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Cyber-physical system (CPS) incorporates several computing resources, networking units, 
interconnected physical processes, and monitoring the development and application of the computing 
system. Interconnection between the cyber and physical worlds initiates attacks on security problems, 
particularly with the enhancing complications of transmission networks. Despite the efforts to 
combat these problems, analyzing and detecting cyber-physical attacks from the complex CPS is 
challenging. Machine learning (ML)-researcher workers implemented based techniques to examine 
cyber-physical security systems. A competent network intrusion detection system (IDS) is essential 
to avoid these attacks. Generally, IDS uses ML techniques to classify attacks. However, the features 
used for classification are not frequently appropriate or adequate. Moreover, the number of intrusions 
is much lower than that of non-intrusions. This research presents an African Buffalo Optimizer 
Algorithm with a Deep Learning Intrusion Detection (ABOADL-IDS) model in a CPS environment. 
The main intention of the ABOADL-IDS model is to utilize the FS with an optimal DL approach for the 
intrusion recognition and identification procedure. Initially, the ABOADL-IDS model performs the data 
normalization process. Furthermore, the ABOADL-IDS model utilizes the ABO technique for feature 
selection. Moreover, the stacked deep belief network (SDBN) technique is employed for intrusion 
detection and identification. To improve the SDBN technique solution, the seagull optimization (SGO) 
technique is implemented for the hyperparameter selection. The assessment of the ABOADL-IDS 
technique is accomplished under NSLKDD2015 and CICIDS2015 datasets. The performance validation 
of the ABOADL-IDS technique illustrated a superior accuracy value of 99.28% over existing models 
concerning various measures.
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With the assimilations of physical processes and computing resources, a Cyber-physical system (CPS) performs 
computation and communication via interconnected devices, allowing remote control and access to machines, 
devices, and systems indispensable in several industrial fields1. Nonetheless, the comprehensive integration of 
CPS comes with different security risks, which may cause severe damage to the physical object and harm the 
users who rely entirely on them2. The security mechanism aims to defend CPS devices from exterior attacks 
that depend on antivirus, firewalls, and encryption methods. However, this mechanism could not avoid all 
these attacks, particularly allowing the attacker to develop its approaches3 continually. Intrusion Detection 
Systems (IDS) are essential for identifying malicious behaviours and protecting CPS from security attacks in 
these contexts. Specific embedded domain device software that allows adversaries to perform arbitrary code and 
vulnerabilities are exposed by libraries even though the emergence of real-time software for CPS is stringent4. 
This code injection attack has been standard in the general-purpose domain for several years. As more embedded 
applications, especially CPS applications, utilize networks, they become more vulnerable to these attacks5.
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Furthermore, most IDSs exploit machine learning (ML) models for attack identification. This necessitates 
extracting better features for various intrusions used in supervised learning for attack detection. However, appropriate 
and sufficient traffic data is not available often, which enables proper feature learning6. Compared to the number of 
non-intrusions, the number of intrusions is also much lesser, resulting in more difficulties in training7. IDS employs 
ML techniques for detecting malicious behaviours using training datasets8. Still, many researchers exploit datasets 
taken from the internet protocol. This dataset is not suited for intrusion detection in CPSs because they lack traffic 
from CPS protocol and have a slight relationship with the present equipment9. The classical offline ML technique 
does not have its models often updated while the behaviour shift occurs. Currently, it is necessary to categorize real-
time attacks in vast streams of information without compromising hardware resources, like CPU and memory, with 
the vulnerability to take data processing to the network node and the enhancing development of Big Data systems 
generating an ample quantity of heterogeneous data10. Hence, classical offline ML methods might not be appropriate 
for processing events from a massive flow of information.

This research presents an African Buffalo Optimizer Algorithm with a Deep Learning Intrusion Detection 
(ABOADL-IDS) model in a CPS environment. The main intention of the ABOADL-IDS model is to utilize the FS 
with an optimal DL approach for the intrusion recognition and identification procedure. Initially, the ABOADL-IDS 
model performs the data normalization process. Furthermore, the ABOADL-IDS model utilizes the ABO technique 
for feature selection. Moreover, the stacked deep belief network (SDBN) technique is employed for intrusion 
detection and identification. To improve the SDBN technique solution, the seagull optimization (SGO) technique 
is implemented for the hyperparameter selection. The assessment of the ABOADL-IDS technique is accomplished 
under NSLKDD2015 and CICIDS2015 datasets. The key contribution of the ABOADL-IDS technique is listed below.

•	 The ABOADL-IDS model utilizes min-max scaling to normalize the data, ensuring all features fall within a 
standardized range. This preprocessing step assists in improving the model’s performance by eliminating bias 
from features with different scales. It also enables more effective learning, particularly for models sensitive to 
input range.

•	 The ABO-based feature selection identifies the most relevant features, improving the technique’s ability to de-
tect intrusions accurately. Concentrating on key features mitigates the data’s dimensionality, resulting in faster 
computation and less resource consumption. This enhances the efficiency and effectiveness of the intrusion 
detection process.

•	 The SDBN model is utilized for intrusion detection. Its DL technique enables the model to learn complex data 
patterns, effectively detecting advanced and previously unseen attacks. The SDBN technique’s hierarchical 
feature learning improves the accuracy and robustness of the detection process.

•	 SGO-based tuning fine-tunes the model’s parameters, improving its overall performance. This methodology 
optimizes the balance between exploration and exploitation, allowing for more precise parameter selection. 
As a result, the model attains improved generalization and robustness across diverse datasets.

