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Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to 
the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap 
smear techniques plays a crucial role in identifying potential cancerous alterations. While developed 
nations demonstrate commendable efficiency in Pap smear acquisition, the process remains laborious 
and time-intensive. Conversely, in less developed regions, there is a pressing need for streamlined, 
computer-aided methodologies for the pre-analysis and treatment of cervical cancer. This study focuses 
on the classification of squamous cells into five distinct classes, providing a nuanced assessment of 
cervical cancer severity. Utilizing a dataset comprising over 4096 images from SimpakMed, available on 
Kaggle, we employed ensemble technique which included the Convolutional Neural Network (CNN), 
AlexNet, and SqueezeNet for image classification, achieving accuracies of 90.8%, 92%, and 91% 
respectively. Particularly noteworthy is the proposed ensemble technique, which surpasses individual 
model performances, achieving an impressive accuracy of 94%. This ensemble approach underscores 
the efficacy of our method in precise squamous cell classification and, consequently, in gauging the 
severity of cervical cancer. The results represent a promising advancement in the development of more 
efficient diagnostic tools for cervical cancer in resource-constrained settings.
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Cervical cancer is a global health concern that disproportionately affects women worldwide. By automating 
the interpretation of Pap smear images, we can minimize pathologists’ workloads and find precancerous and 
cancerous abnormalities earlier. This can lead to timely intervention, perhaps saving lives.Pap smear screening 
is a microscopic examination of cervical cells to detect any abnormalities1. This method, while effective, is 
time-consuming and requires specialized staff. It is useful in detecting alterations produced by the human 
papillomavirus vaccine (HPV), which, if left untreated, can lead to cervical cancer, allowing for the identification 
of precancerous or cancerous cells, as well as non-malignant diseases such as infection or inflammation2. This 
is the benefit of HPV vaccination in women who have had a hysterectomy for high-grade cervical precancer 
or early-stage cervical cancer. The researchers reviewed the medical records of 77 patients who acquired lower 
genital tract dysplasia following surgery. They discovered that the HPV vaccine could have avoided a considerable 
number of these cases3.However,It provides minimal protection to those who are already affected. To overcome 
the limitations of manual approaches, computer-aided diagnostic (CAD) systems have emerged as promising 
cervical cancer screening tools4–6.

In India, cervical cancer represents a particularly significant concern, with a staggering. One in every five 
patients worldwide comes from the country. The economic impact of both medical and non-medical expenses, 
as well as lost productivity, highlights the need for effective preventative and screening measures7. Cervical 
cancer is the most common malignancy among Indian women, accounting for 72,825 deaths each year and 
26.7% of the global total. The age-adjusted incidence rate ranges from 8.8 to 10.1 per 100,000. Low-and middle-
income countries face challenges in conducting comprehensive screening programs due to a lack of qualified 
healthcare staff and limited resources6,8.
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These systems use image processing and machine learning approaches to examine digital images of cervical 
cells. In recent years, deep learning, a type of machine learning, has demonstrated extraordinary effectiveness 
in a variety of medical image analysis tasks, including cervical cancer detection7,9,10. Deep learning algorithms, 
such as Convolutional Neural Networks (CNNs), can automatically learn hierarchical features from images, 
allowing for precise classification of cervical cell abnormalities.Cervical cancer is a major global health concern, 
especially in developing countries. Early detection is critical for successful treatment and better patient 
outcomes. Traditional screening approaches, such as Pap smears, are highly dependent on the expertise of 
cytotechnologists or pathologists, which can be subjective and prone to human error. This research uses deep 
learning and Pap smear images to classify cervical cancer. We use CNN, SqueezeNet, and AlexNet to classify 
cervical cancer cells into five distinct categories: “dyskeratotic,” “koilocytotic,” “metaplastic,” “parabasal,” and 
“superficial-intermediate”. Additionally, an ensemble learning technique combines individual model predictions 
to improve overall accuracy.

Research objectives can be summarized as follows:

•	 The study aimed to design a system that could automatically categorize squamous cells from Pap smears into 
different classes representing the severity of cervical cancer.

•	 By employing deep learning techniques like CNN, AlexNet, and SqueezeNet, the goal was to achieve a more 
precise categorization of squamous cells compared to manual analysis..

•	 The research explored combining the strengths of multiple deep learning models by ensemble technique to 
achieve a higher overall accuracy in classifying squamous cells.The paper is structured as follows: Section 2 
provides an overview of the literature on cervical cancer. Section 3 outlines the proposed methodology, which 
employs ensemble learning techniques incorporating CNN, AlexNet, and SqueezeNet. Section 4 presents the 
dataset, evaluation parameters, and results,Section 5 discuss the limitation of the Ensemble method, Finally, 
Section 6 offers concluding remarks.

Literature review
The literature review provides an extensive overview of various techniques and models employed for the 
classification and detection of cervical cancer. It is evident that a range of approaches utilizing computer-based 
algorithms, deep learning, and ensemble learning have been explored in this domain. Each study leverages 
different methodologies, datasets, and models to achieve accurate results.

