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The COVID-19 pandemic highlighted the need for improved epidemic spread forecasting, a

critical precursor for developing optimal control measures for spread mitigation. Well-recognized
shortcomings in computing basic and effective reproduction numbers (%o, Z.)-fundamental metrics
for forecasting-underscore the need for new methods for estimating them from available data. We
present a novel computational framework for estimating reproduction numbers from empirical spread
data. The framework is derived from a mechanistic, spatiotemporal, Partial Differential Equation
(PDE) model of epidemic spread utilizing mathematical results from PDE epidemic models. Forecasts
of spatiotemporal effective reproduction number %, using the framework are found to be in excellent
agreement with COVID-19 spread trends for Hamilton County, Ohio, USA, for three distinct periods.
Furthermore, the forecasts are shown to align with corresponding reproduction numbers computed
independently using the Wallinga-Teunis and Cori retrospective methods used in epidemiology. In
summary, the results establish the validity of the framework and indicate applicability to future
epidemics-especially for regions such as counties and for timeframes extending in weeks-even during
dynamic phases when obtainable real-time infection spread data will likely be sparse.

Accurately forecasting the spatiotemporal spread of an epidemic based on currently available, often sparse,
data—whilst arduous even for smaller geographical regions and shorter periods—is essential for developing
countermeasures for mitigation and containment of spread. The challenges in this endeavor were brought into
sharp relief during the COVID-19 pandemic when inadequate predictability held catastrophic consequences
across geographical scales, as public health systems across the world scrambled to implement interventional
measures for quelling the spread. Therefore, advancing the science of forecasting spatiotemporal epidemic
dynamics emerges as a critical aspect of preparedness against future epidemics, especially in the aftermath
of our collective, global COVID-19 experience. This imperative fundamentally motivates this article, where
we propose a novel approach to forecasting epidemic spread based on a computational framework developed
from a compartmental PDE epidemic model. Moreover, the predictive efficacy of the proposed framework is
established using a case study wherein empirical COVID-19 infection spread data from Hamilton County, Ohio,
United States, is used to explicitly validate the numerical results obtained from the new approach. Adding yet
another layer of validation, the spread forecasts obtained from the framework are shown to be well-aligned with
corresponding results independently obtained by applying two distinct, widely used retrospective methods in
epidemiology: the Wallinga-Teunis (W-T) method and the Cori method to the aforementioned data.

In our quest for improved forecasting, we focus on the fundamental metrics used to characterize the intensity
of epidemic spread in theoretical epidemiology as well as in public health policy development—the basic
reproduction number (%o) and the effective reproduction number (%), By definition, %o describes the
average expected number of susceptible individuals that a person infected with a given pathogen, e.g. SARS-
CoV-2, infects in a fully susceptible population, typically at the onset of an epidemic or pandemic. In contrast,

1Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA. 2Division
of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College
of Medicine, Cincinnati, OH, USA. 3Department of Mechanical and Aerospace Engineering, University of Dayton,
Dayton, OH, USA. "email: sramakrishnanl@udayton.edu

Scientific Reports |

(2025) 15:9760 | https://doi.org/10.1038/s41598-025-91811-5 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-91811-5&domain=pdf&date_stamp=2025-3-21

