies through the bifurcation value µ = µ0.

Theorem  40 Consider the following general system of ordinary differential equations with a parameter µ

	
dx

dt
= f(x, µ), f : Rn × R → R and f ∈ C2(Rn × R)� (8)

where 0 is an equilibrium point of the system (that is f(0, µ) = 0 for all µ) and assume

•	 A1: A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)
 is the linearization matrix of the system around the equilibrium zero 

with µ evaluated at zero. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts.
•	 A2: Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the zero eigenvalue). 

Let fk  be the kth component of f

	
γ1 =

n∑
k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0) � (9)

	
γ2 =

n∑
k,i,j=1

vkwi
∂2fk

∂xi∂µ
(0, 0). � (10)

 The local dynamics of the system around zero is determined by the signs of γ1 and γ2.

 

	1.	� Let γ1 > 0, γ2 > 0. When µ < 0 with |µ| < 1, 0 is locally asymptotically stable and there exists a positive 
unstable equilibrium 0 < µ < 1, 0 is unstable and there exists a negative, locally asymptotically stable equi-
librium.

	2.	� Let γ1 < 0, γ2 < 0. When µ < 0 with |µ| < 1, 0 is unstable, when 0 < µ < 1, 0 is locally asymptotically 
stable equilibrium, and there exists a positive unstable equilibrium.

	3.	� Let γ1 > 0, γ2 < 0. When µ < 0 with |µ| < 1, 0 is unstable, and there exists a locally asymptotically stable 
negative equilibrium; when 0 < µ < 1, 0 is stable results in a positive unstable equilibrium.

	4.	� Let γ1 < 0, γ2 > 0. When µ changes from negative to positive, 0 changes its stability from stable to unstable. 
Correspondingly, a negative unstable equilibrium becomes positive and locally asymptotically stable.

	5.	� When γ1 > 0 and γ2 > 0 , the bifurcation at µ = 0 is subcritical (backward bifurcation).
	6.	� If γ1 < 0 and γ2 > 0, then the bifurcation at µ = 0 is supercritical (forward bifurcation).

Model formulation
This section describes the model formulation of HIV-1 infection by considering its transmission, production of 
target cells, and infected cells, therapy given to the infected cells, the production of the virus from the infected 
cells, and the immune cell production in the host, along with their natural death rates and elimination rates. 
The following model (11) describes the production of the target cell population considering the logistic growth 
rT (t)

(
1 − T (t)

K

)
 and the natural death rate. The basic growth model can be given as41

	

dT (t)
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) � (11)

where r is the intrinsic growth rate, K be the total carrying capacity, and dT  is the target cell death rate. Once 
the virus enters the host, it affects the target cells at an incidence rate of β. The above model can be modified 
by including compartments such as infected cells I(t) and free virions V(t), these infected cells mature and start 
producing new virions at the rate and clearance rate42.

Scientific Reports |         (2025) 15:7265 5| https://doi.org/10.1038/s41598-025-91417-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

dT (t)
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) − f(T (t), V (t))

dI(t)
dt

= f(T (t), V (t)) − δI(t)

dV (t)
dt

= pI(t) − c1V (t).

� (12)

The incidence rate is a measure that scales infected cells in a cell population over some time. In Eq. (12), 

f(T (t), V (t)) = k0T (t)V (t)χ1

q1 + q2V (t)χ2
 be the general nonlinear incidence rate43, precisely, bilinear incidence 

k0T (t)V (t), where k0 > 0, be constant coefficients, the nonlinear incidence rate at the saturated level is given 

as 
k0T (t)V (t)
1 + aV (t) , and the model with the specific nonlinear incidence rate 

k0V 2(t)T (t)
1 + aV 2(t)

44. Once the infection 

starts, the immune system gets alert and starts producing the immune cells. This study considers the natural 
killers, especially in the general nonlinear response of effector cell populations as follows

	

dT (t)
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) − f(T (t), V (t))

dI(t)
dt

= f(T (t), V (t)) − δI(t) − f(E(t), I(t))

dV (t)
dt

= pI(t) − c1V (t)

dE(t)
dt

= f(E(t), I(t)) − bE(t).

� (13)

where, f(E(t),  I(t)) be the nonlinear immune response produced within a host due to the new infection. In 
reality, at first CD4+ are targeted by the virus rapidly for a certain period. The body gets alarmed and certain 
physiological changes happen in the body, and the viral load spread is reduced by the immune cells, at the 
same time, the spread of the cell population doesn’t grow exponentially after a certain stage it has to decrease 
due to the crowding effect or lack of the nutrients. And the immune system can’t fight for a long time, so the 
immune system starts to weaken. Therefore, the incidence of the viral and CD4+ cells and the saturated immune 

response are given in the form of non-monotone function, such as ξ(I(t)) = k0I(t)χ1

q1 + q2I(t)χ2
 where χ1 < χ219. 

For various disease like influenza, hepatitis there is partial immune within host can be given as non-monotone 
incidence rate which are nonlinear45,46. In HIV-1 infection the immune system will take control of the virus for 
a period, if the disease remains untreated then the virus takes over the control and causes acquired immuno-
deficiency syndrome (AIDS). To treat the HIV-1 infection the ARTs are available to control the viral load. During 
the initiation of the therapy, there is no further growth in the viral population, so this study assumes the viral 

population in a quasi-steady state, that is V = pI(t)
c1

. The HIV-1 infection model (13) assumes a quasi-steady 

state as follows27

	

dT (t)
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) − β(1 − ϵ)T (t)I(t)

1 + aI(t)2

dI(t)
dt

= β(1 − ϵ)T (t)I(t)
1 + aI(t)2 − δI(t) − mI(t)E(t)

dE(t)
dt

= cI(t)E(t)
η + kE(t)2 − bE(t).

� (14)

Here T(t) is the target cells, I(t) is the infected cells, and E(t) is the immune response. r is the intrinsic growth 

rate, dT  is the death rate, β is the transmission rate, K denotes total carrying capacity, 
I(t)

1 + aI(t)2  stands for the 

inhibition effect due to change in the target cell population, also the crowding effect. ϵ represents anti-retroviral 
therapy, where the efficacy of the therapy is given by the range 0 ≤ ϵ ≤ 1, when ϵ = 0 the therapy does not affect 
the infection, at ϵ = 1 the therapy works 100 % effectively, the in-between efficacy of therapy ranges are given 
by 0 < ϵ < 1. δ is the death rate of the infected cell populations, m is the elimination rate of the infected cells 

by the effectors, c is the rate of production of the immune cell population, 
E(t)

η + kE(t)2  is the inhibition of the 

effectors cells. b is the effectors cell death rate. In reality, the cell population is positive, and due to limitation such 
as resources, the population do not grow indefinitely. Based on this, the positivity and boundedness are derived 
in the following sections. Based on this, Fig. 1 represents the schematic representation of the HIV-1 infection 
model. The following section mathematically validates the well-possessed of T(t), I(t), and E(t) cell population 
through the conditions.
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Positivity and boundedness of solution
For brevity, the cell population is positive and not infinite. This section discusses the solution of the model 
(14) that is, the cell population remains positive and remains bounded for the positive initial conditions. The 
following theorem holds positivity for the HIV-1 model.

Theorem  All the solutions of the model (14) remains non-negative for the non-negative initial conditions 
T (0) > 0, I(0) > 0 and E(0) > 0.

Proof  Consider the first equation of the model (14) to evaluate the non-negativity of the T(t)

	

dT (t)
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) − β(1 − ϵ)T (t)I(t)

1 + aI(t)2 � (15)

	
dT (t)

dt
≥ rT − rT 2

K
− β(1 − ϵ)T M − dT T � (16)

where M = max
{

I(t)
1 + aI(t)2

}
= 1

2
√

a
. The incidence rate is non-monotone, hence, one can get the 

maximum value for the incidence and the following inequality holds,

	

dT (t)
dt

≥
{

r −
(

dT + β(1 − ϵ)
2
√

a

)}
T (t) − rT (t)2

K

dT (t)
dt

≥ T (t)(NK − rT (t))
K

.