Mango et al.11introduced a solution for detecting cancerous cells in cervix samples, integrating a conventional 
Pap smear test with an artificial neural network (ANN) model. Sukumar and Gnanamurthy (2016)12presented 
an automated diagnostic method based on magnetic resonance imaging scans. Their hybrid classifier, combining 
SVM and adaptive neuro-fuzzy interface technology, achieved remarkable accuracy. Bora et al. (2016)13employed 
a deep convolutional neural network for image identification, enhancing accuracy through feature selection tasks. 
Their comparative study of LSSVM and SoftMax regression classifiers highlighted substantial improvements in 
classification rates. Hyeon et al. (2017)14used CNNs and machine learning classifier-based models for classifying 
cervical MRIs, showcasing the effectiveness of feature extraction using the VGG16 algorithm. Promworn et al. 
(2019)15conducted a deep learning comparative analysis of cervical cytopathology images, with DenseNet161 
emerging as the most accurate model among five deep learning approaches. ColpoNet drew inspiration from 
DenseNet for its computationally efficient framework16. Parikshit Sanyal et al.17developed a CNN for detecting 
abnormal foci in traditional cervical smears, achieving a high diagnosis accuracy. Karunakaran et al. (2020) 
proposed ultrasensitive surface enhanced Raman scattering (SERS) for predicting cervical cell samples’ 
pathology with commendable accuracy17. Taha et al. (2017) emphasized the benefits of employing pre-trained 
CNN architectures, such as AlexNet, for classification tasks18. Kudva et al. (2020) introduced a hybrid transfer 
learning system, utilizing AlexNet and VGG-16 features to improve cervix image identification. Their results 
demonstrated substantial gains in classification accuracy19. Xue et al. (2020) utilized Ensemble Transfer 
Learning (ETL) to classify cervical histopathology images, achieving impressive accuracy scores20. Chen et al. 
(2020) explored the potential of CNNs and transfer learning in histopathological image analysis, yielding a 
high classification accuracy21. Ghoneim et al. (2020) demonstrated the effectiveness of CNN-based approaches 
for detecting and categorizing cervical cancer cells. Their use of CNN models in tandem with ELM classifiers 
showcased promising results on the Herlev database22. Arifianto et al.23 applied CNN deep learning methods 
to a diverse dataset, achieving notable accuracy in identifying cervical lesions. Hussain et al.24 proposed several 
models based on deep convolutional neural networks, reporting impressive accuracy scores across different 
datasets. Kang et al.25 explored the use of Raman spectroscopy and a novel hierarchical neural network (H-CNN) 
to accurately identify various stages of cervical cancer in tissue samples. H-CNN outperformed traditional 
methods in accuracy, stability, and sensitivity, achieving over 94 % accuracy in classifying tissues. This suggests 
H-CNN could be a promising tool for early and precise cervical cancer diagnosis, potentially improving patient 
outcomes. Youneszade et al.26 highlights the increasing role of deep learning in tackling cervical cancer’s burden, 
particularly in resource-limited areas. It effectively points out the limitations of traditional screening methods 
and how DL-based computer-aided diagnostics offer the promise of improved accuracy and early detection. 
By reviewing relevant techniques, architectures, and segmentation methods, it provides a valuable overview 
of the current state-of-the-art for DL in cervical cancer screening. Finally, it emphasizes the need for further 
research and offers avenues for future exploration in this crucial field. Overall, this is a concise and informative 
summary that captures the essence of the review. Pacal et al.27 leverages powerful ViT and CNN-based deep 
learning models with data augmentation and ensemble techniques to achieve record-breaking cervical cancer 
classification accuracy on a massive dataset. This breakthrough paves the way for early and precise diagnosis, 
potentially reducing mortality rates and revolutionizing clinical implementation. Pramanik et al.28 proposes an 
innovative approach to enhance cervical cancer detection in Pap smear images. It introduces a fuzzy distance-
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based ensemble method, incorporating transfer learning models like Inception V3, MobileNet V2, and Inception 
ResNet V2. Additional layers are added for specific feature learning, and a unique ensemble technique is used 
to minimize errors. The method employs three distance measures and “defuzzification” for final predictions. By 
combining fuzzy logic and transfer learning, the approach aims to improve accuracy and efficiency in cervical 
cancer detection, potentially advancing screening outcomes. While further research is needed, initial results are 
promising.

Ensemble Learning, a powerful integration of baseline models, has demonstrated significant promise in 
reducing overfitting and improving classification accuracy. It has exhibited superiority over single models in 
various disciplines29. Nevertheless, the potential for further advancements in deep learning models for precise 
cervical cancer image classification remains substantial and warrants continued research and development. 
Table 1 summarizes the literature review based on the proposed method, utilized dataset, and attained results.

Proposed method
This section outlines the proposed methodology for this study, which primarily centers around the creation of 
an ensemble framework for the detection of cervical cancer. The proposed approach encompasses multiple sub 
processes, including image normalization, feature extraction, and model development. As base learners, CNN, 
AlexNet, and SqueezeNet are employed. The ensemble learning technique consolidates predictions derived from 
these base learners. Figure 1 displays the proposed methodology’s architecture.