www.nature.com/scientificreports/

Z. represents an active epidemic’s potential for propagation across varying time-frames, accounting also for the
effects of interventional control measures*°. More specifically, Z. is the number of people in a population who
can be infected by an individual at any specific time after the onset of an epidemic. The Z. value changes as the
population becomes increasingly immunized, either by individual immunity acquired following infection or
vaccinations and population change owing to individuals succumbing to the infection. Both %o and Z. for an
epidemic are typically expressed either as individual values or as residing within a specified low-to-high range.
The interpretation is generally straightforward: an % value > 1 implies that the disease is likely to propagate,
with each infected individual on average infecting more than one other person, thus sustaining the outbreak. In
contrast, an Z value < 1 indicates a probable decline in the outbreak, as the average number of new infections
generated by each infected individual is less than one, leading to a gradual reduction in case numbers"°. We note
that during the height of the COVID-19 pandemic, daily reports of Zo and Z. were used to estimate the severity
of the outbreak at different locations. These metrics were also used to determine the impositions of interventions
as well as their relaxation. However, the salient point is that current methods of estimating %o and %, suffer
from several significant limitations. For instance: (1) It is notoriously challenging to estimate them accurately
and in real-time; (2) They are sensitive to the spatial and temporal oscillations in infection rates that profoundly
influence the underlying epidemic dynamics’; (3) They depend not only on the biological characteristics of
emerging pathogens (such as viruses) about which little is known at the start of a new outbreak (duration of
infectivity after a person is infected, transmissibility, and so on) but also on understanding trends in—typically
random—human behavior (e.g. contactrate). In particular, at the start of the COVID-19 pandemic, asymptomatic
spread was not understood and this resulted in underestimated %o and Z.. In addition to the unknowns
and tenuous assumptions involved in their computation, these metrics are usually estimated retrospectively
from serial epidemiological data or alternately by using theoretical mathematical models. The most common
method is to use cumulative incidence data (cumulative epidemic curve of cases)®. The implicit lag between the
calculated %o and the time of onset of cases within a population leads to inaccuracies and discordant estimates
of Zo. To summarize, the heavy reliance on %o and Z. by public health agencies, by the mass media, and by
the public at large often overlooks the scientifically well-recognized limitations associated with computations
of these epidemiological parameters®. A promising pathway to improved forecasting of epidemic spread lies in
developing a predictive methodology that can yield accurate a priori estimates of Zo and Z. readily computable
from currently available data. We therefore now turn to the central question of developing such estimates,
observing that the methodology is best anchored on robust, mechanistic, mathematical models of epidemic
spread. Notably, prior research!® has mapped pathways for computing %, within ordinary differential equation
(ODE)-based models. However, ODE-based models have significant limitations, as will be discussed in the next
paragraph.

A fundamental class of mathematical epidemic models is the compartment model'!*> which has also been
extensively invoked to analyze the COVID-19 pandemic (see, for instance,?). In the most basic formulation
of compartmental models, a population is divided into compartments comprising Susceptible (density of
population denoted by S), Infected (I), and Recovered (R) individuals. However, infections that trigger epidemics
typically have a latency period (understood as the finite time elapsed before an infected individual becomes
infectious) which may be taken into account by introducing a Latent (L) compartment into the model'®. Thus,
an epidemic progresses as susceptible individuals transition, first to the Latent, and then successively onto
the Infected and Recovered compartments, all according to prescribed transition rules. The dynamics of the
epidemic are represented in this framework by a system of coupled differential equations for the compartmental
densities S, I, R. Whilst efforts focused on analyzing exclusively the temporal dynamics of epidemics continue to
follow the historical precedent of treating these equations as ODEs with time as the only independent variable!4,
ODE models—by definition—are incapable of accounting for spatial dynamics. Therefore, consideration
of spatiotemporal epidemic dynamics demands that the aforementioned population densities be treated as
functions of both spatial and temporal variables (e.g. S(x, y, t) in two-dimensional Cartesian space, and time).
It follows then that the coupled equations be formulated as PDEs*!>~17. In particular, parabolic PDEs of the
reaction-diffusion type afford a natural setting to study epidemic dynamics'®-%°. Of note here is the role played
by such reaction-diffusion PDEs in providing a probabilistic description of stochastic dynamic systems. While
this role is well-recognized in statistical mechanics and its applications?"??, the key insight here is that epidemic
models based on reaction-diffusion type PDEs can naturally characterize the dynamical relationships between
randomness in human movement as well as pathogen transmissibility characteristics and stochastic epidemic
spread. However, the complexity of epidemics as stochastic dynamical systems cannot be overemphasized,
with multiple driving factors including geospatial dynamics, compliance with interventions (e.g. masking,
vaccination), not to mention the appearance of new variants with different latency phases, transmissibility, and
pathogenicity®.

Motivated by the above considerations, in recent work, we developed and validated the predictive efficacy of
areaction-diffusion type PDE epidemic model using COVID-19 spread data from both Hamilton County, Ohio.
The methodology used was to first let the developed PDE model learn its defining parameters from the actual
spread data spanning a period of 30 days, based on an optimal learning scheme. Prediction of spatiotemporal
spread for the succeeding 15 days was then obtained by numerically solving the PDE model with the learned
parameters. This prediction was validated against the actual spread data for those 15 days. Our objective here
is to leverage these encouraging findings and develop a methodology to accurately estimate the reproduction
numbers %y and Z. into the future, from the PDE model trained with available data from the past. Here, we
choose data from the geographical location of the county and the period of 15 days to validate the estimates of
the reproduction numbers because our previous results indicate those choices to be adequately aligned with
the modeling assumptions. Indeed, the accuracy of estimation will depend on these choices. For instance,
assuming that the model parameters learned using data from the previous 30 days will be valid for an arbitrary
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period beyond a few weeks would likely lead to erroneous predictions, as would similar assumptions for larger
geographical locations.