� (17)

where, N = r −
(

dT + β(1 − ϵ)
2
√

a

)
. Integrating (17), as follows

	

∫
dT

T (t)(NK − rT (t)) ≥ 1
K

∫
dt. � (18)

Applying the partial fraction method to simplify the Eq. (18), one can obtain

	
C1

T (t) + C2

NK − rT (t) = 1
T (t)(NK − rT (t)) � (19)

Fig. 1.  Schematic diagram for HIV-1 infection model.
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	 C1(NK − rT (t)) + C2T (t) = 1. � (20)

This leads to the equation as follows,

	
T (t) ≥ BNKeNt

1 + rBeNt
= NBK

e−Nt + rB
→ NK

r
≥ 0 as t → ∞.� (21)

where B = T (0)
NK − rT (0) . Thus the target cell population T (t) > 0 ∀ t > 0, that the target cell population 

remains positive. Consider the immune cell population in the third equation of the model (14) as follows

	
dE(t)

dt
≥ cI(t)M1 − bE(t). � (22)

Since the immune response is non-monotone, there exists a maximum value, and defining 

M1 = max
{

E(t)
η + kE(t)2

}
= 1√

k(η + 1)
, and using in Eq. (22) can lead to the following.

	
E(t) = E(0)e−bt + M1

∫ t

0
I(s)eb(s−t)ds ≥ 0.� (23)

Hence, it can be seen that, E(t) ≥ 0. Similarly, from the second equation of the model (14), one can simplify

	
dI(t)

dt
+ δI(t) + mI(t)E(t) ≥ β(1 − ϵ)T (t)M � (24)

Applying the integration to Eq. (24), the following equation can be derived

	
I(t) = I(0)e−ψ(t) +

Mβ(1 − ϵ)
∫ t

0 T (s)eψ(t)ds

eψ(t) ≥ 0. � (25)

Here ψ(t) =
∫ t

0 (δ + mE(ξ))dξ. Therefore, with all the above results of T(t), I(t), and E(t) it can be concluded 
that all the solutions are positive. □

Theorem  The solutions of the model (14) are bounded in the given positive invariant set

	
Ω =

{
(T (t), I(t), E(t)) ∈ R3

+ : 0 < T (t), I(t) ≤ rK

4κ
, 0 < E(t) <

cKr

4bκ
√

k(η + 1)

}
.

Proof  Let us consider the sum of the first two equations of model (14) as follows

	

d(T (t) + I(t))
dt

= rT (t)
(

1 − T (t)
K

)
− dT T (t) − δI(t) − mI(t)E(t)

d(T (t) + I(t))
dt

≤ −rT (t)2

K
+ rT (t) − dT T (t) − δI(t).

Assume that κ = min {d, δ}, one can get

	

d(T (t) + I(t))
dt

+ κ(T (t) + I(t)) ≤ − r

K

(
T (t)2 − KT (t)

)

d(T (t) + I(t))
dt

+ κ(T (t) + I(t)) ≤ − r

K

[
T (t)2 − KT (t) +

(
K

2

)2
−

(
K

2

)2
]

d(T (t) + I(t))
dt

+ κ(T (t) + I(t)) ≤ rK

4 .

� (26)

Integrating (26) and taking limits as t → ∞, one can get

	
(T (t) + I(t)) → rK

4κ
as, t → ∞.� (27)
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Thus 0 ≤ (T (t) + I(t)) ≤ rK

4κ
, ∀ t ≥ 0, from the third compartment of (14), the following expression can be 

derived.

	
dE(t)

dt
+ bE(t) = cI(t)E(t)

η + kE(t)2 .� (28)

To find E(t), integrate the above equation and apply a limit t → ∞ can lead to the following.

	
E(t) ≤ cKr

4bκ
√

k(η + 1)
.� (29)

Therefore, the solutions of the model (14) are bounded. □

Basic reproduction number
Basic reproduction number (R0) is a primary tool to investigate the disease through a model. Effective measures 
such as awareness about the disease, spread, and control measures such as medication and quarantine are handled. 
The number of secondary infections caused by a single infected individual is called the basic reproduction 

number. The transmission and transition matrices are given as TM =
(

β(1 − ϵ)T I

1 + aI2

)
, and TS = (−δ − mEI)

, the transmission (new infection) and the transition matrices at equilibrium E0 are respectively

	
TM =

(
β(1 − ϵ)K(r − dT )

r

)
, and (TS)−1 =

(1
δ

)
.

 From the definition of the next generation matrix, the following expression can be obtained.

	
TM (TS)−1 =

(
β(1 − ϵ)K(r − dT )

rδ

)
. � (30)

Here, the model (14) has only one infectious compartment, that is, I(t). The TM  reveals that the rate at which 
the number of infection cells is produced in the compartment I(t), and TS  is the expected number of cell loses 
in the compartment I(t). Moreover, TM T −1

S  represents the expected number of secondary infections in the 
compartment I(t) produced by infected cells. Based on these, the basic reproduction number can be derived as 
in th following.

	
R0 = β(1 − ϵ)K(r − dT )

rδ
.� (31)

If R0 < 1 then the disease will eventually die out in the population and if R0 > 1 then the disease spread will 
possibly become a pandemic.

Steady state analysis
This section briefly discusses the necessary and sufficient conditions that help to evaluate the dynamics of the 
HIV-1 infection model. Here, the model is analyzed in three different conditions, during the absence of disease, 
the presence of the infection but the absence of immune response, and the presence of the infection and immune 
responses namely, i) disease-free equilibrium, ii) immune-free equilibrium, iii) endemic equilibrium.

Disease-free equilibrium
Theoretically, a disease-free equilibrium represents there is no infected cell in the population or the disease die 

out completely. The disease-free equilibrium E0 is given as E0 = (T ∗
0 , 0, 0), where, T ∗

0 = K

r
(r − dT ) , only if 

r > dT .

Theorem  The disease-free equilibrium is stable for R0 < 1 and unstable for R0 > 1 only if r > dT .

Proof  The characteristic matrix evaluated at the disease-free equilibrium is given as

	

|J(E0) − λI3| =

∣∣∣∣∣∣
−(r − dT ) − λ −β(1 − ϵ)K

r
(r − dT ) 0

0 δ(R0 − 1) − λ 0
0 0 −b − λ

∣∣∣∣∣∣
.� (32)
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 From the above characteristic matrix (32), the eigenvalues are λ1 = −(r − dT ), λ2 = δ(R0 − 1), and 
λ3 = −b, one can observe that the equilibrium is stable R0 < 1, otherwise unstable. □

Immune-free equilibrium
Biologically, once the foreign agent enters the host, it starts to infect the body, the foreign agent is handled by 
the primary immune cells, once the risk of infection becomes high, the primary immune cells alerts the body to 
produce the natural killers which kills the foreign agents directly, this condition of the primary defense for the 
disease progression is classified as the immune-free equilibrium. In the model (14) when the cells get infected 
but the immune system is not yet produced, this condition is called as immune-free equilibrium E1 is given by 
E1 = (T ∗

1 , I∗
1 , 0). Since the immune-free equilibrium is challenging to find analytically, the nullcline approach 

is utilized, the intersection of these nullclines are the equilibrium points. The nullclines for the immune-free 
equilibrium from the infected compartment are given as follows

	
T ∗

1 = δ(1 + a(I∗
1 )2))

β(1 − ϵ) .� (33)

Further, the nullcline derived from the target cell compartment of model (14) for the immune-free equilibrium 
can be obtained as follows

	
T ∗

1 = K

r

(
r − dT − β(1 − ϵ)I∗

1

1 + a(I∗
1 )2

)
.� (34)

Solving these, one can get the following polynomial expression

	 A1I(t)4 + A2I(t)2 + A3I(t) + A4 = 0� (35)

where, A1 = rδa2 , A2 = 2arδ − rKβ(1 − ϵ)a + dT Kβ(1 − ϵ)a, A3 = β2(1 − ϵ)2K , 
A4 = rδ − rKβ(1 − ϵ) + dT Kβ(1 − ϵ). The derived equilibrium in (35) can be modified as in the following

	
a2I(t)4 + a(2 − R0)I(t)2 − R0

r − dT
β(1 − ϵ)I(t) + (1 − R0) = 0� (36)

The outcomes of above expression mainly depends on R0 provided r > dT .

Theorem  The immune-free equilibrium is stable only if

•	 cI∗
1 − bη < 0.

•	 B2
1 − 4B2 > 0, B1 > 0 and B2 > 0.