Preprocessing
In the initial phase, the input image brightness is adjusted to a range between zero and one. Through the 
normalization of brightness and the resizing of images, the dataset is primed for further analyses, such as feature 
extraction or classification algorithms. These preprocessing steps significantly contribute to the overall reliability 
and accuracy of subsequent stages in the study, ultimately enabling meaningful insights and conclusions to be 
drawn from the proposed Cervical Cancer Dataset. We resized all the images into the 64x64.

Feature extraction
Feature extraction is a critical phase in neural network applications, playing a pivotal role in enhancing the 
network’s ability to discern salient patterns and information from raw data. In essence, it entails the process 
of transforming the input data into a more compact and informative representation, while retaining the most 
pertinent attributes for the task at hand. This is particularly significant in image processing tasks, as it enables 

Reference Method Dataset Results Remarks

Mango et al.11 Pap smear test + ANN model N/A N/A Detection of cancerous cells in cervix.

Sukumar and 
Gnanamurthy12 MRI scans + SVM + NN Herlev data 99.1% acc. in 2-class Automated diagnosis using MRI scans.

Bora et al.13 CNN-based classification Private dataset Improved accuracy with feature selection Deep CNN for image identification.

Hyeon et al.14 CNNs + VGG16 for feature 
extraction 7134 MRIs SVM’s F1 score superior Classifying cervical MRIs as normal or 

infectious.

Promworn et al.30 Comparative analysis of models N/A DenseNet161 achieved 94.38% acc. DenseNet161 excelled among five models.

ColpoNet15 Inspired by DenseNet Nat. Cancer Institute 
dataset Accuracy of 81.353% Based on computationally efficient DenseNet.

Parikshit Sanyal 
et al.16 CNN for detecting ’abnormal’ foci 1838 microphotographs 95.46% diagnosis acc. High accuracy in classifying normal and 

abnormal foci.

Karunakaran et al.17 Ultrasensitive SERS for sample 
prediction Cervix cell samples Average acc. of 95.46% Predicting normal, HSIL, and CSCC.

Taha et al.18 Pre-trained CNN architecture Herlev dataset 99.19% acc. in 2-class Effectiveness of pre-trained CNN architecture.

Kudva et al.19 Hybrid transfer learning system AlexNet and VGG-16 
features Classification acc. of 91.46% Improved classification with focused filters.

Xue et al.20 Ensemble Transfer Learning 
(ETL) Herlev dataset Highest acc. of 98.61% ETL after developing multiple deep learning 

models.

Chen et al.21 Fine-tuned CNN architectures 4993 histology images Achieved 97.42% classification acc. Effectiveness of transfer learning for 
histopathology images.

Ghoneim et al.22 CNN-based approaches with ELM 
classifiers Herlev database 99.5% detection acc. and 91.2% 

classification acc.
Utilized ELM classifiers for deep-learned 
characteristics in cell images.

Kang et al.25 Raman spectroscopy, H-CNN Tissue samples Over 94% accuracy in classifying tissues H-CNN promising for precise cervical cancer 
diagnosis

Youneszade et al.26 -
Review of techniques, 
architectures, and 
segmentation methods

Overview of DL in cervical cancer 
screening Emphasizes the need for further research

Pacal et al.27 ViT, CNN-based models, Massive dataset Record-breaking classification accuracy Potential for early diagnosis and reduced 
mortality rates

Pramanik et al.28 Fuzzy distance-based ensemble Pap smear images Promising initial results in accuracy and 
efficiency improvement Further research needed for full assessment

Table 1.  Summary of Cervical Cancer Detection Literature.
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the network to focus on relevant characteristics, such as edges, textures, and shapes, while discarding redundant 
or less discriminative information.

In the context of the proposed study, the pre-processed dataset undergoes a crucial feature extraction stage. 
Here, established deep learning models including traditional CNN, AlexNet, and SqueezeNet are employed. 
These models have garnered acclaim for their efficacy in tasks related to image categorization. By leveraging their 
hierarchical architectures, these models can automatically learn and extract intricate features from the input 
images, empowering the subsequent stages of the study with a more refined and meaningful representation of 
the data. This, in turn, bolsters the overall performance and accuracy of the neural network in addressing the 
specific challenges posed by cervical cancer detection.

Base learner
This section discribe the detail architecture of base learer models.

Convolutional neural network
CNNs hold paramount importance in image classification tasks owing to their specialized architecture tailored 
for extracting intricate hierarchical features from visual data. This distinct architecture is composed of multiple 

Fig. 1.  Proposed Architecture.
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layers that perform diverse operations on the input data29. In the context of this study, the input data possesses 
dimensions of (64, 64, 3), signifying 64 pixels in both height and width, with 3 color channels corresponding to 
Red, Green, and Blue (RGB).