We now turn to the question of mathematically deriving reproduction numbers from epidemic models. The
pioneering work in this context was reported for ODEs models where the population densities are considered
exclusively to the functions of time. The key result is that %, is the principal eigenvalue (i.e. the spectral radius)
of the Next Generation Matrix derived from the ODE framework. This idea first generalized to PDE frameworks
in!%24, provides the analytical basis for the computations of reproduction numbers - a cornerstone of this article.
The final aspect is to validate the results from the developed computational framework. This important step is
accomplished by comparing the estimated %o and %Z. numbers with those obtained using the W-T and Cori
methods; an established, yet retrospective method used in epidemiology. More specifically, the comparative
methods facilitate the computation of reproduction numbers from existing spread data. As such, we compare the
reproduction number estimates obtained from our PDE-based method applied to Hamilton County COVID-19
spread data with the corresponding estimates obtained by applying the W-T and Cori method to the same data.
This exercise, which we repeat for data from multiple timeframes, allows us to validate our method.

To summarize the primary contributions of this article: (i) We propose an alternate method of computing
Ro and Z. that leverages the results of a spatiotemporal PDE model developed and validated by the authors in
a previous study of stochastic epidemic spread. In particular, the method advances similar methods proposed in
the literature by introducing a specific, novel numerical framework for computing different model components.
As a result, the proposed method provides a mechanism to predictively compute the Z. values based on the
PDE model that uses past data to predict the future evolution of an epidemic. The currently used approaches,
such as the W=T method?> and the Cori method?®, are retrospective and, as such, have not been used in a
predictive manner to compute Z. values. Furthermore, the proposed method, since it utilizes a spatiotemporal
PDE model, also provides a natural mechanism to calculate the Z. values at any desired level of spatial
granularity. Lastly, while the W-T, Cori, and similar methods are entirely data-driven methods of computing
e, the proposed method combines data with a mechanistic PDE model that captures the physics of the spread
along with inherent uncertainties. As such, the proposed method is robust to uncertainties in data arising from
the data-gathering process. (ii) The paper provides a numerical implementation and validation of the proposed
approach using data obtained from Hamilton County, OH for three different time frames. A comparison with
the W-T method?® and Cori method?® for each of the time frames demonstrates that the proposed method
accurately captures the trends shown by the actual infection data even in certain cases where the comparative
methods are found to be inadequate. To the best of our knowledge, this article presents the first computations of
Z. values on real-world epidemic data using a spatiotemporal PDE model.

The rest of the article is set as follows. We present the foundational PDE epidemic model in Section 2a,
followed by a discussion of its discretized version essential for the numerical implementation, in Section 2b. The
Next Generation Matrix (NGM) obtained from the PDE framework is discussed in Section 2c, followed by the
mathematical derivation of the reproduction numbers as the spectral radius of the NGM. The corresponding
derivation of the reproduction numbers in the discretized case is presented in Section . The essential details of
the W-T and the Cori methods are provided in Section . Turning next to applying the developed framework
to COVID-19 spread data from Hamilton County , the steps are detailed in “Case study”. Specifically, model
parameter optimization is discussed in “Hamilton County, Ohio’, and the details of the model validation are
presented in Section “Model validation”. We present and discuss the results of the validation in “Results”. The
article concludes in in “Discussion and conclusions” with final remarks, including an outlook for further research.

Analytical framework

Partial differential equation (PDE) model

In this paper, we adopt a compartmental modeling approach that may be traced back to the seminal work of
Kermack and Mckendrick?” in mathematical epidemiology. Essentially, this approach partitions a population
subject to an epidemic outbreak into a distinct number of disjoint compartments; in the simplest models,
these are the Susceptible (S), Infected (I), and Recovered (R) compartments. Infection spread is governed by
a transition rule representing the mapping of individuals from the Susceptible to the Infected compartment
(i.e. the process of susceptible individuals becoming infected). Recovery is likewise represented by a transition
rule that maps individuals from the Infected to the Recovered compartment. Moreover, the overall dynamics
of epidemic evolution are represented by a system of coupled differential equations for the population densities
S, I, and R, with the coupling terms representing the corresponding compartmental transitions. As an epidemic
evolves—typically through multiple outbreaks—I correspondingly records multiple local maxima to ultimately
approach and stay bounded around a stable equilibrium value. Attainment of this endemic equilibrium marks
the end of the epidemic outbreak. We note that the I need not necessarily vanish at this equilibrium but attain a
value below the threshold required to trigger further outbreaks.