Proof  The characteristic matrix for the Jacobian matrix evaluated at the immune-free equilibrium E1 is given as

	

|J(E1) − λI3| =

∣∣∣∣∣∣∣∣∣∣

r − 2rT ∗
1

K
− dT − β(1 − ϵ)I∗

1

1 + a(I∗
1 )2 − λ

−β(1 − ϵ)T ∗
1 [1 − a(I∗

1 )2]
(1 + a(I∗

1 )2)2 0

β(1 − ϵ)I∗
1

1 + a(I∗
1 )2

β(1 − ϵ)T ∗
1 [1 − a(I∗

1 )2]
(1 + a(I∗

1 )2)2 − δ − λ −mI∗
1

0 0 cI∗
1

η
− b − λ

∣∣∣∣∣∣∣∣∣∣
.� (37)

From the above characteristic matrix (37) the eigenvalue λ1 = cI∗
1

η
− b is negative only if cI∗

1 − bη < 0 

for the polynomial λ2 + B1λ + B2 = 0, and if B2
1 − 4B2 > 0, B1 > 0 and B2 > 0 then the 

eigenvalues are negative. The coefficients are given as B1 = −(a11 + a22), B2 = a11a22 − a12a21, where 

a11 = r − 2rT ∗
1

K
− dT − β(1 − ϵ)I∗

1

1 + a(I∗
1 )2 , a12 = −β(1 − ϵ)T ∗

1 [1 − a(I∗
1 )2]

(1 + a(I∗
1 )2)2 , a21 = β(1 − ϵ)I∗

1

1 + a(I∗
1 )2 , and 

a22 = β(1 − ϵ)T ∗
1 [1 − a(I∗

1 )2]
(1 + a(I∗

1 )2)2 − δ. □

Endemic equilibrium
In the presence of the infection along with the immune response the endemic equilibrium E2 = (T ∗, I∗, E∗) 
is given as
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T ∗ = K

r

(
r − dT − β(1 − ϵ)I∗

1 + a(I∗)2

)

I∗ = b(η + k(E∗)2)
c

E∗ = 1
m

(
β(1 − ϵ)T ∗

1 + a(I∗)2 − δ

)
.

Here, the endemic equilibrium E2 including R0 can be obtained by solving the following expression

	

m2 [
cI(t) − bη + 4acI(t)3 − 4abηI(t)2 + 6a2cI(t)5 − 6a2bηI(t)4 + 4a3cI(t)7 − 4a3bηI(t)6 − a4bηI(t)8 + a4cI(t)9]

− bkδ2 [
(R0 − BI(t)R0 − 1)2 − 2aI(t)2(R0 − BI(t)R0 − 1)(R0 − 2) + a2I(t)4(R0 − BI(t)R0 − 1)

− a2I(t)4(R0 − 2)2 + 2a3I(t)6(R0 − 2) − a4I(t)8 ] = 0

� (38)

where, B = β(1 − ϵ)/(r − dT ). The HIV-1 dynamics is modeled using ODEs, since the model is nonlinear and 
analyzing nonlinear system is challenging, the study linearizes the model using Jacobian matrix approach at a 
particular equilibrium point. Let E2 = (T ∗, I∗, E∗) be any arbitrary equilibrium point, then the characteristic 
matrix for the Jacobian matrix evaluated at the equilibrium point E2 is given as follows,

	

|J(E2) − λI3| =

∣∣∣∣∣∣∣∣∣∣∣

a11 − λ
−β(1 − ϵ)T ∗[1 − a(I∗)2]

(1 + a(I∗)2)2 0

β(1 − ϵ)I∗

1 + a(I∗)2
β(1 − ϵ)T ∗[1 − a(I∗)2]

(1 + a(I∗)2)2 − δ − mE∗ − λ −mI∗

0 cE∗

η + k(E∗)2
cI∗[η − k(E∗)2]
(η + k(E∗)2)2 − b − λ

∣∣∣∣∣∣∣∣∣∣∣

� (39)

The characteristic polynomial of the above characteristic matrix (39) is given as

	 λ3 + A1λ2 + A2λ + A3 = 0.� (40)

Here, A1 = −(a11 + a22 + a33), A2 = a22a33 − a23a32 + a11a33 + a11a22 − a12a21, and 
A3 = − det(J(E2)) where J is the Jacobian matrix. The entries in A1, A2 and A3 are given as where 

a11 = r − 2rT ∗

K
− dT − β(1 − ϵ)I∗

1 + aI2∗ , a12 = −β(1 − ϵ)T ∗[1 − aI2∗]
(1 + aI2∗)2 , a21 = β(1 − ϵ)I∗

1 + aI2∗ , 

a22 = β(1 − ϵ)T ∗[1 − aI2∗]
(1 + aI2∗)2 − δ − mE∗, a32 = cE∗

η + kE2∗ , and a33 = cI∗[η − kE2∗]
(η + kE2∗)2 − b.

Theorem  The endemic equilibrium is stable only if all the eigenvalues are negative.

Proof  The characteristic matrix evaluated at the endemic equilibrium E2 as follows

	

|J(E2) − λI3| =

∣∣∣∣∣∣∣∣∣∣∣

a11 − λ
−β(1 − ϵ)T ∗[1 − a(I∗)2]

(1 + a(I∗)2)2 0

β(1 − ϵ)I∗

1 + a(I∗)2
β(1 − ϵ)T ∗[1 − a(I∗)2]

(1 + a(I∗)2)2 − δ − mE∗ − λ −mI∗

0 cE∗

η + k(E∗)2
cI∗[η − k(E∗)2]
(η + k(E∗)2)2 − b − λ

∣∣∣∣∣∣∣∣∣∣∣

.� (41)

The characteristic polynomial of the characteristic matrix (41) evaluated at the endemic equilibrium E2 is given 
as

	 λ3 + A1λ2 + A2λ + A3 = 0.� (42)

The stability of the endemic equilibrium can be analyzed utilizing the Routh-Hurwitz criterion if the following 
conditions are satisfied

	 A1 > 0, A1A2 − A3 > 0.

Here, A1 = −(a11 + a22 + a33), A2 = a22a33 − a23a32 + a11a33 + a11a22 − a12a21, and 
A3 = − det(J(E2)), where J is the Jacobian matrix. The entries in A1, A2 and A3 are given as 

a11 = r − 2rT ∗

K
− dT − β(1 − ϵ)I∗

1 + a(I∗)2 , a12 = −β(1 − ϵ)T ∗[1 − a(I∗)2]
(1 + a(I∗)2)2 , a21 = β(1 − ϵ)I∗

1 + a(I∗)2 , 

a22 = β(1 − ϵ)T ∗[1 − a(I∗)2]
(1 + a(I∗)2)2 − δ − mE∗, a32 = cE∗

η + kE2∗ , and a33 = cI∗[η − k(E∗)2]
(η + k(E∗)2)2 − b. □
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Bifurcation analysis
While analyzing the model parameters, certain qualitative changes can occur in the model behaviors, these 
qualitative changes are classified as bifurcations. In this section, the model exhibits bifurcations such as saddle-
node, trans-critical and Hopf bifurcations with respect to change in parameter. Theoretically, the conditions for 
their existence is derived. The oscillation in the dynamics of the cell population of the model is tough to analyzed, 
the following section helps to understand the parameters of the model which causes oscillation is cell population 
of the model. For the above discussion, the study performs the Hopf bifurcation analyses theoretically and 
simulation with respect to parameter are done for the parameters. For theoretical aspect the following theorem 
ensures the Hopf bifurcation,

Hopf bifurcation analysis
To ensure the Hopf bifurcation of model (14) at the immune-free equilibrium E1, utilizing that saturated constant 
a as a bifurcation parameter.

Theorem  If the saturated constant rate a approaches the critical value ac, then proposed model (14) exhibits 
Hopf bifurcation around the immune-free equilibrium E1 if the following necessary and sufficient conditions 
are satisfied.

•	 ϕ(ac) = B1(ac)B2(ac) − B3(ac) = 0.

•	 B1(ac) > 0, ξ∗
0 = B3(ac)

B1(ac) > 0.

•	

[
dϕ(a)

da

]

a=ac

̸= 0.

Proof  Since all the coefficients of the characteristic equation can be expressed as a function of a, therefore one 
can write

	 Φ3 + B1(a)Φ2 + B2(a)Φ + B3(a) = 0.� (43)

The Eq. (43) has a pair of purely imaginary solutions Φ1,2 = ±i
√

(ξ0), ξ0 > 0 if and only if it can be written as

	 Q(Φ) = (Φ2 + ξ0)G(Φ), where G(Φ) = Φ + L1

where, L1, be the constant

	 Q(Φ) = Φ3 + L1Φ2 + ξ0Φ + ξ0L1 = 0� (44)

Equating the coefficients of Eqs. (43) and (44) as follows

	 B1 = L1, B2 = ξ0, B3 = ξ0L1.