•	 The novelty of the ABOADL-IDS model is in seamlessly incorporating advanced techniques like ABO for 
feature selection, SDBN for DL-based intrusion detection, and SGO for parameter tuning. This integration 
creates a cohesive framework that improves detection accuracy and minimizes computational complexity. By 
employing these complementary methods, the model attains enhanced performance in real-time intrusion 
detection with reduced resource consumption.

Related works
In11, an Explainable AI-Enabled Intrusion Recognition method for protecting CPS (XAIID-SCPS) was designed. 
A Hybrid Enhanced GSO (HEGSO) technique has been implemented for the FS method. The Improved ENN 
(IENN) technique could be employed to determine the optimum parameters for IDS. Althobaiti et al.12 introduced 
a new intellectual computation-based IDS method. This method includes preprocessing to remove the noise data. 
Later, this technique employs a binary bacterial foraging optimizer (BBFO) based-FS approach for optimally 
choosing feature subsets. Also, the GRU approach was implemented to detect intrusions. Lastly, the Nesterov-
accelerated Adaptive Moment Estimation (NADAM) technique must be employed for the hyperparameter 
optimizer of the GRU technique. Mittal et al.13 suggested a novel clustering technique for intrusion detection. 
This approach uses a new gravitational search algorithm (GSA) variant to attain optimum clusters. Kbest was 
changed to a proportionally reduced process in this developed variant with logistic-mapping-based chaotic 
behaviours. In14, a privacy-conserving model named PC-IDS was designed to have two main modules. Initially, 
a data preprocessing module was developed for cleaning and converting real data into various layouts, achieving 
privacy conservation; later, an IDS was introduced utilizing PSO-based probabilities of neural networks. Kukkala 
et al.15 projected a new DL-based IDS named INDRA that implements a GRU-based recurrent-AE network 
to identify different cyberattacks in automatic CPSs. The authors16 suggested innovative AI-aided multimodal 
fusion-based IDS (AIMMF-IDS). A weighted voting-based ensemble framework combined methods through 
RNN, deep belief network (DBN), and BiLSTM. In17, a DL-based IDS was implemented to identify cyberattacks 
on CPS using a multimodal learning method. This technique reports two IDS methods depending on DL: RNN 
and CNN. In the first IDS, Gramian Angular Field (GAF) was implemented to transform CPS time-series data 
into images. The second IDS employed RNN with a multimodal attention method to train the attack detector.

Safavat and Rawat18 recommended secure federated learning employing an Interpolated private and public 
keys-ROTation (IPP-ROT)-based ECC and providing Buff; FL using Buffered Asynchronous, Aggregation based 
Log Sigmoid-MLP (FB-FL-BAA-LS-MLP) approaches. Firstly, the vehicles could be listed with a cloud server by 
producing cipher text and keys with the help of IPP-ROT and ECC techniques. Shi et al.19 develop an effective 
framework for analyzing recurrent spontaneous abortion (RSA) in patients with thyroid disorders, using an 
integration of the Joint Self-Adaptive Sime Mould Algorithm (JASMA) and Support Vector Machine (SVM) to 
improve global search, optimization, and convergence for improved diagnosis and treatment. Ji et al.20 propose 
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a hybrid intrusion detection approach for CPSs, incorporating AdaBoost and random forest (RF) methods. It 
chooses optimal features based on their significance scores and retrains the base models for improved attack 
detection. Arumugam et al.21 develop an intrusion detection system for CPS by extracting statistical and flow-
based features, choosing optimal features using Improved LDA, and applying a hybrid CNN-Bi-GRU classifier 
optimized by the BMEAOA approach for improved detection performance. Chen et al.22 propose an improved 
Firefly Algorithm integrated with the Extremal Optimization (IFA-EO) approach. It introduces three strategies: a 
hybrid attraction model, adaptive step size, and EO integration for improved local search, balancing exploration 
and exploitation to improve performance. Abinash et al.23 propose HGCNN-LSTM, a DL-based attack detection 
model for ICS networks, using hypergraphs to optimize CNN-LSTM thresholds and enhance the detection of 
data injection, DoS, and reconnaissance attacks.

Feng et al.24 propose the dConvLSTM-DCN framework, incorporating dual ConvLSTM and Dense Convolutional 
Network to predict VPS availability short-term (within 30 min) and long-term (over 30 min). It effectively captures temporal 
and spatial correlations and utilizes a two-layer linear network for feature extraction, with direct and iterative methods for 
long-term predictions. Al Mazroa et al.25 propose an automated Cyberattack Detection using Binary Metaheuristics with DL 
(ACAD-BMDL) method for automated cyberattack detection in CPS environments, using Z-score normalization, binary 
grey wolf optimizer (BGWO) for feature selection, Enhanced Elman Spike Neural Network (EESNN) for attack detection, 
and Archimedes Optimization Algorithm (AOA) for hyperparameter optimization. Rahim and Manoharan26 propose a 
framework for CPS intrusion detection and mitigation utilizing Fractional Artificial Protozoa Optimization (FAPO)-enabled 
Spiking VGG-16. It involves normalizing input logs with Quantile Normalization, selecting features via Skill Optimization 
Algorithm (SOA), detecting intrusions with Spiking VGG-16, and classifying attacks with FAPO for mitigation. Chen et 
al.27 present a hybrid 3DMA scheme for multi-user multiple-input multiple-output visible light communication (MU-
MIMO-VLC) approaches, optimizing 3D resources to improve performance. It uses user grouping, frequency pairing, 
power multiplexing with superposition coding, and an optimal power allocation strategy, achieving higher sum rates than 
benchmark schemes. Markkandeyan et al.28 propose a hybrid DL strategy for detecting malware in IoT environments, 
utilizing an Adaptive TensorFlow DNN with Improved Particle Swarm Optimization (IPSO) for SC duplication detection 
and E-LSTM for identifying suspicious actions.