Initiating with a 16-filter convolutional layer utilizing a (3,3) kernel and employing the Rectified Linear Unit 
(ReLU) activation function, the model commences its feature extraction process. Subsequently, two additional 
convolutional layers are introduced, each with an escalating number of filters (32 and 64, respectively) and 
utilizing the same kernel size as the initial layer. Following each convolutional layer, MaxPooling2D layers are 
incorporated to downsample the extracted feature maps, enhancing computational efficiency and reducing 
redundancy. To combat overfitting, a Dropout layer with a 25% rate is introduced. The output of this Dropout 
layer undergoes flattening, followed by processing through a fully connected Dense layer comprising 64 units 
and employing the ReLU activation function. Subsequent to this layer, an additional Dropout layer is applied to 
further mitigate overfitting risks. The final layer of the CNN encompasses 5 units, employing sigmoid activation 
functions to yield a probability distribution across the 5 potential classes. For optimization, the Adam optimizer 
is employed in conjunction with categorical cross-entropy loss, while accuracy serves as the evaluation metric. 
This comprehensive architecture and methodology are tailored to effectively tackle the nuances of image 
classification tasks, demonstrating the potency and versatility of CNNs in this domain. The detailed architecture 
of the CNN model is outlined in Table 4.

AlexNet
AlexNet, a seminal architecture in the realm of deep learning, has been pivotal in revolutionizing image 
classification tasks. Comprising eight layers, it features a sophisticated arrangement of five convolutional layers 
interposed with three fully connected layers. The model’s input data is structured in (64, 64, 3) dimensions, 
indicating 64 pixels in height and width, with 3 color channels (RGB). Initiating with the first convolutional 
layer housing 96 filters of 11x11 dimensions and a stride of 4, the activation function employed is Rectified 
Linear Unit (ReLU), while padding is set to ’valid’. Subsequently, a max pooling layer with a pool size of 2x2 
and a stride of 2 is incorporated. The second convolutional layer encompasses 256 filters with a kernel size 
of 3x3 and padding set to ’same’, followed by another max pooling layer with the same specifications as the 
preceding layer.Proceeding to the third through fifth convolutional layers, 384 filters with a kernel size of 3x3 
and padding set to ’same’ are employed. All these layers make use of ReLU activation functions. Transitioning 
to the sixth through eighth layers, the architecture transitions to fully connected layers. The sixth layer boasts 
4096 neurons, each employing ReLU activation functions, followed by a dropout layer with a rate of 0.5 for 
regularization. The seventh layer mirrors the structure of the sixth. In the eighth layer, the number of output 
neurons is reduced to 5, employing softmax activation functions to facilitate multi-class classification.The model 
is constructed employing the Adam optimizer with a learning rate of 0.0001. Categorical cross-entropy serves 
as the loss function, while accuracy is adopted as the evaluation metric. The detailed architecture of the AlexNet 
model is outlined in Table 3.

SqueezNet
SqueezeNet is a specialized deep convolutional neural network architecture, purpose-built for efficient and 
low-power inference. It is designed to achieve high accuracy in image classification tasks while minimizing 
computational resources and model size. The architecture commences with an input tensor of shape (64, 64, 
3), representing an image with a height and width of 64 pixels and three color channels (Red, Green, and Blue).

It then progresses through a sequence of layers, which include convolutional and pooling operations. Notably, 
SqueezeNet incorporates distinctive components known as “fire modules”. These modules consist of parallel 1x1 
and 3x3 convolutions, strategically designed to balance computational cost and model expressiveness. Following 
the fire modules, the network integrates additional convolutional layers, a dropout layer for regularization, a 1x1 

Operation Data Dimensions Weights Details

Input 64x64x3 Input Layer

Conv2D 64x64x3 → 62x62x16 448 Convolution

Conv2D 62x62x16 → 62x62x16 448 Convolution

Conv2D 62x62x16 → 60x60x32 4640 Convolution

Max Pooling 60x60x32 → 30x30x32 0 Max Pooling

Conv2D 30x30x32 → 28x28x64 18496 Convolution

Max Pooling 28x28x64 → 14x14x64 0 Max Pooling

Conv2D 14x14x646 → 12x12x128 73856 Convolution

Max Pooling 12x12x128 → 6x6x128 0 Max Pooling

Dropout 6x6x128 → 6x6x128 0 Dropout

Flatten 6x6x128 → 4608 0 Flatten

Dense 4608 → 64 294976 Dense

Dropout 64 → 64 0 Dropout

Dense 64 → 5 325 Dense

Table 2.  CNN Model Architecture.
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convolutional layer to further refine features, and a global average pooling layer for dimensionality reduction. 
The architecture culminates in a dense output layer with a softmax activation function, facilitating multi-class 
classification. To train the model, it is compiled using the Adam optimizer, chosen for its adaptability and 
efficiency in minimizing the loss function. Categorical cross-entropy is employed as the loss function, which 
is well-suited for multi-class classification tasks. The model’s performance is evaluated based on accuracy, 
providing a metric to gauge its effectiveness in classifying images accurately. SqueezeNet stands out for its ability 
to achieve high accuracy in image classification tasks while being mindful of computational resources, making 
it particularly valuable for scenarios where efficiency and low-power inference are paramount. The detailed 
architecture of the SqueezeNet model is outlined in Table 4.