From the above equation, one can get

	 B3 = ξ0B1.� (45)

Thus, Eq. (43) can be written as

	 Φ3 + B1Φ2 + ξ0Φ + ξ0B1 = 0.� (46)

If B1B3 > 0, then from Eq. (45), one can have ξ0 = ξ∗
0 , where

	
ξ∗

0 = B3

B1
.� (47)

Substituting ξ0 = ξ∗
0  in Eq. (46) one can get the Eqs. (43) and (46) are identical if and only if, the following 

expression is valid

	 ϕ = B1B2 − B3 = 0� (48)

Thus the necessary and sufficient conditions under the polynomial G(Φ) = Φ + B1 does not have zero solution 
for B1 ̸= 0. Also, the polynomial G(ϕ) has the negative real part if B1 > 0. The positivity of B1 gives the 
negative real part to the polynomial. To complete the discussion, it remains to verify the transversality condition 
to prove the existence of Hopf bifurcation. The function ϕ(a) can be expressed in the form of Orlando’s formula 
as follows2
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	 ϕ(a) = (Φ1 + Φ2)(Φ1 + Φ3)(Φ2 + Φ3).� (49)

Assume that a = ac (critical value). As ϕ(ac) is a continuous function of all its solutions, there exists an open 
interval Xac = (ac − ϵ, ac + ϵ), where Φ1 and Φ2 are complex conjugates ∀ a ∈ Xac . Consider general 
form in this neighborhood as Φ1(a) = ξ1(a) + iξ2(a), Φ2(a) = ξ1(a) − iξ2(a) with ξ1(ac) = 0, and 
ξ2(ac) =

√
ξ0 > 0, while Re{Φ3(ac)} ̸= 0. Then, the equation becomes

	

ϕ(a) = (Φ1 + Φ2)(Φ1Φ2 + Φ2Φ3 + Φ1Φ3 + Φ2
3)

= 2ξ1
[
(ξ1 + iξ2)(ξ1 − iξ2) + (ξ1 − iξ2)Φ3 + (ξ1 + iξ2)Φ3 + Φ2

3
]

ϕ(a) = 2ξ1
[
(Φ3 + ξ1)3 + ξ2

2
]

, ϕ(ac) = 0.

Differentiating with respect to parameter a and substituting “a = a′′
c , one can get

	

[
dϕ(a)

da

]

a=ac

=
[

2(Φ2
3 + ξ2

2)dξ1(a)
da

]

a=ac

.� (50)

Since the solutions Φ3 have negative real parts at a = ac, one can arrive at the following condition

	

[
dξ(a)

da

]

a=ac

̸= 0 ⇐⇒
[

dϕ(a)
da

]

a=ac

̸= 0.� (51)

Thus, the transversality condition holds. From, the theorem the immune-free equilibrium E1 undergoes Hopf 
bifurcation for the saturated constant at a = ac. □

Saddle-node bifurcation analysis
Our aim here is to demonstrate the behavior of saddle-node bifurcation in the solution trajectories of the model 
(14), for which one uses the Sotomayor theorem39.

Theorem  The endemic equilibrium of the model (14) undergoes the saddle-node bifurcation at c = c∗∗ where,

	
c∗∗ = b(a11a22 − a12a21)

a11a22a33 − a11a33a23 − a12a21a33
.

Proof  The Jacobian matrix J can be computed at the endemic equilibrium E2 has eigenvalue zero, if C3(c∗∗) = 0
. Let U = (u1, u2, u3) and W = (w1, w2, w3)T , sequentially represent the left and right eigenvectors of matrix 
J associated with the eigenvalue zero, for simplicity, to valid their existence, in this regard the Jacobian matrix at 
the endemic equilibrium is considered in the following

	
J(E2) =

(
a11 a12 0
a21 a22 a23
0 ca32 ca33 − b

)
� (52)

	 a11(a22(ca33 − b) − ca32a23) − a12(a21(ca33 − b)) = 0.� (53)

From Eq. (53), the c∗∗ is derived, at the point the eigenvalue is zero

	
c∗∗ = b(a11a22 − a12a21)

a11a22a33 − a11a33a23 − a12a21a33
. � (54)

The right eigenvector of zero eigenvalue for the Jacobian matrix (52) can be calculated as

	

{
a11u1 + a12u2 = 0
a21u1 + a22u2 + a23u3 = 0
ca32u2 + (ca33 − b)u3 = 0.

Therefore, to solve the above equation one can get the equations as follows

	
u1 = −a12

a11
u2, u3 = ca32

(b − ca33)u2, u2

[
−a21a12

a11
+ a22 + ca23a32

(b − ca33)

]
= 0, u2(0) = 0. � (55)

Here, one can observe that u2 is considered as arbitrary. Further, this study assumes that u2 = 1. Similarly, the 
right eigenvector from Eq. (55) and the left eigenvector are derived as
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U =

[
u1
u2
u3

]
=




−a12

a11
1

ca32

b − ca33


 , W =

[
w1
w2
w3

]T

=




−a21

a11
1

a23

b − ca33




T

.� (56)

Consider, F = (f1, f2, f3) be the right hand-side of the model (14), the transversality conditions are derived 
as follows

	
W

dF

dc

∣∣∣
c=c∗∗

=
(

a11a23 + a12a21 − a11a22

ba11

)
× E∗I∗

η + k(E∗)2 ̸= 0� (57)

Similarly, the co-efficient is determined as follows

	

D2(F (E2); c∗∗)(U, U) =




−2r

K
u2

1 − 2β(1 − ϵ)
(

1 − a(I∗)2

(1 + a(I∗)2)2

)
u1u2 + 2aβ(1 − ϵ)T ∗I∗[(1 + a(I∗)2)2 + 2[1 − a2I4]]

(1 + a(I∗)2)4 u2
2

2β(1 − ϵ)
(

1 − a(I∗)2

(1 + a(I∗)2)2

)
u1u2 − 2mu2u3 − 2aβ(1 − ϵ)T ∗I∗[(1 + a(I∗)2)2 + 2[1 − a2I4]]

(1 + a(I∗)2)4 u2
2

c

(
η − k(E∗)2

(η + k(E∗)2)2

)
u2u3 − 2kEcI∗

[
(η + k(E∗)2))2 − 2(η2 − k2(E∗)4)

(η + k(E∗)2)4

]
u2

3




W T D2(F (E2); c∗∗)(U, U) = −a21

a11

[
−2r

K
u2

1 − 2β(1 − ϵ)
(

1 − a(I∗)2

(1 + a(I∗)2)2

)
u1u2

+2aβ(1 − ϵ)T ∗I∗[(1 + a(I∗)2)2 + 2[1 − a2I4]]
(1 + a(I∗)2)4 u2

2

]

+ 2β(1 − ϵ)
(

1 − a(I∗)2

(1 + a(I∗)2)2

)
u1u2 − 2mu2u3

− 2aβ(1 − ϵ)T ∗I∗[(1 + a(I∗)2)2 + 2[1 − a2I4]]
(1 + a(I∗)2)4 u2

2

+ −mI∗(η + k(E∗)2)2

b(η + k(E∗)2)2 − c∗∗I∗(η − k(E∗)2)

[
c∗∗

(
η − k(E∗)2

(η + k(E∗)2)2

)
u2u3

−2kEc∗∗I∗
[

(η + k(E∗)2))2 − 2(η2 − k2(E∗)4)
(η + k(E∗)2)4

]
u2

3

]
̸= 0.

� (58)

Hence, it is proved that the endemic equilibrium E2 undergoes the saddle-node bifurcation. □

Trans-critical bifurcation
To determine the existence of the trans-critical bifurcation, the study utilizes the center manifold theory40 to 
derive the necessary and sufficient conditions. Let us consider the model (14) as follows

	

f1 := dx1

dt
= rx1

(
1 − x1

K

)
− dT x1 − β(1 − ϵ)x1x2

1 + ax2
2

f2 := dx2

dt
= β(1 − ϵ)x1x2

1 + ax2
2

− δx2 − mx2x3

f3 := dx3

dt
= cx2x3

η + kx2
3

− bx3

� (59)

For convenience, to show the existence of trans-critical bifurcation, the study assumes the cell populations T(t), 
I(t) and E(t) as x1, x2 and x3, also the equilibrium T ∗, I∗, and E∗ as x∗

1 , x∗
2  and x∗

3  for the model (14). Here 
(T, I, E) = (x1, x2, x3).