Despite the improvements in intrusion detection and mitigation systems for CPS, several limitations 
and research gaps remain. Many existing methods encounter challenges in handling high-dimensional data, 
resulting in issues with feature selection and computational efficiency. Furthermore, there is a lack of scalability 
in several techniques when applied to large-scale, real-time CPS environments. Many approaches also face 
difficulty generalizing across diverse attack scenarios, limiting their efficiency in dynamic settings. Furthermore, 
while improving detection accuracy, optimization techniques often overlook the trade-off between exploration 
and exploitation. Lastly, while hybrid models exhibit potential, their complexity and requirement for extensive 
training data remain significant barriers to their practical deployment. Therefore, more efficient, scalable, and 
adaptable solutions are required to address these gaps in current research.

The proposed model
This manuscript proposes automatic intrusion recognition using the ABOADL-IDS method in the CPS platform. 
The main intention of the ABOADL-IDS technique is to utilize the FS with an optimal DL approach for the intrusion 

Fig. 1.  Workflow of ABOADL-IDS technique.
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recognition and identification procedure. It comprises data normalization, ABO-based FS, SGO-based hyperparameter 
tuning, and SDBN-based intrusion recognition. Figure 1 represents the workflow of the ABOADL-IDS technique.

Data normalization
Data normalization using a min-max scaling approach is mainly utilized29. This model is chosen due to its 
simplicity and effectiveness in transforming data into a standard range, typically between 0 and 1. This method 
ensures that all features contribute equally to the model, preventing features with larger numerical ranges from 
dominating the learning process. Unlike other normalization techniques, such as Z-score normalization, Min-
Max scaling preserves the original distribution of the data and averts distortion. It is particularly advantageous 
when the model requires a specific input range, such as in neural networks, where activation functions like 
sigmoid or tanh work best within a bounded range. Furthermore, Min-Max scaling is computationally efficient 
and easy to implement, making it a preferred choice for preprocessing data in many ML tasks.

MinMax Scaler shrinks the data from the provided range, generally from zero to one. It converts data 
by scaling features to the offered range. It scales the values to a specific range without altering the original 
distributions’ shape. This equation of the Min-Max normalizer method X−norm is represented in Eq. (1).

	
X_norm = (X − X_min )

X_max − X_min
� (1)

Fig. 2.  Steps involved in the ABO model.
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In this case, the normalizer computation is carried out only for unknown validation, training, and testing sets.

Feature selection using ABO model
To choose a feature, the ABOADL-IDS technique designs a new ABO technique for FS30. This model is preferred 
due to its unique capability to explore the solution space and balance exploration and exploitation effectually. 
Inspired by the herd behaviour of African buffaloes, the ABO model utilizes a cooperative search mechanism 
that replicates the way buffaloes work together to find optimal grazing areas. This behaviour allows the model to 
avert local optima and improves the accuracy of feature selection. Compared to other optimization techniques, 
the ABO model is more robust in handling complex, high-dimensional datasets and is less prone to getting 
stuck in suboptimal solutions. Its strong global search capability and fast convergence make it an ideal choice 
for feature selection in ML tasks, ensuring that only the most relevant features are chosen to improve model 
performance. Figure 2 illustrates the ABO model.

Fig. 3.  Architecture of DBN.
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The African buffalo’s behaviour from the vast forests and grasslands of Africa assisted as a simulation for the 
ABO technique. While African buffaloes are consistently identified as exceptionally planned and remarkably 
effective herbivores, this meta-heuristic system tries to influence the natural intellect of buffaloes to generate 
higher-quality meta-heuristics. During this method, once the position (solution) of all the buffalo is, an 
optimum preceding position of that buffalo can continuously be comprised in the computation for simulating 
the remarkable memory capacity of these animals. Additionally, it is transferred efficiently by its vocalizations; 
mainly, it is distinctive “was” calls that assist various purposes like signalling danger or determining an optimum 
food source. This performance can be established in the method, such that the computation of novel solutions of 
all the buffaloes also assumes the position of the existing buffalo, which is near other buffaloes of the group are 
also affected. By executing this earlier defined performance of constantly upgrading the solution of all the buffalo 
is dependent upon their historical optimum solution and existing solution of the entire optimum buffalo from 
the herd, this method ABO effectively resolves the difficulty of early convergence or stagnation in the optimizer 
method, permitting for a wide-ranging exploration of searching space.

Algorithm 1.  Pseudocode of ABO

The primary formula in the ABO method defines the parameter mk that affects the novel solution of 
separate bison (solution) comparative to its old optimum solution (separate’s optimum bison) and comparative 
to existing best solution (the global optimum position) as:
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	 mk = mk + lp1* (bgmax − Pj) + lp2* (P Localmax,j − Pj) ,� (2)

In this case, Pj  signifies the existing solution of buffalos j, bgax denotes the global optimum position, and 
P Localmax,j  represents the old optimum position of buffalos j. The parameter mk determines the novel 
solution Pj  of buffalos j. The parameters lp1 and lp2 define if the bison follows its optimum solution or 
the solution of optimum global position. During all the iterations of the ABO approach, the global optimum 

Fig. 4.  Flowchart of the SGO technique.
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position and old optimum position of all the bison can also be upgraded once there is a alter. Afterwards, the 
procedure is repeated, and the condition for the end of the method is met.