Proposed ensemble architecture
Ensemble learning stands as a powerful machine learning technique that amalgamates multiple individual 
models (base learners) to yield predictions with increased robustness and accuracy compared to any single 
model in isolation. This technique capitalizes on the diversity inherent in these models, which may employ 
distinct algorithms or be trained on different data subsets, enabling them to collectively make informed decisions 
as shown in algorithm 1. The significance of ensemble learning lies in its ability to alleviate the limitations of 
individual models. By consolidating predictions from multiple models, ensemble methods often produce more 
reliable and accurate outcomes, leading to enhanced generalization and superior performance on previously 
unseen data.

In the realm of deep learning, ensemble techniques can significantly boost model performance. Deep learning 
models, while potent, may encounter challenges such as overfitting or difficulty in capturing intricate patterns 
within the data. Ensemble methods address these issues by combining diverse deep learning models, potentially 
featuring distinct architectures or training strategies. This approach aids in capturing a broader spectrum of 
features and patterns within the data, resulting in more robust and accurate predictions. In the present study, an 
ensemble learning approach is employed to fuse extracted features from classical CNN, AlexNet, and SqueezeNet. 
Leveraging the averaging methodology, a straightforward yet highly effective technique, this ensemble method 
aggregates predictions from each individual model to generate a final prediction. By harnessing the collective 
strengths of these diverse models, the ensemble approach aims to augment overall predictive performance, 
yielding more dependable and accurate outcomes for the given task.

Operation Data Dimensions Weights (N) Details

Input 64x64x3 Input Layer

Conv2D 64x64x3 → 14x14x96 34944 Convolution

Conv2D 14x14x96 → 14x14x96 34944 Convolution

Max Pooling 14x14x96 → 7x7x96 0 Max Pooling

Conv2D 7x7x96 → 7x7x256 221440 Convolution

Max Pooling 7x7x256 → 3x3x256 0 Max Pooling

Conv2D 3x3x256 → 3x3x384 885120 Convolution

Conv2D 3x3x384 → 3x3x384 1327488 Convolution

Conv2D 3x3x384 → 3x3x256 884992 Convolution

Max Pooling 3x3x256 → 1x1x256 0 Max Pooling

Flatten 1x1x256 → 256 0 Flatten

Dense 256 → 4096 294976 Dense

Dropout 4096 → 4096 0 Dropout

Dense 4096 → 5 4096 Dense

Dropout 4096 → 4096 0 Dropout

Dense 4096 → 5 20485 Dense

Table 3.  AlexNet Model Architecture.
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Algorithm 1.  Proposed Ensemble Algorithm

Experimental study
In this section, we present the dataset utilized in the experiment, the evaluation parameters employed to assess 
the model’s performance, and an analysis of the results from the proposed study.