Theorem  The immune-free equilibrium of the model (14) undergoes the trans-critical bifurcation at 

c = c∗ = bη

x∗
2

. The direction of the trans-critical bifurcation is given by the quantities γ1 and γ2 as follows

	

γ1 =

(
r − dT − β(1 − ϵ)x2

1 + ax2
2

− 2rx1

K

)
mx2

−δ

(
r − dT − 2rx1

K
− β(1 − ϵ)x2

1 + ax2
2

)
+ β(1 − ϵ)x1(1 − ax2

2)
(1 + ax2

2)2

(
r − dT − 2rx1

K

) .γ2 = x2

η
> 0.

if γ1 > 0, then bifurcation is said to be backward, and if γ1 < 0, then it is said to be forward bifurcation.
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Proof  The characteristic matrix calculated at the immune-free equilibrium E1 is given as

	

|J(E1) − λI3| =

∣∣∣∣∣∣∣∣∣∣

r − 2rx∗
1

K
− dT − β(1 − ϵ)x∗

2

1 + ax2∗
2

− λ
−β(1 − ϵ)x∗

1[1 − ax2∗
2 ]

(1 + ax2∗
2 )2 0

β(1 − ϵ)x∗
2

1 + ax2∗
2

β(1 − ϵ)x∗
1[1 − ax2∗

2 ]
(1 + ax2∗

2 )2 − δ − λ −mx∗
2

0 0 cx∗
2

η
− b − λ

∣∣∣∣∣∣∣∣∣∣
.� (60)

From the Jacobian matrix (60), one can observe that the last row has eigenvalue zero if 
cx∗

2

η
− b = 0, assume 

the value c = c∗ at which the eigenvalue becomes zero, c∗ = bη

x∗
2

. Now, evaluate the Jacobian matrix J at c = c∗ 

as follows

	
J =

(
a11 a12 0
a21 a22 a23
0 0 0

)
� (61)

where, a11 = r − 2rx∗
1

K
− dT − β(1 − ϵ)x∗

2

1 + ax2∗
2

, a12 = −β(1 − ϵ)x∗
1[1 − ax2∗

2 ]
(1 + ax2∗

2 )2 , a21 = β(1 − ϵ)x∗
2

1 + ax2∗
2

, 

a22 = β(1 − ϵ)x∗
1[1 − ax2∗

2 ]
(1 + ax2∗

2 )2 − δ, a23 = −mx∗
2. The right and left eigenvector V̂ = [v1, v2, v3] and 

Ŵ = [w1, w2, w3]T  calculated at the zero eigenvalue for the immune-free equilibrium is given as

	
V̂ =

[
v1
v2
v3

]
=

[
a12a23

−a11a23
a22a11 − a12a21

]
, Ŵ =

[
w1
w2
w3

]T

=

[
0
0
1

]T

.� (62)

Now, the quantities γ1 and γ2,13 for model (14), are obtained as follows

	
γ1 =

3∑
i,j,k=1

wkvivj
∂2fk

∂xixj
, γ2 =

3∑
i,j,k=1

wkvi
∂2fk

∂xi∂c
.� (63)

From (62), it is observed that w1 and w2 are zero, substituting the eigenvectors in (63) to the quantities γ1 and 
γ2, leads to the following

	

γ1 = w3

(
v1v1

∂2f3

∂x1∂x1
+ v1v2

∂2f3

∂x1∂x2
+ v1v3

∂2f3

∂x1∂x3
+ v2v1

∂2f3

∂x2∂x1
+ v2v2

∂2f3

∂x2∂x2

+v2v3
∂2f3

∂x2∂x3
+ v3v1

∂2f3

∂x3∂x1
+ v3v2

∂2f3

∂x3∂x2
+ v3v3

∂2f3

∂x3∂x3

)
.

� (64)

The partial derivatives for the model (14) are given as

	

∂f1

∂x1
= r − 2rx∗

1

K
− dT − β(1 − ϵ)x∗

2

1 + a(x∗
2)2 ,

∂f1

∂x2
= −β(1 − ϵ)x∗

1[1 − a(x∗
2)2]

(1 + a(x∗
2)2)2 ,

∂f1

∂x1∂x1
= −2r

K
,

∂f1

∂x1∂x2
= −β(1 − ϵ)(1 − a(x∗

2)2)
(1 + ax∗

2)2 ,
∂f1

∂x2∂x2
= β(1 − ϵ)x∗

1(2ax∗
2(1 + a(x∗

2)2) + 4ax∗
2(1 − a2(x∗

2)4))
(1 + a(x∗

2)2)4 ,

∂f2

∂x1
= β(1 − ϵ)x∗

2

1 + a(x∗
2)2 ,

∂f2

∂x2
= β(1 − ϵ)x∗

1[1 − a(x∗
2)2]

(1 + a(x∗
2)2)2 − δ − mx∗

3,
∂f2

∂x3
= −mx∗

2,

∂2f2

∂x2∂x2
= −β(1 − ϵ)x∗

1(2ax∗
2(1 + a(x∗

2)2) + 4ax∗
2(1 − a2(x∗

2)4))
(1 + a(x∗

2)2)4 ,
∂f2

∂x1∂x2
= β(1 − ϵ)(1 − ax2∗

2 )
1 + a(x∗

2)2 ,

∂2f2

∂x2∂x3
= −m,

∂f3

∂x2
= cx∗

3

η + k(x∗
3)2 ,

∂f3

∂x3
= cx∗

2(η − k(x∗
3)2)

(η + k(x∗
3)2)2 ,

∂2f3

∂x2∂x3
= c

(
η − k(x∗

3)2

(η + k(x∗
3)2)2

)
,

∂2f3

∂x3∂x3
= cx∗

2

(
2kx∗

3(−3η + k(x∗
3)2)

(η + k(x∗
3)2)3

)
.

The remaining quantities are zero. Here
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γ1 =

(
r − dT − β(1 − ϵ)x2

1 + ax2
2

− 2rx1

K

)
mx2

−δ

(
r − dT − 2rx1

K
− β(1 − ϵ)x2

1 + ax2
2

)
+ β(1 − ϵ)x1(1 − ax2

2)
(1 + ax2

2)2

(
r − dT − 2rx1

K

) .� (65)

Suppose γ1 = 0, the following expression can be obtained

	

[
r − dT − β(1 − ϵ)x2

1 + ax2
2

− 2rx1

K

]
= 0.� (66)

Simplify the above equation, and one can find the threshold value of r∗

	
r∗ = dT + β(1 − ϵ)x2

1 + ax2
2

+ 2rx1

K
.

Now, based on the condition derived, the forward and backward bifurcation can be classified for r < r∗ and 
r > r∗

	
γ2 = −a11a23

(a22a11 − a12a21) × x3

η + kx2
3

+ x2

[
η − kx2

3

(η + kx2
3)2

]
.� (67)

At the immune-free equilibrium the points such as (x∗
1, x∗

2, 0). Now, the γ2 can be simplifies as

	
γ2 = x2

η
> 0.� (68)

Therefore, it can be concluded that if γ1 > 0 and γ2 > 0 then the bifurcation is backward, and if γ1 < 0 then 
the bifurcation is forward depending on the nature of positive or negative signs34. □

Numerical simulations
The objective of this section is to evaluate the rate of changes in the cell populations such as target cells, immune 
cells, and viral load with respect to time. In this regard, the first step is the identification of the model parameters. 
The parameters can be chosen from the literature works focusing on HIV-1 disease progression but the main 
drawback in choosing the parameters without involving the present model characteristics. To overcome this 
drawback, the present study follows the data-driven approach in which the model parameters can be determined 
through mapping the model characteristics and clinical data with the help of MONOLIX software. The following 
subsection briefly discusses the model identification and biological feasibility through clinical-trials.

Data interpretation
This subsection contains the process of mapping between theoretical solutions and clinical data. Initially, the 
clinical data is extracted from the literature24, in which 48 infected individuals undergo ART for the period of 
15 weeks, and their viral load was continuously monitored and recorded. The goal is to develop a differential 
model capable of capturing the clinically recorded viral-load dynamics, enabling the determination of ART 
efficacy and natural killer response over time. With the help of Monolix software, the data-fitting process has 
been made and the outcomes are graphically illustrated in two-dimension plot, refer Fig. 2. In detail, from Fig. 
2, it can seen that, the red dots represents the clinically recorded data of viral load in individuals after therapy 
initiation. Biologiclaly, the viral load start declines in the patients under ARTs. The blue-line in Fig. 2 represents 
the solution of the model and it can be concluded that the proposed three-dimensional model can capture the 
dynamics of viral load in the individuals effectively. Based on these results, the suitable parameters are extracted 
from the software and provide in Table 2.