The allocated FF evaluates the quality solution of the ABO-based FS technique31. The function depends 
primarily on the regression or classification error rate, and the feature is chosen from the input data. The fittest 
solution can rely on a series of features that provide minimal features with a minimal classifier error rate. The 
subsequent formula is used to assess the solutions’ quality.

	
Fn = αErr (O) + β

|s|
|f | � (3)

In Eq. (18), Err (O) is the optimizer error rate, s denotes the selected set of features, and f  shows the overall 
amount of existing features. The α ∈ [0,1] , β = 1 − h1 value is accountable for the classifier errors and the 
quantity of nominated features. Here, h1 depicts a parameter related to the classifier’s performance or a specific 
aspect of the feature selection process, and its value is used to adjust the weight parameter β , affecting the 
overall model optimization.

Intrusion detection using SDBN model
The SDBN technique is employed to detect intrusion32. This model is chosen because it can automatically 
learn hierarchical feature representations from raw data. By stacking multiple Restricted Boltzmann Machines 
(RBMs) layers, SDBN captures intrinsic patterns and correlations within the data, which is significant for 
detecting advanced intrusions. Unlike conventional ML techniques requiring manual feature extraction, SDBN 
learns high-level abstractions from the raw input, improving its ability to detect unknown or zero-day attacks. 
Furthermore, the DL structure of SDBN allows for improved generalization, making it highly effectual on diverse 
and large-scale datasets. Compared to other models, SDBN’s multi-layered architecture improves its robustness 
and performance in intrusion detection tasks by efficiently processing high-dimensional data and distinguishing 
subtle malicious behaviour patterns.

A DBN is a DNN stacked with the multi-layer infrastructure of RBMs. The RBM architecture comprises 
hidden and visible layers with hidden neurons, respectively. Visible neurons are FC with hidden neurons; no 
intra-layer from the VL or HL exists. There exist two major learning models: supervised and unsupervised 
learning. The RBM and backpropagation network (BPN) implement unsupervised and supervised learning. 
After implementing the RBM operation, the hidden neuron is conditionally independent once the visible state 
is given. Therefore, once the input vector is given, it rapidly takes unbiased samples in the posterior distribution. 
T﻿he two primary functions represent these models— the probability distribution and energy functions.

	
E (v, h; θ) = −

n∑
i=1

m∑
j=1

vihjwij −
n∑

i=1

viai −
m∑

j=1

hjbj � (4)

In Eq. (4), E shows the energy with configuration on v and h visible and hidden neurons, vi represents the 
binary state of ith visible neurons, hj  signifies the binary state of jth hidden neurons, and wij  shows the 
weight between ith and jth neurons, for the parameter θ  of {W, b, a} and vi, hj ∈ {0,1}. Now, W  refers 
to the symmetric weight with n × m dimension , a designates the bias of visible neuron, and b denotes the bias 
of hidden neuron. The energy defines the probability of configuration.

	

p (vi, hj) = e−E(vi,hj)
∑

vi,hj
e−E(vi,hj) � (5)

The denominator in Eq. (5) defines the partition function and is attained by adding each pair of hidden and 
visible vectors. According to the function of probability distribution, the conditional probability distribution 
function is resulting and given below:

	
hj = sigmoid

(∑
i

viWij + bj

)
� (6)

	
vi = sigmoid

(∑
j

hjW T
ij + ai

)
� (7)

Here, hj  indicates the probability distribution once vi is provided, and vi shows the probability distribution 
once hj  is provided.

DBN exploits pre-training, fine-tuning, and prediction. Pre-training and fine-tuning allow this method to 
forecast a correct outcome. During the pre-training, a series of primary parameters are attained in the input 
vector. SDBN is a kind of ANN design that integrates several layers of RBMs to procedure a DL approach. 
During the stacked DBN, several RBMs are trained greedy layer-wise. This suggests that you begin with the 
primary RBM and train it to capture features from the data. Afterwards, the outcome of this RBM is employed 
as input for the next RBM. This procedure is frequent for several layers as desired. Figure 3 signifies the structure 
of DBN.
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Fig. 5.  NSLKDD2015 dataset (a, b) Confusion matrices, (c, d) PR and ROC curves.

 

NSLKDD 2015 dataset

Classes No. of samples

Normal 67,343

Anomaly 58,630

Total no. of samples 125,973

Table 1.  Details of the NSLKDD2015 dataset.
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Parameter tuning using the SGO model
Finally, the SGO model optimally chooses the parameter linked to the SDBN model33. This model is chosen 
due to its unique bio-inspired search mechanism, which replicates the intelligent foraging behaviour of seagulls. 
This model effectually balances exploration and exploitation, allowing it to search a vast solution space while 
converging towards the optimal solution. Compared to other optimization techniques, SGO is less likely to 
get trapped in local optima, making it more robust in finding the best parameter set. The adaptability of SGO 
to various optimization problems, comprising parameter tuning, improves its flexibility and effectiveness. 
Additionally, SGO needs fewer computational resources and iterations than some conventional methods, 
improving efficiency. Its ability to work well on complex, high-dimensional parameter spaces makes it an ideal 
choice for fine-tuning models in ML tasks. Figure 4 specifies the flow chart of the SGO technique.

Fig. 6.  Average of ABOADL-IDS technique on the NSLKDD2015 dataset.