Operation Data Dimensions Weights (N) Details

Input 64x64x3 - Input Layer

Conv2D 64x64x3 → 32x32x96 14208 Convolution

Max Pooling 32x32x96 → 15x15x96 0 Max Pooling

Conv2D 15x15x96 → 15x15x16 1552 Convolution

Conv2D 15x15x96 → 15x15x64 6208 Convolution

concatenate 15x15x16 + 15x15x64 - Concatenation

Conv2D 15x15x80 → 15x15x16 1296 Convolution

Conv2D 15x15x80 → 15x15x64 46144 Convolution

concatenate 15x15x16 + 15x15x64 - Concatenation

Max Pooling 15x15x80 → 7x7x80 0 Max Pooling

Conv2D 7x7x80 → 7x7x32 2592 Convolution

Conv2D 7x7x80 → 7x7x128 10368 Convolution

concatenate 7x7x32 + 7x7x128 - Concatenation

Conv2D 7x7x160 → 7x7x32 5152 Convolution

Conv2D 7x7x160 → 7x7x128 184448 Convolution

concatenate 7x7x32 + 7x7x128 - Concatenation

Max Pooling 7x7x160 → 3x3x160 0 Max Pooling

Conv2D 3x3x160 → 3x3x48 7728 Convolution

Conv2D 3x3x160 → 3x3x192 30912 Convolution

concatenate 3x3x48 + 3x3x192 - Concatenation

Conv2D 3x3x240 → 3x3x48 11568 Convolution

Conv2D 3x3x240 → 3x3x192 414912 Convolution

concatenate 3x3x48 + 3x3x192 - Concatenation

Conv2D 3x3x240 → 3x3x64 15424 Convolution

Conv2D 3x3x240 → 3x3x256 61696 Convolution

concatenate 3x3x64 + 3x3x256 - Concatenation

Conv2D 3x3x320 → 3x3x64 20544 Convolution

Conv2D 3x3x320 → 3x3x256 737536 Convolution

concatenate 3x3x64 + 3x3x256 - Concatenation

Dropout 3x3x320 → 3x3x320 0 Dropout

Conv2D 3x3x320 → 3x3x5 1605 Convolution

Pooling 3x3x5 → 5 0 Global Avg Pooling

FC 5 → 5 30 Fully Connected

Table 4.  SqueezeNet Model Architecture.
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Dataset
The Cervical Cancer (Sipakmed) dataset stands as one of the most extensive publicly accessible resources for 
cervical cancer classification31. Comprising approximately 4096 high-resolution images extracted from pap 
smear tests of 715 individuals, it encompasses 70 cases afflicted with cervical cancer. These images exhibit 
diverse magnifications and are categorized into five groups: superficial-intermediate, parabasal, metaplastic, 
koilocytotic, and dyskeratotic. It serves as an invaluable asset for researchers dedicated to refining algorithms for 
the automated detection and categorization of cervical cancer cells. This, in turn, promises enhanced diagnostic 
and therapeutic approaches for cervical cancer. To facilitate effective utilization, we partitioned the dataset into 
three segments: training, testing, and validation, allocating 70% for training, 15% for validation, and 15% for 
testing purposes.

Evaluation parameters
To assess the performance of the proposed model, we utilized various performance metrics, including accuracy, 
precision, recall, and F1 score. These metrics are employed to evaluate the effectiveness of the proposed 
methodology. In addition, graphical representations of training and validation accuracy, as well as training 
and validation loss, are generated. Furthermore, we conducted a comparative analysis between the proposed 
methodology and individual models within the ensemble, such as classic CNN, AlexNet, and SqueezeNet.

Accuracy
Accuracy represents the proportion of correct predictions in relation to the total test results.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (1)

Precision
Precision signifies the ratio of correctly classified positive instances to the total instances classified as positive.

	
Precision = T P

F P + T P
� (2)

Recall
Recall indicates the ratio of correctly classified positive instances to the total instances actually belonging to the 
positive class.

	
Recall = T P

F N + T P
� (3)

F1 score
The F1 Score serves as a composite metric reflecting the performance of a given Machine Learning Model.

	
F1 Score = 2 × (Precision × Recall)

Precision + Recall
� (4)

Here TP denotes true positive, TN represents true negative, FN stands for false negative, and FP signifies false 
positive.

Results and analysis
This section represents the results of different model. The ensemble approach proposed in this study was 
implemented within the PyCharm integrated development environment. This environment was configured on 
a system equipped with a 2.7 GHz dual-core Intel i7 processor, 16 GB of RAM, an NVIDIA GeForce ROG-
STRIX graphics card with 256-bit architecture, and 8 GB of dedicated GPU memory. This robust hardware setup 
was chosen to ensure optimal performance during the development and execution of the ensemble model. For 
visualization purposes, the Seaborn and Matplotlib libraries were employed. These libraries offer a wide range of 
powerful tools and functions for creating informative and visually appealing plots and charts. Leveraging these 
visualization tools adds an extra layer of clarity and insight to the analysis, facilitating a deeper understanding of 
the model’s behavior and performance.

Table 5 displays the precision, recall, and F1-Score metrics for various classes, including dyskeratotic, 
koilocytotic, metaplastic, parabasal, and superficial intermediate, in the SqueezeNet model. Similar metrics for 
the CNN model are presented in Table 6, for the AlexNet model in Table 7, and for the proposed model in Table 
8.

Training and validation accuracy plots are essential visualizations in deep learning analysis. It track the model’s 
performance during training and provide insights into its ability to generalize to new, unseen data. The training 
accuracy plot displays how accurately the model predicts the training data over epochs. Initially, accuracy may 
be low, but it should gradually improve. The validation accuracy plot evaluates the model’s performance on a 
separate validation set, which it has never seen before. This plot helps detect overfitting, as it shows whether the 
model is learning to generalize or simply memorizing the training data. Ideally, both training and validation 
accuracy should increase together. If training accuracy continues to rise while validation accuracy plateaus or 
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decreases, it indicates overfitting. These plots are crucial for fine-tuning models, selecting the best-performing 
architecture, and ensuring the model’s effectiveness in making accurate predictions on new, real-world data.

Training and validation loss are fundamental metrics in evaluating the performance of a machine learning 
model, particularly in deep learning. The training loss measures the error between the predicted and actual values 
on the training data. It reflects how well the model is learning the patterns within the training set. Initially, the 
training loss is typically high as the model makes random predictions. As training progresses, the loss decreases, 
indicating that the model is becoming more proficient at making accurate predictions. Validation loss, on the 
other hand, assesses the model’s performance on a separate validation set, which it has never seen before. This 
is crucial for determining how well the model generalizes to new, unseen data. If the validation loss remains 
low and stable, it suggests the model is likely to perform well on real-world data. Monitoring both training and 
validation loss is crucial in preventing overfitting. If the training loss continues to decrease while the validation 
loss plateaus or increases, it indicates that the model is overfitting to the training data. Overall, tracking training 
and validation loss provides valuable insights into the model’s learning progress and its ability to make accurate 
predictions on new data. These metrics play a vital role in fine-tuning models and ensuring their effectiveness 
in real-world applications.