Parameter sensitivity analysis
This subsection demonstrates the process involved in the identification of model parameters which play a 
significant role in the disease progression. Partial rank correlation coefficient (PRCC) is a metric helps to analyse 
how strongly each model parameter correlates with the dynamics of target, infected and immune-cells dynamics. 
In this regard, the statistical analysis, say, PRCC metric is employed to to measures the nonlinear but monotonic 
relation between the model parameters through the formula

	
PRCC = Cov(Rx, Ry)√

Var(Rx) · Var(Ry))
,� (69)

where Rx, Ry  are the rank residuals of the parmeters x,  y,   respetcively. For one set of rank residuals the 
covariance is given as Cov(Rx, Ry) = E

[
(Rx − µRx )(Ry − µRy )

]
, E is the expectation in the probability 

theory. For the n−samples, the covariance is calculated through the formula’s
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Parameter Description Fitting values Biological values

r Intrinsic growth rate 4.38 0.03/day47

K Total carrying capacity 105 105cells/mL/day47

dT Target cell death rate 0.01 0.01/day21

β Transmission rate 0.000015 1.5 × 10−8  mL/day47

ϵ Drug efficacy 0.9 [0, 1]22

a Saturated constant 0.1 0.1

p New virions production 2000 2000/day47

δ Death rate of infected cells 1 1/day22

c1 Virions clearance rate 23 23/day47

m Infected cell elimination rate 0.00046 0.0045 mL/cells/day47

η Immune impairment constant 0.0012 0.1

k Immune saturated constant 0.052 –

c Immune cell production 0.000071 0.1/ day47

b Death rate 5 2/day22

Table 2.  Parameter descriptions and its ranges.

 

Fig. 2.  The clinical trials were performed on human patients to monitor their viral load under ART. The red 
dots represent the VL in natural logarithmic numbers and the blue line is the solution of the viral population. 
The clinical data is obtained from the literature24. It can be seen that VL starts declining once the therapy is 
initiated, and for some cases, like Human ID:2 there is an immediate response, but the response is slow in 
human IDs 14, 26, 21, 25, 32 41, and 45. Also, it takes more than 10 weeks for Human IDs: 32, 41, and 45. 
These results clearly indicate that the efficacy of ARTs are varying for each individual case and cannot be 
assumed as fixed.
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Cov(Rx, Ry) = 1

(n − 1)

n∑
i=1

(Rxi − µRx )(Ryi − µRy ), � (70)

	
Var(Rx) = 1

(n − 1)

n∑
i=1

(Rxi − µRx )2, � (71)

	
Var(Ry) = 1

(n − 1)

n∑
i=1

(Ryi − µ2
Ry). � (72)

Here µRx , µRy  are the average values of the rank residuals. The process of finding these rank residuals starts 
with the raw-data of model parameters r, K, β, dT , ϵ, a, δ, m, η, k, c, b and each coefficient stands as rate 
constant of T(t), I(t), E(t). The difference between the actual assigned ranks and the predicted ranks (multiple 
linear regression) helps to determine the rank residuals. This statistical analysis helps to measure the significance 
in terms of numerical value −1 to 1. If PRCC is 1 then for perfect positive correlation with the state variables. 
This study performs the PRCC measures by considering all the model parameters to identify the significance 
and the outcomes are depicted in Fig. 3. Biologically, infection rate β is positively correlated with infected cells 
I(t), c is positively correlated with immune cells E(t) and ϵ is positively correlated with target cells T(t). On 
the otherhand, δ is negatively correlated with I(t),  the death rate b is negatively correlated with E(t) and β is 
negatively correlated with T(t). In order to analyse the correlation between the model parameters the matrix (4) 
has been determined and presented in Fig. 4.

The dimension of a matrix is 15 × 15, which indicates the relationships between parameters and outcomes of 
the HIV-1 model. All the model parameters from model (14) are considered along with T(t), I(t) and E(t). The 
correlation coefficient is calculated through the formula

	
PRCC = Cov(i, j)√

Var(i) · Var(j))
.� (73)

Here (i, j) represents the position in the matrix of Fig. 4 and each entry (i, j) explains how model parameters i 
correlate with the cell populations j. The colors helps to understand the correlation, say, dark colors represent a 
strong positive or negative correlation. For instance, one can see the strong correlation between the growth rate r 
and the target cells with a coefficient value of 0.70. The values close to 1 are strongly correlated (blue), biologically, 
increase in parameters will result in increased cell populations and vice-versa for negative correlation (red). 
Those that are negatively correlated which are close to −1 have an increase in parameter, decrease the other 
parameters, and vice-versa. The matrix shows that parameters such as r, β, and ϵ have a higher influence over the 
model behaviors. Now, from the matrix (4) one can identify the significant parameters that has the potential to 
bring the oscillations in cell populations and may affect the outcomes of the treatment. To an evident, the basic 
reproduction number R0 is calculated for different ranges of the parameters β, ϵ, r, δ, and the outcomes are 

Fig. 3.  Parameter sensitivity analysis for model (14).
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illustrated in Fig. 5. For the analysis, the remaining parameters are chosen as K = 105, dT = 0.01, m = 0.1, 
k = 0.1, b = 0.1, and c = 0.1.

The outcomes validate the proposed significant parameters. Mathematically, the saturation coefficient 
1/(1 + aI(t)2) prevents irrational growth. Biologically, the model outcomes show that the high efficiency in 
ART may help to control the viral load.

Immune-free equilibrium
This section briefly analyses the effect of immune-free equilibrium in terms of model (14). In this regard, consider 
the polynomial of degree four (36) with rate constants, a, r, R0 and c. Initially, start the analysis with respect 
to R0. For better clarity, the effect R0 is shown in Fig. 6, which clearly explains the existence of immune-free 
equilibriums that can be categorized into intervals, and the relationship between R0 and the number of positive 
immune-free equilibriums are also tabulated adjacently. Biologically, the more positive equilibrium implies the 
higher risk of disease persisting. The number of equilibriums and their stability helps to gain insight into the 

Fig. 5.  The colored regions indicate the virulence of the disease spread following the expression for R0 in (31). 
The red color represents the R0 < 1, where there is less risk of the disease or at the early stage of the infection, 
the yellow color represents the disease transmission starts to spread and the light green and blue color indicates 
the disease spread is moderate and precautions such as therapy are necessary to treat the disease. Further, the 
pink color indicates the spread of the disease lead to a chronic stage.

 

Fig. 4.  Correlation analysis and its outcomes for parameters in model (14).
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overall behavior of the model, the system may exist in the multiple stable states for the parameters and the initial 
conditions.

Due to nonlinear interactions between the cell populations, finding the explicit expression for steady-state 
analysis is complex. As an alternative, nullclines are the curves that help to visualize the flow of trajectories used 
to analyze the nonlinear models, which are challenging and time-consuming to analyze analytically. Graphically, 
the intersection of the nullcline curves are called an equilibrium points. The number of equilibrium points helps 
to gain insights about the evolution of cell populations in various conditions or stages. Besides, the existence of 
equilibriums can be confirmed with the positive region of the plane in Fig. 7a and b.

Mathematically, when the intrinsic growth rate r = 0.1, is considered and for that, it can be observed that 
there are three positive immune-free equilibria. On the other hand, decreases in growth rate will diminish the 
equilibrium to one. Likewise, a detailed analysis was performed, and the parameters are tabulated in Table 3. 
Followed by the eigenvalue analysis of the immune-free equilibrium with respect to the parameters a and c is 
given in Table 4. Also, Table 4 ensures the stability theoretical conditions for immune-free equilibrium, such as 
H1 := cI∗

1 − bη < 0, H2 := B2
1 − 4B2 > 0, B1 > 0 and B2 > 0. Figure 8 shows the phase portrait and the 

time series for the model (14).

Fig. 7.  (a) shows the existence of three positive equilibria for the parameter r = 0.1. (b) depicts the one 
equilibria for r = 0.01. (a) and (b) are evident in the creating and destroying nature of equilibrium points for 
intrinsic growth rate.

 

Fig. 6.  Existence of positive immune-free equilibrium with respect to R0 and with an infectivity range 
β ∈ (0, 0.5), and fixed efficacy in ARTs ϵ = 0.99.
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Endemic equilibrium
In this subsection, the numerical investigation of endemic equilibrium for the Eq. (38) is discussed. Based on 
the Eq. (38), Fig. 9 shows the positive endemic equilibrium of the model (14). It is observed that, for R0 < 1 
there exist one endemic equilibrium. For R0 > 1, there is an emergence of two new equilibrium, shows the 
complexity of the model. This is a behavior similar to the backward bifurcation. It is evident that, R0 is not suffice 
enough to determine the disease progression. For analysis this section utilizes the parameters in the Table 3. 
From the sensitive analysis, the other two parameters saturated constant a and the immune response production 
rate c. The number of endemic equilibriums for both of these parameters are discussed in Table 5.