 

NSLKDD 2015 dataset

Classes Accuy P recn Recal Fscore AUCscore

70% of TRAS

 Normal 99.10 99.54 99.10 99.32 99.28

 Anomaly 99.47 98.97 99.47 99.22 99.28

Average 99.28 99.25 99.28 99.27 99.28

30% of TESS

 Normal 99.12 99.50 99.12 99.31 99.27

 Anomaly 99.43 99.00 99.43 99.21 99.27

Average 99.27 99.25 99.27 99.26 99.27

Table 2.  Detection outcome of ABOADL-IDS technique on NSLKDD2015 dataset.
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The SGO approach is a recent metaheuristic intelligent approach based on seagulls’ attacking and migratory 
strategies. Its underlying principle is to search for the global optima solution by relating local and global search 
development of different population individuals. At the same time, attack is a local optimization, and migration 
is a global optimization. Over other optimization techniques, the SGO gives the succeeding two advantages:

	(1)	� The structure of the algorithm is open, and there aren’t multiple parameters to organize, so it is very simple 
to resolve different types of problems;

	(2)	� A global optimizer algorithm called SGO has increased proficiency for global search and local exploitation 
and deals with the problem of substantial dimension.

During the flight, it affects the local development capacity of the SGO; however, attack behaviour is the seagull 
attacks for food in the water and on the ground. A migration strategy is the seagull’s flight in many directions 
suitable for survival at the existing stage but not in another location.

Migration
The SGO performs a global search by mimicking seagulls’ random flying in all directions. Every random seagull 
should gradually meet the above three requirements in this process.

	(1)	� Avoiding collision

The SGO evaluates the seagull’s post-migration location Cs (t) by dealing with the existing location of the 
seagull Ps (t) and the additional parameter A to avoid collision between neighbouring seagull individuals:

	 Cs (t) = A × Ps (t)� (8)

t—represents the existing iterations count; A—indicates the drive of seagulls in space;

	
A = fc −

(
t × fc

Maxiteration

)
� (9)

fc—linear function reduces the A value linearly from fc to 0; Maxiteration—shows the maximal iteration 
count.

	(2)	� Best position orientation

Fig. 7.  Accuy  curve of ABOADL-IDS technique on NSLKDD 015 dataset
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On the basis that the seagulls don’t crash with one another, seagulls must shift towards the optimal location 
Ms (t) :

	 Ms (t) = B × (Pbest (t) − Ps (t))� (10)

Pbest (t)—optimal position for seagulls; B—random value that balances local and global optima;

	 B = 2 × A2 × rd� (11)

rd—randomly generated integer [0,1].

	(3)	� Move to the finest location

Once the abovementioned dual conditions are met, the seagull needs to travel towards the optimum location till 
it attains the newest location Ds (t) that is formulated by the subsequent equation:

	 Ds (t) = |Cs (t) + Ms (t)|� (12)

Attack behavior
Seagulls use their weight and wings during migration to keep a specific altitude. They dive in a spiral movement 
near the target after discovering an objective to attack. These behaviours of seagulls in the air are represented as 
x , y, and z 3D planes:

CICIDS 2017 dataset

Classes No. of instances

Normal 50,000

Anomaly 50,000

Total instances 100,000

Table 3.  Details of the CICIDS2015 dataset.

 

Fig. 8.  Loss curve of ABOADL-IDS technique on NSLKDD2015 dataset.
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	 x = r × cos (θ)� (13)

	 y = r × sin (θ)� (14)

	 z = r × θ� (15)

	 r = u × eθv � (16)

r—the radius of the helix; θ angle value in [0,2π]; u,  nu—correlation constant for helix;
Computation equation of seagull attack location:

	 Ps (t) = Ds (t) × x × y × z + Pbest (t)� (17)

Fig. 9.  CICIDS2015 dataset (a, b) Confusion matrices, (c, d) PR and ROC curves.
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The fitness function (FF) is a critical feature of the SGO technique. The encrypted solution is organized to 
calculate the best solution for candidate results. The accuracy values are the main state developed to project an 
FF.

	 F itness = max (P )� (18)

	
P = T P

T P + F P
� (19)

F P  and T P  represent the positive values of false and true.

Fig. 10.  Average of ABOADL-IDS technique on CICIDS2015 dataset.

 

CICIDS 2017 dataset

Classes Accuy P recn Recal Fscore AUCscore

70% TRAS

 Normal 98.41 99.27 98.41 98.84 98.84

 Anomaly 99.28 98.43 99.28 98.85 98.84

Average 98.84 98.85 98.84 98.85 98.84

30% TESS

 Normal 98.25 99.28 98.25 98.77 98.77

 Anomaly 99.28 98.25 99.28 98.76 98.77

Average 98.77 98.77 98.77 98.76 98.77

Table 4.  Detection outcome of ABOADL-IDS technique on the CICIDS2015 dataset.
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Results and discussion
This section examines the ABOADL-IDS methodology’s recognition of intrusion results on dual databases: the 
NSLKDD2015 and CICIDS2015 datasets. Table 1 provides a comprehensive description of the NSLKDD2015 
database.

Figure 5 illustrates the classifier study of the ABOADL-IDS approach in the NSLKDD2015 database. Figure 5a 
and b establishes the confusion matrices obtainable by the ABOADL-IDS approach on 70% of TRAS:30% of 
TESS. The simulation value indicated that the ABOADL-IDS method has exactly predicted and classified all 
two classes. In the same way, Fig. 5c displays the PR study of the ABOADL-IDS technique. The outcome value 
specified that the ABOADL-IDS method could reach greater PR analysis on 2 class labels. Yet, Fig. 5d determines 
the ROC performance of the ABOADL-IDS technique. The outcome signified that the ABOADL-IDS model had 
caused the abilities of simulated results with developed values of ROC in 2 classes.