Without confidence interval With confidence interval (95%)

class Precision Recall F1-Score Precision Recall F1-Score

Dyskeratotic 0.97 0.92 0.94 0.92–0.96 0.88–0.90 0.88–0.92

Koilocytotic 0.91 0.85 0.88 0.88–0.90 0.81–0.83 0.85–0.87

Metaplastic 0.92 0.92 0.92 0.90–0.92 0.87–0.90 0.86–0.90

Parabasal 0.92 0.97 0.95 0.85–0.90 0.90–0.95 0.85–0.88

Superficial-Intermediate 0.95 1.00 0.98 0.91–0.93 0.95–0.98 0.94–0.97

Table 8.  Precision, Recall and F1- Score of Proposed Model.

 

Without confidence interval With confidence interval (95%)

class Precision Recall F1-Score Precision Recall F1-Score

Dyskeratotic 0.97 0.92 0.94 0.94–0.96 0.90–0.92 0.91–0.93

Koilocytotic 0.91 0.85 0.88 0.88–0.90 0.81–0.83 0.85–0.87

Metaplastic 0.92 0.92 0.92 0.90–0.92 0.87–0.89 0.85–0.90

Parabasal 0.92 0.97 0.95 0.86–0.90 0.90–0.95 0.85–0.88

Superficial-Intermediate 0.95 1.00 0.98 0.91–0.93 0.95–0.98 0.93–0.97

Table 7.  Precision, Recall and F1- Score of AlexNet.

 

Without confidence Interval With confidence interval (95%)

class Precision Recall F1-Score Precision Recall F1-Score

Dyskeratotic 0.96 0.93 0.94 0.91–0.94 0.91–0.93 0.90–0.93

Koilocytotic 0.94 0.76 0.84 0.90–0.93 0.71–0.75 0.80–0.82

Metaplastic 0.84 0.98 0.91 0.79–0.81 0.95–0.97 0.88–0.90

Parabasal 0.93 0.96 0.95 0.88–0.90 0.92–0.95 0.92–0.94

Superficial-Intermediate 0.94 0.98 0.96 0.91–0.93 0.95–0.97 0.87–0.89

Table 6.  Precision, Recall and F1- Score of CNN.

 

Without confidence interval With confidence interval (95%)

class Precision Recall F1-Score Precision Recall F1-Score

Dyskeratotic 0.96 0.93 0.94 0.91–0.93 0.89–0.91 0.90–0.92

Koilocytotic 0.94 0.76 0.84 0.90–0.91 0.72–0.74 0.81–0.83

Metaplastic 0.84 0.98 0.91 0.80–0.82 0.94–0.97 0.88–0.90

Parabasal 0.93 0.96 0.95 0.90–0.91 0.91–0.94 0.91–0.93

Superficial-Intermediate 0.94 0.98 0.96 0.90–0.92 0.95–0.97 0.88–0.90

Table 5.  Precision, Recall and F1- Score of SqueezeNet.
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Figure 2 illustrates the training accuracy, validation accuracy, and validation loss plots of CNN model. Figure 
3 showcases the performance of the AlexNet model, while Figure 4 presents the results for SqueezeNet. Figure 5 
provides a visual representation of the ensemble model’s performance.

The presented classification report provides a concise overview of the model’s performance on a dataset 
comprising 586 samples distributed across five distinct classes: dyskeratotic, koilocytotic, metaplastic, parabasal, 
and superficial-intermediate. Accompanying this report is the ensemble model’s confusion matrix, depicted in 
Figure 6. Impressively, the model achieved an overall accuracy of 94%, underscoring its proficiency in accurately 
categorizing samples across the diverse classes

Figure 7 illustrates the distinctive contributions of each base learner in the ensemble.
Table 9 illustrates a comparison between the proposed model and other models, focusing on precision, recall, 

F1 score, and accuracy. The table indicates that the proposed model outperforms other models, particularly in 
terms of accuracy.

The table 10 provides a comprehensive comparison of different methods employed in the detection and 
diagnosis of cervical cancer, showcasing the results achieved by each method on various datasets. Promworn et 
al. (2019) conducted a comparative analysis of models, with DenseNet161 achieving an impressive accuracy of 
94.38%. ColpoNet (Saini et al., 2020), inspired by DenseNet, achieved an accuracy of 81.353% on the National 
Cancer Institute dataset. Parikshit Sanyal et al. (2020) utilized a CNN for detecting ’abnormal’ foci, achieving 
a notable diagnosis accuracy of 95.46% on 1838 microphotographs. Karunakaran et al. (2020) employed 

Fig. 3.  AlexNet Training, Validation accuracy and Validation loss.

 

Fig. 2.  CNN Training, Validation accuracy and Validation loss.
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ultrasensitive SERS for sample prediction, attaining an average accuracy of 95.46% on cervix cell samples. Kudva 
et al. (2020) implemented a hybrid transfer learning system, using AlexNet and VGG-16 features, resulting in a 
classification accuracy of 91.46%. Ghoneim et al. (2020) utilized CNN-based approaches with ELM classifiers, 
achieving a remarkable 99.5% detection accuracy and a 91.2% classification accuracy on the Herlev database. 
Kang et al. (2023) employed Raman spectroscopy and H-CNN, achieving over 94% accuracy in classifying 
tissue samples. The proposed method, utilizing the SipakMed dataset and Ensemble Model, demonstrated a 
competitive overall accuracy of 94%. While this table provides valuable insights into various approaches for 
cervical cancer detection, the absence of detailed information about the datasets for some methods might limit 
the interpretation and generalizability of the results.