In the compartmental models discussed above, there exists a fundamental distinction between the two
types of differential equations that characterize a model—ODE and PDE. ODE-based SIR models consider
the compartmental density functions (S, I, R) exclusively as functions of time; consequently, such models only
account for temporal epidemic dynamics. In other words, ODE models only track changes in the number of
individuals in each compartment over time and, therefore, are unable to address the spatial dynamics of epidemic
spread?®. On the other hand, PDE models account for spatial variations that emerge from the interactions in a
population and thereby capture the heterogeneity of disease spread across different locations. Specifically, the
coupled PDEs in such a model describe how the distribution of individuals in each compartment changes not
only over time but also across space?, thereby describing spatiotemporal disease transmission.

A typical characteristic of infection spread is the latency period when an individual is infected but not
infectious yet*®. Accounting for this feature motivates the introduction of a Latent (L) compartment into
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epidemic models. Yet another subtle but significant aspect related to latency and spatiotemporal spread is the
spatial displacement of infectious individuals in whom the infection is latent. This aspect may be accounted for
by the introduction of a convolution term in PDE models (see, for instance, Li et al.3).

Finally, it is remarkable that diffusive PDE models-viewed through the lens of statistical mechanics—
can naturally provide a probabilistic interpretation of epidemic spread dynamics. The underpinnings of this
interpretation lie in the fact that the probability density functions that describe diffusive stochastic processes
satisfy PDEs similar to those that arise in PDE epidemic models. Given that uncertainties—due to random
human behavior and random transmission characteristics of the pathogen that triggers an epidemic—play a
critical role in dictating epidemic spread, the probabilistic interpretation further endows PDE models with
immense power to analyze stochastic epidemic spread.

In light of the above discussion, we now consider the compartmental epidemic model described by the
following coupled system of PDEs:

% — A+ nsVS — 0S — IS (1)
oL . oo )
OL v Lt 018 — e ( / / 1y, — )8yt~ T)fa(x,y)dxdy> @

g VI — 61 + e X (/ / (z,y,t —1)S(z,y,t — 7) fa(z, y)dwdy) (3)

at nrVR — 6R + wl (4)

A is the birth rate in the spatial domain. N, is the total population in cell (x, y), remains constant
throughout the specified time period of simulation. 7s is the diffusion coeflicient representing the intensity of
random motion of the Susceptible population. 7, is the diffusion coeflicient representing the intensity of the
random motion of the Latent population. 7s is the diffusion coefficient representing the intensity of random
motion of the Infected population. nr is the diffusion coeflicient representing the intensity of random motion
of the Recovered population. V* is the Laplacian operator representing the Brownian motion of individuals in
a system. 0 is the mortality rate due to natural deaths. ¢ is the infection rate. J is the rate of individuals exiting
the infected compartment due to deaths or recovery. w is the recovery rate of individuals. e is the fraction of the
infected population that survives the latency period and enters the infected category. f.(x,y) is the Gaussian
kernel defining the extent of the mobility of the latent population. 7 is the latency period of the model. S, L, I
& R is the population densities of Susceptible, Latent, Infected, and Recovered individuals at a specific location
and time.

Focusing now on the details of the model equations—which are adapted from Li et al.'>—firstly, we reiterate
that the population is categorized into disjoint subsets representing the population densities of Susceptible (S),
Latent (L), Infectious (I) and Recovered (R) individuals. Note that the population densities are simultaneously
functions of the (Cartesian) spatial variables (x, y) as well as time ¢, with the spatiotemporal dynamics of an
epidemic dictated by the system of PDEs as individuals transition through the Susceptible Latent, Infected, and
Recovered compartments. Secondly, we note that the diffusion terms in the equations (the Laplacian operator
V®) represent the random spatial motion of individuals in the respective compartments. This feature is inherited
from the fact that invoking the theory of Brownian motion, under appropriate normalization conditions, the
population densities in the model may be interpreted as probability density functions describing diffusive
stochastic processes. Thirdly, in our previous work, the efficacy of this PDE model to predict real-world epidemic
spread was validated using empirical COVID-19 data from both a larger spatial domain (the State of Ohio,
USA) as well as a smaller one (Hamilton County, Ohio, USA)3!. Indeed, the present effort is motivated by and
grounded upon the aforementioned validation analysis.

PDE model: numerical framework

Our objective of computing reproduction numbers from the PDE model involves numerically solving the
PDEs. To this end, guided by our previous work®!, we now discretize the system of PDEs using Euler’s forward
algorithm as follows.