The detection simulated result of the ABOADL-IDS approach on the NSLKDD 2015 dataset is revealed in 
Table 2; Fig. 6. The experimentation simulation displays that the ABOADL-IDS method accomplishes effective 
standard and anomaly classification. With a 70% TRAS, the ABOADL-IDS technique presents an average accuy

, precn, recal, Fscore, and AUCscore of 99.28%, 99.25%, 99.28%, 99.27%, and 99.28%, respectively. Also, with 
a 30% TESS, the ABOADL-IDS technique presents an average accuy , precn, recal, Fscore, and AUCscore of 
99.27%, 99.25%, 99.27%, 99.26%, and 99.27%, respectively.

To assess the performance of the ABOADL-IDS approach on the NSLKDD2015 dataset, the curves of TRAS 
and TESS accuy  are definite, as revealed in Fig. 7. The TES and TRA accuy  curves display the performance of 
the ABOADL-IDS model over many epochs. The figure provides facts about the task of learning and generalized 
skills of the ABOADL-IDS method. With an increase in epoch counts, it is experimental that the TES and TRA 
accuy  curves get enhanced. It is shown that the ABOADL-IDS techniques get higher TES accuracy, which 
makes them able to categorize the designs in both data sets.

Figure 8 establishes the ample TES and TRA loss values of the ABOADL-IDS method on the NSLKDD2015 
dataset over epochs. The TRA loss shows that the model loss obtained decreased over epochs. Initially, the loss 
value acquired decreases as the model alters the weight to decline the error of prediction on the TES and TRA 
data. The loss curves exhibit the level where the method fits the TRA data. Both data losses are slowly condensed, 
which signifies that the ABOADL-IDS technique proficiently absorbs the patterns revealed in the TRA and TES 
data. It is also experimental that the ABOADL-IDS technique adapts the parameters to decline the modification 
amid the prediction and new TRA label.

Table 3 exemplifies the detailed explanation of the CICIDS2015 database.
Figure 9 shows the classifier simulated analysis of the ABOADL-IDS methodology under the CICIDS2015 

dataset. Figure 9a and b exemplifies the confusion matrices increased by the ABOADL-IDS methodology on 

Fig. 11.  Accuy  curve of ABOADL-IDS technique on CICIDS2015 dataset
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70% TRAS and 30% TESS. The simulation value indicated that the ABOADL-IDS model is well-known and 
that each 2-class label is classified precisely. Also, Fig.  9c determines the PR outcome of the ABOADL-IDS 
model. The result showed that the ABOADL-IDS model has better PR performance in 2 class labels. But, Fig. 9d 
describes the ROC study of the ABOADL-IDS technique. The experimental value described that the ABOADL-
IDS technique generates excellent resultants with improved values of ROC in 2 classes.

The detection analysis of the ABOADL-IDS method on the CICIDS2015 dataset is exposed in Table  4; 
Fig. 10. The simulated result demonstrates that the ABOADL-IDS method gets effectual anomaly and normal 
classification. With a 70% TRAS, the ABOADL-IDS technique provides an average accuy , precn, recal, 
Fscore, and AUCscore of 98.84%, 98.85%, 98.84%, 98.85%, and 98.84% correspondingly. Also, with a 30% 
TESS, the ABOADL-IDS technique provides an average accuy , precn, recal, Fscore, and AUCscore of 
98.77%, 98.77%, 98.77%, 98.76%, and 98.77% individually.

To calculate the execution of the ABOADL-IDS model on the CICIDS2015 database, TES and TRA accuy  
curves are well-said, as exposed in Fig. 11. The TES and TRA accuy  curves show the concert of the ABOADL-
IDS approach over some epochs. The figure provides meaningful facts about the tasks of learning and generalizer 
capacities of the ABOADL-IDS approach. With a rise in epoch counts, it is experimental that the TES and TRA 
accuy  curves become higher. The ABOADL-IDS approach is perceived to have enhanced TES accuracy in 
classifying the designs in both data.

Models Accuy P recn Recal Fscore

ABOADL IDS 99.28 99.25 99.28 99.27

XAIIDS-CPS 98.87 98.95 98.87 98.91

FU-RIA 98.14 97.57 96.93 98.26

AERF 97.62 97.35 97.79 97.30

ForestPA 96.72 96.97 97.32 98.13

WI-SARD 96.64 97.58 97.29 98.65

G-SAE 97.63 95.97 98.39 98.19

LIBSVM 96.57 96.96 96.83 97.92

Table 5.  Comparative analysis of ABOADL-IDS approach with existing models11.

 

Fig. 12.  Loss curve of ABOADL-IDS technique on CICIDS2015 dataset.
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Figure 12 shows the complete TRA and TES loss values of the ABOADL-IDS approach on the CICIDS2015 
dataset over epochs. The TRA loss demonstrated the method loss is minimized over epochs. Notably, the loss 
values get condensed as the model alters the weight to reduce the analytical mistakes in the TES and TRA data. 
The loss curves determine the range where the model fits the TRA. It is seen that both data loss is slowly reduced 
and represents that the ABOADL-IDS model well acquires the designs revealed in the TES and TRA data. It is 
also evidenced that the ABOADL-IDS regulates the parameters for reducing the modification amongst the new 
and forecast TRA classes.