The individual models perform impressively, with the CNN achieving an accuracy of 90.8%, closely followed 
by AlexNet at 92%, and SqueezeNet at 90%. However, when employing Ensemble Learning and combining 
these models through the averaging technique, an exceptional boost in overall accuracy is observed, reaching 
an impressive 94%, as illustrated in Figure 8. This amalgamation of models demonstrates the power of ensemble 
techniques in harnessing the strengths of diverse learners to achieve superior predictive performance.

Discussion
The study presents a robust approach to cervical cancer classification using deep learning techniques.The 
integration of multiple CNN architectures through ensemble learning significantly improves classification 

Fig. 5.  Ensemble Training, Validation accuracy and Validation loss. 

 

Fig. 4.  SqueezeNet Training, Validation accuracy and Validation loss.
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Without confidence interval With confidence interval (95%)

Model Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

CNN 0.90 0.91 0.90 0.90 0.85–0.88 0.86–0.89 0.86–0.88 0.86–0.89

AlexNet 0.93 0.93 0.93 0.92 0.89–0.91 0.90–0.92 0.88–0.91 -.87-0.90

SqueezeNet 0.91 0.90 0.92 0.91 0.88–0.90 0.85–0.88 0.87–0.90 0.85–0.89

Proposed Model 0.92 0.91 0.92 0.94 0.88–0.91 0.86–0.90 0.87–0.91 0.88–0.93

Table 9.  Comparision of Proposed Model with other Models.

 

Fig. 7.  Individual Model Comparison.

 

Fig. 6.  Confusion matrix of Proposed.
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accuracy, demonstrating the potential for more reliable and accurate diagnosis.The individual models (CNN, 
AlexNet, and SqueezeNet) and the ensemble model achieved high accuracy rates, suggesting the effectiveness 
of the proposed approach.The study’s focus on classification of squamous cells into distinct classes provides a 
valuable tool for clinicians to assess disease severity and guide treatment decisions.The dataset used in the study, 
while comprehensive, may not fully capture the diversity of real-world cervical cancer cases. A larger and more 
diverse dataset would be beneficial for training more robust models.The study primarily focuses on the technical 
aspects of the model. Further validation in a clinical setting is needed to assess the practical impact of the model 
on patient outcomes.While deep learning is a powerful tool, it can be computationally expensive and requires 
specialized hardware. Exploring simpler, more efficient models may be necessary for resource-constrained 
settings.By addressing these limitations and building upon the strengths of this study, future research can further 
advance the field of computer-aided diagnosis for cervical cancer.

Conclusion
Incorporating Classic CNN, AlexNet, and SqueezeNet models through ensemble learning demonstrates robust 
efficacy in detecting squamous cells and assessing cervical cancer severity. Individually, AlexNet achieves the 
highest accuracy at 92%, with all models performing commendably. However, ensemble integration further 
boosts accuracy to an impressive 94%. This approach addresses the need for more efficient cervical cancer 
detection, especially in less developed regions. Categorizing squamous cells into distinct groups greatly aids 
in assessing cancer gravity for targeted treatment, promising improved patient outcomes. While significant, 
there’s room for refinement. Future work may focus on enhancing model accuracy and exploring additional 
deep learning algorithms. Limited public datasets presently constrain accuracy, but amassing a dedicated cervix 
cancer dataset and developing a new deep learning model holds promise for substantial progress in medical 
image processing and enhanced cervical cancer detection and treatment.

Data availibility
Dataset used in the experiments can be found on: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​p​​r​a​h​l​a​d​​m​e​h​a​n​d​​i​r​a​​t​t​​a​/​c​e​r​v​​i​​
c​a​l​-​​c​a​​n​c​e​​r​-​l​a​r​​g​e​s​t​-​d​a​​t​a​s​e​t​-​s​i​p​a​k​m​e​d​s
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Fig. 8.  Accuracy Comparison.

 

Reference Method Dataset Results

Promworn et al.30 Comparative analysis of models N/A DenseNet161 achieved 94.38% acc.

ColpoNet15 Inspired by DenseNet Nat. Cancer Institute dataset Accuracy of 81.353%

Parikshit Sanyal et al.16 CNN for detecting ’abnormal’ foci 1838 microphotographs 95.46% diagnosis acc.

Karunakaran et al.17 Ultrasensitive SERS for sample prediction Cervix cell samples Average acc. of 95.46%

Kudva et al.19 Hybrid transfer learning system AlexNet and VGG-16 features Classification acc. of 91.46%

Ghoneim et al.22 CNN-based approaches with ELM classifiers Herlev database 99.5% detection acc. and 91.2% classification acc.

Kang et al.25 Raman spectroscopy, H-CNN Tissue samples Over 94% accuracy in classifying tissues

Proposed Method SipakMed Ensemble Model Overall accuracy is 94%

Table 10.  Results comparison with previous study.
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