Table 2 CNN Model Architecture.

From: A deep ensemble learning approach for squamous cell classification in cervical cancer

Operation

Data Dimensions

Weights

Details

Input

64x64x3

 

Input Layer

Conv2D

64x64x3 \(\rightarrow\) 62x62x16

448

Convolution

Conv2D

62x62x16 \(\rightarrow\) 62x62x16

448

Convolution

Conv2D

62x62x16 \(\rightarrow\) 60x60x32

4640

Convolution

Max Pooling

60x60x32 \(\rightarrow\) 30x30x32

0

Max Pooling

Conv2D

30x30x32 \(\rightarrow\) 28x28x64

18496

Convolution

Max Pooling

28x28x64 \(\rightarrow\) 14x14x64

0

Max Pooling

Conv2D

14x14x646 \(\rightarrow\) 12x12x128

73856

Convolution

Max Pooling

12x12x128 \(\rightarrow\) 6x6x128

0

Max Pooling

Dropout

6x6x128 \(\rightarrow\) 6x6x128

0

Dropout

Flatten

6x6x128 \(\rightarrow\) 4608

0

Flatten

Dense

4608 \(\rightarrow\) 64

294976

Dense

Dropout

64 \(\rightarrow\) 64

0

Dropout

Dense

64 \(\rightarrow\) 5

325

Dense