The comparative recognition outcomes of the ABOADL-IDS model with existing techniques are performed 
in Table 5; Fig. 1311. The experimentation result indicates that the ForestPA, WI-SARD, and LIBSVM approaches 
have worse outcomes, but the AERF and G-SAE models have demonstrated better-increased performance. 
Concurrently, the XAIIDS-CPS and FU-RIA approaches have obtained considerable results. However, the 
ABOADL-IDS technique showed promising performance with maximum accuy , precn, recal, and Fscore 
of 99.28%, 99.25%, 99.28%, and 99.27%, respectively. Therefore, the ABOADL IDS technique is effective in 
achieving recognition results.

Conclusion
This paper presents automatic intrusion recognition using the ABOADL-IDS methodology in the CPS platform. 
The main intention of the ABOADL-IDS methodology is to utilize the FS with an optimal DL approach for the 
intrusion detection and identification procedure. It comprises data normalization, ABO-based FS, SDBN-based 
intrusion recognition, and SGO-based hyperparameter tuning. To select features, the ABOADL-IDS technique 
utilizes a new ABO approach for FS. Besides, the SDBN approach is used for intrusion detection and classification. 
To improve the solution of the SDBN model, the SGO method is implemented for the hyperparameter-selection 
process. The assessment of the ABOADL-IDS technique is accomplished under NSLKDD2015 and CICIDS2015 
datasets. The performance validation of the ABOADL-IDS technique illustrated a superior accuracy value of 
99.28% over existing models concerning various measures. The limitations of the ABOADL-IDS technique 
comprise the reliance on predefined datasets, which may not fully represent the diversity of real-world CPS 
environments and emerging cyber threats. Furthermore, the computational complexity of specific detection 
models can affect their real-time application, particularly in resource-constrained systems. The study also 

Fig. 13.  Comparative outcome of ABOADL-IDS approach with existing models.
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assumes a relatively static system setup, which may not be effective in highly dynamic or evolving environments. 
Moreover, the feature selection process may not capture all relevant patterns, resulting in suboptimal detection 
accuracy in some cases. Future work should concentrate on developing adaptive models that can continuously 
learn and update in real time, improving their capability to detect previously unseen attacks. Also, improving 
model efficiency to balance detection accuracy with computational feasibility will be significant for large-
scale implementations. Lastly, integrating privacy-preserving techniques while maintaining high detection 
performance should be a key focus in future research.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.

Received: 18 June 2024; Accepted: 20 February 2025

References
	 1.	 Nour, A. A. et al. Optimizing intrusion detection in industrial cyber-physical systems through transfer learning approaches. 

Comput. Electr. Eng. 111, 108929 (2023).
	 2.	 Alqaralleh, B. A., Aldhaban, F., AlQarallehs, E. A. & Al-Omari, A. H. Optimal machine learning enabled intrusion detection in 

cyber-physical system environment. Comput. Mater. Contin. 72(3), 4691–4707 (2022).
	 3.	 Colelli, R., Magri, F., Panzieri, S. & Pascucci, F. June. Anomaly-based intrusion detection system for cyber-physical system security. 

In 2021 29th Mediterranean Conference on Control and Automation (MED) 428–434 (IEEE, 2021).
	 4.	 Mboweni, I. V., Ramotsoela, D. T. & Abu-Mahfouz, A. M. Hydraulic data preprocessing for machine learning-based intrusion 

detection in cyber-physical systems. Mathematics 11(8), 1846 (2023).
	 5.	 Panigrahi, R. et al. Intrusion detection in a cyber–physical environment using hybrid Naïve Bayes—Decision table and multi-

objective evolutionary feature selection. Comput. Commun. 188, 133–144 (2022).
	 6.	 Alqazzaz, A. & Alrashdi, I. An efficient intrusion detection model based on neutrosophic logic for optimal response from the 

arranged response set. Int. J. Neutrosophic Sci. IJNS 23(3) (2024).
	 7.	 Santos, V. F., Albuquerque, C., Passos, D., Quincozes, S. E. & Mossé, D. Assessing machine learning techniques for intrusion 

detection in cyber-physical systems. Energies 16(16), 6058 (2023).
	 8.	 Zainudin, A., Akter, R., Kim, D. S. & Lee, J. M. Towards lightweight intrusion identification in SDN-based industrial cyber-

physical systems. In 2022 27th Asia Pacific Conference on Communications (APCC) 610–614 (IEEE, 2022).
	 9.	 Li, W., Wang, Y. & Li, J. A blockchain-enabled collaborative intrusion detection framework for SDN-assisted cyber-physical 

systems. Int. J. Inf. Secur. 1–12 (2023).
	10.	 Dutta, A. K., Negi, R. & Shukla, S. K. Robust multivariate anomaly-based intrusion detection system for cyber-physical systems. In 

Cyber Security Cryptography and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, 
Proceedings 5 pp. 86–93 (Springer International Publishing, 2021).

	11.	 Almuqren, L. et al. Explainable artificial intelligence enabled intrusion detection technique for secure cyber-physical systems. 
Appl. Sci. 13(5), 3081 (2023).

	12.	 Althobaiti, M. M., Kumar, K. P. M., Gupta, D., Kumar, S. & Mansour, R. F. An intelligent cognitive computing based intrusion 
detection for industrial cyber-physical systems. Measurement 186, 110145 (2021).

	13.	 Mittal, H. et al. A new intrusion detection method for cyber–physical system in emerging industrial IoT. Comput. Commun. 190, 
24–35 (2022).

	14.	 Khan, I. A. et al. A privacy-conserving framework based intrusion detection method for detecting and recognizing malicious 
behaviours in cyber-physical power networks. Appl. Intell. 1–16 (2021).