Fig. 8.  The top figures shows phase portrait and time series of lower stable equilibrium immune-free 
equilibrium for a = 0.1 and bottom figures shows the phase portrait and time series of Hopf bifurcation in the 
immune-free equilibrium for a = 0.001.

 

Equilibrium type Parameter Equilibrium Eigenvalues Behavior

Immune-free a = 0.001 (3.7038; 0.1778; 0) (0.0778; ±0.2191i), H1 > 0 Unstable

Immune-free a = 0.1

(3; 0.1; 0) (0.0003; ±0.0022i), H1 > 0 Unstable

(1, 623; 76; 0) (0.7627; −0.0202; 0.0002), H1 > 0

(70, 432; 504; 0) (5.0343; −0.0200; −0.0004), H1 > 0

Immune-free c = 0.001

(4; 0.1; 0) (-0.0982;-0.0032 ± 0.2184i), H1 < 0 Monostable

(1, 203; 57; 0) (0.4690; −2.0172; 0.0226), H1 > 0

(72, 217; 442; 0) (4.3156; −2.0030; −0.0388), H1 > 0

Immune-free c = 0.1

(4; 0.1; 0) (0.08; ±0.22i), H1 > 0 Unstable

(1, 203; 57; 0) (56.80; +0.0000i ± 02.02), H1 > 0
(72, 217; 442; 0) (441.46; −2; −0.04), H1 > 0

Table 4.  Eigenvalue analysis for immune-free equilibrium concerning H1 := cI∗
1 − bη.

 

Parameters r K p δ dT c1 β ϵ a c m η k b

Values 0.058 105 2,000 1 0.01 23 (0, 1) [0, 1] (0, 1) (0, 1) 0.1 0.1 0.1 (0, 2)

Table 3.  Parameter values for bifurcation analysis.
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For R0 < 1, there exist atleast one equilibrium point for the parameters, and for R0 > 2 there exist three 
equilibrium. Also, for the parameter c there exist one or three positive endemic equilibrium. Figure 10 shows the 
phase portrait and the time series of the endemic equilibrium. Table 6 shows the eigenvalue analysis of endemic 
equilibrium for the saturated constant a and the immune production rate c.

In Figs. 11, 12, 13, and 14 shows the oscillatory behavior in the HIV-1 infection model for the parameters 
intrinsic growth rate r, saturated constant a, therapy ϵ and the transmission β. Increase in CD4+ population, 
the efficacy of the therapy, and the inhibition of the transmission at a larger rate, then the oscillations reduced. 
Similarly, increases in the transmission of large scale show an oscillation in the cell populations. Figure 15a and 
b, shows two parameters analysis of HIV-1 model with ϵ and β, in between values are the state space behaviors 
of the model (14). Figure 16a, and b shows the two parametric bifurcations for the parameters r and a. Whereas, 
the green regions are the stable region and the red regions are the unstable regions. Also, the time series for the 
stable and periodic regions are shown.

Backward bifurcation and its types
In this section, the backward bifurcation and its types are discussed for the saturated constant a. Figure 17a, 
shows that the immune-free equilibrium especially the target cells and the infected cells undergoes backward 
bifurcation of type III, that is two unstable equilibria arise from the saddle-node bifurcation and there is an 
oscillation in the population when the saturated constant a nearer to 0.01 and c = 0.1. This behavior is classified 
as type III backward bifurcation. Similarly, Fig. 17b shows the type III backward bifurcation for the infected 
cell population of the immune-free equilibrium. Figure 18a and b shows the backward bifurcation of type II for 
the uninfected cell population and the infected cell population of the immune-free equilibrium for c = 0.01. 
In these figures the red line corresponds to the unstable equilibrium and the blue line is the stable equilibrium. 
The lower equilibrium is stable and the higher equilibrium is unstable, an intermediate unstable equilibrium 
separates the both lower and upper equilibrium, this type of behavior is classified as the type II backward 
bifurcation. The two unstable equilibrium branches from an saddle-node bifurcation, this behaviors is called as 
backward bifurcation of type II.

Forward bifurcation for various parameters
This section briefly discusses the forward bifurcation of the model (14), with respect to significant parameters 
immune production rate c and saturated constant a. The model undergoes the forward bifurcation for the 
parameter c in the target, infection, and effector cell population. Also, the immune-free equilibrium switches its 

R0  range R0  value

a ∈ (0, 0.1) a ∈ (0.1, 0.5) a ∈ (0.5, 2) c ∈ (0, 0.1) c ∈ (0.1, 0.5) c ∈ (0.5, 3)

c = 0.1 c = 0.1 c = 0.1 a = 0.1 a = 0.1 a = 0.1
Number of endemic equilibriums

 R0 < 1 R0 = 0.9 1 1 1 1 1 3

 R0 = 1 R0 = 1 1 1 1 1 1 3

 1 < R0 < 2 R0 = 1.5 1 1 1 1 3 3

 R0 > 2 R0 = 2.5 3 3 3 1 3 3

Table 5.  Number of equilibriums with respect to R0, a and c.

 

Fig. 9.  The existence of endemic equilibria with respect to the R0 and the model parameters 
r = 0.0141, K = 105, β = 0.007,ϵ = 0.62,a = 0.1, c = 0.1.
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stability from stable to unstable equilibrium point. During the switching of the stability, there is an emergence 
of the stable endemic equilibrium. Both the lower and the upper endemic equilibrium undergo the forward 
bifurcation by the emergence of a new endemic equilibrium and there is a switch in the stability. In the higher 
equilibrium, the emergence of endemic equilibrium collides with an unstable endemic equilibrium destroying 
and resulting in the saddle-node bifurcation. Also, there is an occurrence of bistability in the endemic equilibrium 
for more details refer to Fig. 19a–c.

Figure 20a–c shows the forward bifurcation of the higher and lower equilibrium, this kind of behavior is 
called as hysteresis, where the future state depends on the current state or the present state depends on the past. 
In Fig. 21a–c the bistability of the endemic equilibrium for the target, infected, and effector cell population is 
studied. In the figures for a ranges (0.0001, 0.87), the equilibrium undergoes the bistability in nature. These 
behaviors are observed in certain patients even after stopping the therapy certain patients can maintain the 
viral load below the threshold level of less than 50 mL/copies. In the theoretical aspect, this is called a lower 
equilibrium. There is a slight change in parameter value, system remains in a lower equilibrium. Increasing 
the parameter value suddenly the system settles in a higher stable equilibrium, which shows an increase in the 
infected cell population.

Figure 22a–c show that bistability occurs by both the immune-free equilibrium and the endemic equilibrium. 
One can see that the system has a lower stable immune-free equilibrium and a higher stable endemic equilibrium, 
which are separated by the unstable immune and endemic equilibrium.

Bistability analysis for various parameters
Figure 23a, and b shows the bistability of the immune-free equilibrium for the intrinsic growth rate, in the 
target cell population as the intrinsic growth increases then the target cell population remains in a lower stable 
equilibrium, then a sudden increase in the population from the lower equilibrium to higher equilibrium. Similarly 

Equilibrium Parameter Equilibrium Eigenvalues Behavior

Endemic a = 0.001 (4.0305; 0.1778; 0.8819) (−0.0759, −0.0058 ± 0.2452i) Stable

Endemic a = 0.1
(4; 0.1; 1)
(4, 485; 59; 24)
(55, 525; 171; 41)

(−0.0761, −0.0093 ± 0.2447i)
(0.0168, −6.8329, −0.2331)
(−0.0258, −10.2283, −0.2396)

Bistable

Endemic c = 0.001
(1, 474; 57; 2)
(69, 234; 344; 6)

(0.0214, −2.4404, −0.1734)
(−0.0366, −3.1402, −0.2134) Monostable

Endemic c = 0.1
(4; 0.1; 1)
(0.4485; 59; 24)
(55, 525; 171; 41)

(−0.0761, −0.0093 ± 0.2447i)
(0.0168, −6.8329, −0.2331)
(−0.0258, −10.2283, −0.2396)

Bistable

Table 6.  Endemic equilibrium: eigenvalue analysis.

 

Fig. 10.  Endemic equilibrium phase portrait and time series for uninfected, infected, and effector cells 
population, where stable occurs at ϵ = 0.9, and oscillation occurs at ϵ = 0.6 for the initial condition 
T (0) = 107, I(0) = 1, E(0) = 1..
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in the infected cell population, the infected cell exhibits bistability as the target cell population increases there is 
a possibility of a large number of the cells getting infected resulting in a higher infected equilibrium. Figure 23c 
shows the bistability regions for the parameters r and β. The black color regions are the bistable region and the 
remaining regions include the monostable, oscillatory, and unstable regions.

Figure 24 shows various distributions and system state analysis for the parameters r and β. In the Fig. 
24a the bistability regions are shown, the black regions are the bistable regions and the yellow region is the 
monostable region. Figure 24b gives the infected cell distribution, the shaded region is suppressed or infected 
cell populations. Figure 24c is the immune response distribution, the pink region indicates the strong immune 
response, the effective immune control towards the infection. The purple is the moderate region, where the 
immune control is partial. The blue region shows the immune exhaustion or immune failure at this stage has the 
higher risk of AIDS. Figure 24d and e are the infection and immune ratio for the model. In the infection ratio the 
blue region has lower infection rates, the infection is suppressed and the yellow region has higher transmission 
of the infection occurs. In the immune ratio, the maroon color region shows higher immune activity, in the dark 

Fig. 12.  (a) Existence of Hopf bifurcation in the log scaled infected cell population I(t) for the therapy ϵ. (b) 
Time series forecasting of I(t) with respect to ARTs(ϵ). The cell population dynamics can be controlled for the 
therapy efficacy, if the therapy has low efficacy the cell populations are in oscillations and for higher efficacy of 
therapy there is a smooth non oscillation behavior in the cell population.

 

Fig. 11.  (a) shows the existence of Hopf bifurcation behavior in the log scaled infected cell population for 
increasing and exceeding the threshold of intrinsic growth rate r. (b) correspondingly illustrates the time series 
of cell populations for different values of r.
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blue region immune suppression occurs. Figure 24f the green region is the target zone for treatment and the 
successful ARTs. The red region is the chronic region and higher risk of disease progression.

Figure 25, the bistability for the different initial conditions is discussed. The red dot is the stable equilibrium 
and the blue dot is the unstable equilibrium. For various initial conditions of the cell population, the system 
states approach the lower and higher stable equilibrium.

There are some limitation in the HIV-1 model. HIV-1 ODE model follows the homogeneity in the population 
dynamics, ignores the spatial heterogeneity. The model simplify the effect of therapy, the therapy can be time-
variant, considering the therapy ranges over time gives the better understanding of the model. Though the HIV-
1 model fitted with data there are certain unusual behaviors in the data of certain patients, they were ignored 
because it is challenging to conclude biologically.

There certain complexities in the structured of the differential model since the model is highly non-linear 
finding analytical equilibrium is challenging. Hence, this study utilizes the numerical approach to perform steady 
state analysis. Due to high nonlinearity, finding the solution of the model and perform bifurcation analysis for 
the HIV-1 model are challenging to analyze. Also, the study performs the data fitting for the data availed from 
the clinical trials, fitting is time consuming. Existence of multiple states requires careful validation in numerical 
simulations to analyze the stability, bifurcation and the bistability phenomena in HIV-1 infection.

Fig. 14.  (a) Hopf bifurcation in the log scaled infected cell population for the parameter a. (b) Time series of 
the infected cell population for different ranges of saturated constant a.

 

Fig. 13.  (a) Hopf bifurcation in the log scaled infected cell population for the transmission rate β. (b) Time 
series of the infected cell population for transmission rate β for small transmission rate less oscillations, and for 
the larger transmission rate there is more oscillations in the cell populations.
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Conclusion
The analysis of the HIV-1 infection model, including compartments such as uninfected cells, infected cells, 
viruses, and effector cell populations, along with dynamics such as growth, transmission, death rates, and 
immune production rate are performed. The effect of non-monotone incidence rate and the immune response 
productions has been studied. To ensure the community spread, R0 for the model is derived. The numerical 
investigation shows the existence of the endemic equilibrium for R0 < 1 indicates the complex behavior of the 
HIV-1 model. Hence, the direction of the study focuses on the parameter involving not only R0 but also the 
immune response production rate c and the saturated constant a which inhibits the transmission and the therapy. 
Stability analysis has been focuses concerning three cases such as disease-free, immune-free, and endemic 
equilibrium utilizing the Routh-Hurwitz criterion. Through sensitivity analysis, the significant parameters that 
affect the dynamics of HIV-1 infection have been identified. This study workout both theoretical results and the 
experimental validation in terms of data-driven modeling approach.

Theoretically, qualitative changes such as saddle-node, trans-critical, and Hopf bifurcation conditions 
have been determined. The study finds the bistability nature in the dynamics of the HIV-1 model for various 
significant parameters associated with the immune-free and endemic equilibriums. There is a certain behavior 
in the viral load of patients, for some patients, the viral population remains below the threshold level after 
the therapy is stopped due to the strong immune responses towards the viruses. This behavior is considered 
a bistable behavior in the dynamics of HIV-1, the viral population remains in the lower stable steady state for 

Fig. 16.  (a) The dynamics of the model with intrinsic growth rate r and the saturated rate a, the green regions 
shows the model exhibits stable behaviors the red regions illustrates quasi-periodic and the yellow regions 
stands for periodic behaviors. (b) Time series for different ranges of r and a.

 

Fig. 15.  (a) The dynamics of the model for the therapy ϵ and the transmission rate β, the green region 
explains the model may exhibits stable behavior but the red region shows quasi-periodic state, that is the 
behavior cannot be predicted for the larger range. (b) Time series for these regions for the different ranges of 
transmission β and therapy ϵ. .
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Fig. 19.  Bistability of both immune-free and endemic equilibrium with respect to c.

 

Fig. 18.  (a) and (b) Type II backward bifurcation for the immune-free equilibrium r = 0.058. 

 

Fig. 17.  (a) The immune-free equilibrium exhibits backward bifurcation type III for the parameter ranges 
r = 0.058, K = 105, β = 0.9, ϵ = 0.9, a ∈ (0, 0.9), c = 0.1. (b) Backward bifurcation type III for the 
infected cell population of immune-free equilibrium.
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a period. The theoretical results have been validated through numerical investigations to find the equilibrium 
points, perform the stability analysis, and the qualitative changes in the dynamics of the HIV-1 model. Bistability 
behavior for the various significant parameters identified using sensitive analysis is discussed in detail such as 
types of backward bifurcation and forward bifurcation, and the stability switches between the equilibrium for 
the immune responses, intrinsic growth rates, and saturated constants. The bistability behavior is observed in the 
dynamics, and the biological aspects of the bistability behavior with the validation of the data are investigated. 
Moreover, the bistability of the system trajectories for various stages of infection has been numerically explored.

In the near future, the model can be extended by considering more biological aspects such as latency in 
the infection, drug resistance towards the therapy, and immune impairment. The clinical data often contains 
noises hence the study can be extended to a stochastic model. The infected cell dynamics in HIV-1 is a long 

Fig. 22.  Bistability of both immune-free and endemic equilibrium.

 

Fig. 21.  Endemic equilibrium with respect to the parameters K = 100000, β = 0.9, ϵ = 0.9, a ∈ (0, 0.9), 
dT = 0.01, δ = 1, m = 0.1, η = 0.1, k = 0.1, b = 0.1, c = 0.1.

 

Fig. 20.  (a) Forward bifurcation for the parameters range 
r = 0.058, K = 105, β = 0.9, ϵ = 0.7, a = 0.1, dT = 0.01, δ = 1, m = 0.1, η = 0.1,k = 0.1, b = 0.1
,c ∈ (0, 0.001). (b) Forward bifurcation from the lower immune equilibrium and the stable endemic 
equilibrium arises. (c) The forward bifurcation with respect to c at β = 0.0015.
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process, hence it takes years to achieve the AIDS stage almost 8-10 years, the infected cell population varies also 
concerning age and time, therefore the HIV-1 model can be extended to an age-structured model.

Fig. 24.  The HIV-1 model distributions and system state analysis.

 

Fig. 23.  (a) The time-series plot shows the bistability of the target cell population for the intrinsic growth rate 
and the initial conditions T (0) = 1000, I(0) = 100, E(0) = 0. (b) The time-series plot shows the bistability 
of the infected cell population for the intrinsic growth rate and the initial conditions T (0) = 1000, I(0) = 100
, E(0) = 0. (c) Bistability for the intrinsic growth rate r and transmission rate β. The black colored regions are 
the bistable regions and the yellow regions include the monostable and oscillatory regions.
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Data availability
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