	15.	 Kukkala, V. K., Thiruloga, S. V. & Pasricha, S. Real-time intrusion detection in automotive cyber-physical systems with recurrent 
autoencoders. In Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems 317–347 (Springer 
International Publishing, 2023).

	16.	 Alohali, M. A. et al. Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 
environment. Cogn. Neurodyn. 16(5), 1045–1057 (2022).

	17.	 Eltanbouly, S. S. Multimodal intrusion detection system for cyber physical systems. Master’s thesis (2021).
	18.	 Safavat, S. & Rawat, D. B. Asynchronous federated learning for intrusion detection in vehicular cyber-physical systems. In IEEE 

INFOCOM 2023-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 1–6 (IEEE, 2023).
	19.	 Shi, B. et al. Prediction of recurrent spontaneous abortion using evolutionary machine learning with joint self-adaptive sime 

mould algorithm. Comput. Biol. Med. 148, 105885 (2022).
	20.	 Ji, R., Selwal, A., Kumar, N. & Padha, D. Cascading bagging and boosting ensemble methods for intrusion detection in cyber-

physical systems. Secur. Priv. 8(1), e497 (2025).
	21.	 Arumugam, S. R., Paul, P. M., Issac, B. J. J. & Ananth, J. P. Hybrid deep architecture for intrusion detection in cyber-physical 

system: An optimization-based approach. Int. J. Adapt. Control Signal Process. 38(9), 3016–3039 (2024).
	22.	 Chen, M. R., Yang, L. Q., Zeng, G. Q., Lu, K. D. & Huang, Y. Y. IFA-EO: An improved firefly algorithm hybridized with extremal 

optimization for continuous unconstrained optimization problems. Soft. Comput. 27(6), 2943–2964 (2023).
	23.	 Abinash, S., Srivatsan, N., Hemachandran, S. K. & Priyanga, S. HGCNN-LSTM: A data-driven approach for cyberattack detection 

in cyber-physical systems. SN Comput. Sci. 6(1), 69 (2025).
	24.	 Feng, Y., Xu, Y., Hu, Q., Krishnamoorthy, S. & Tang, Z. Predicting vacant parking space availability zone-wisely: A hybrid deep 

learning approach. Complex. Intell. Syst. 8(5), 4145–4161 (2022).
	25.	 Al Mazroa, A., Albogamy, F. R., Ishak, M. K. & Mostafa, S. M. Boosting cyberattack detection using binary metaheuristics with 

deep learning on cyber-physical system environment. IEEE Access (2025).
	26.	 Rahim, S. A. & Manoharan, A. Fractional artificial Protozoa optimization enabled deep learning for intrusion detection and 

mitigation in cyber-physical systems. IEEE Access (2024).
	27.	 Chen, C. et al. Hybrid 3DMA for multi-user MIMO-VLC. J. Opt. Commun. Netw. 14(10), 780–791 (2022).
	28.	 Markkandeyan, S. et al. Novel hybrid deep learning based cyber security threat detection model with optimization algorithm. 

Cyber Secur. Appl. 3, 100075 (2025).
	29.	 Gurumoorthy, S., Kokku, A. K., Falkowski-Gilski, P. & Divakarachari, P. B. Effective air quality prediction using reinforced swarm 

optimization and bi-directional gated recurrent unit. Sustainability 15(14), 11454 (2023).
	30.	 Gulić, M. & Žuškin, M. Enhancing metaheuristic optimization: A novel nature-inspired hybrid approach incorporating selected 

pseudorandom number generators. Algorithms 16(9), 413 (2023).
	31.	 Ibrahim, A. et al. Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm. IEEE 

Access 9, 125787–125804 (2021).

Scientific Reports |        (2025) 15:10219 18| https://doi.org/10.1038/s41598-025-91500-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	32.	 Li, T. H. S. et al. Deep belief network–based learning algorithm for humanoid robot in a pitching game. IEEE Access 7, 165659–
165670 (2019).

	33.	 Xue, J., Liu, X., Xu, H. & Zhang, D. Research on the seagull optimization algorithm-based convolutional neural network rolling 
bearing fault diagnosis method. Eng. Res. Express 5(3), 035050 (2023).

Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation 
(IITP) grant funded by the Korea government(MSIT) (No. RS-2024-00337489, Development of data drift man-
agement technology to over comeperformance degradation of AI analysis models).

Author contributions
E.L.L.: Conceptualization, Methodology, formal analysis, writing—original draft preparation; S.N.S.V.S.C.R.: 
Conceptualization, Methodology, data curation; V.D.: Methodology, software, validation, investigation; G.J.M.: 
software, formal analysis, data curation, investigation; S.C.: validation, investigation, visualization, supervision; 
S.A.: validation, visualization, supervision, writing-review and editing; C.Y.: data curation, resources, supervi-
sion, project administration, funding acquisition.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval
This article does not contain any studies with human participants performed by any of the authors.

Additional information
Correspondence and requests for materials should be addressed to S.A. or C.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:10219 19| https://doi.org/10.1038/s41598-025-91500-3

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿African buffalo optimization with deep learning-based intrusion detection in cyber-physical systems
	﻿Related works
	﻿The proposed model
	﻿Data normalization
	﻿Feature selection using ABO model
	﻿Intrusion detection using SDBN model
	﻿Parameter tuning using the SGO model
	﻿Migration
	﻿Attack behavior


	﻿Results and discussion
	﻿Conclusion
	﻿References