Sewt =NA+ns(St 1+ Sayo1 4+ Sisry + Sao1y) +(L—dns —0— — zTy)S;F,y )
L%l = nL(Lz,y+1 + Lf,y—l + Lz—&-l,y + Lf—l,y) + (1 - 4WL)L£,y + %fxT,nyT,y - E%UmT,y (6)
I;;H = 771(I§,y+1 + [Zc:yfl + I$+1,y + Igfl,y) + (1 —4dnr — 5) oy T e%azy 7)
Ry 3t = nr(Ryyp1 + Ray1 + Rop1y + Roo1y) + (1 —dnr — 0)Ry , +wly, (8)
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Here X' denotes the value of variable X (X € {S, L, I, R}), on day (T + 1) in the cell with discretized
spatial coordinates (x, y) in the two-dimensional domain under consideration, as a function of the values of the
corresponding variables on the previous day T. In the discretization, .4 is the number of cells in each dimension
of the domain, and o' denotes the latent population in a cell on day (T). Two points regarding how latency is
taken into account are in order. Firstly, T represents the latency period; therefore, ol is computed for the day
T based on I7 =7 and ST~ —the values of I and S from (T — 7) days ago. Secondly, we consider the realistic
scenario of spatial migration of the infected population during the latency period contributing to the spread.
This is represented by the convolution kernel f, on the RHS of Eq. (9), the explicit form of which is given by the
Gaussian distribution in Eq. (10). We note that the Gaussian distribution captures the diminishing probability of
people moving to a farther location compared to a closer one!?.

We consider no-flux boundary conditions in the numerical solutions of the PDEs. In other words, we
assume no traffic of individuals in either direction at the boundary of the spatial domain. Moreover, this no-flux
condition is enforced in the numerical solution by having“reflecting” boundaries for the grid, i.e. attempted
transgression of the boundary will result in individuals bouncing back into the cells that define the boundary.
This assumption allows us to maintain the law of conservation with respect to the population of the system.

(10)

Basic reproduction number: analytical formulation

The basic reproduction number % is defined as the average expected number of secondary infections that
occur in a fully susceptible population due to contact with an infectious individual. A disease spreads if the
reproduction number is greater than 1; contrapositively, the spread ceases if the reproduction number is less
than 1. The infection becomes an epidemic outbreak if % stays persistently greater than 1'°. On the other
hand, if %, stays consistently less than 1 for a considerable amount of time, it indicates a waning phase of an
epidemic™®.

A key idea in this work is to numerically compute the reproduction number %y and hence Z. for a
spatiotemporal domain from a discretized version of the PDE model. To establish the mathematical basis for this
computation, we first note the fundamental result from ODE-based epidemic models that % is the principal
or largest eigenvalue (i.e., the spectral radius) of the next-generation matrix derived from an ODE model*®3233,
Whilst this result resists straightforward generalization to the PDE case, approaches such as employing a
variational formula have been reported for basic Susceptible-Infected-Susceptible (S, I, S) models with diffusion
(see, for instance, Allen et al.3%). In particular, Wang et. al.!>* established %, for reaction-diffusion PDE systems
as the spectral radius of the next-infection operator, using the theory of principal eigenvalues. We find that this
approach can be fruitfully adapted for our purposes and now provide an outline of the development, referring
to the previous literature!®*4% for details.

At the outset, we note that out of the four compartments in the model that we consider, the Latent and Infected
compartments form a subsystem of infected states, whereas the Susceptible and Recovered compartments are
the uninfected states. Also, note that the initial infection-free state correspondsto L = I = R = 0.

Consider a compartmental model comprising n compartments, where 7 is the disjoint union of an arbitrary
number of infected and susceptible compartments.

Denoting the population density in the *" compartment by u;(t,x), let us collect the populations in all
compartments in a column vector u (¢, x) = (u1(¢,x), ..., un(t,x))", where each u; is non-negative, x = [z, y]
is the position vector in 2-dimensional space R” represented using Cartesian coordinates, and T is the standard
transpose operator. Next, the total number of compartments is categorized into two distinct (disjoint) groups: m
infected compartments, denoted by ¢ = 1, ..., m,, and the remaining uninfected compartments, identified by
i =m+1,...,n. Ageneric reaction-diffusion system of PDEs (along with the necessary boundary conditions)
representing the aforementioned compartmental model can now be written as:

Qi = V- (di(x) Vi) + Fi(x,u) — Yi(x, u),

1<i<n,t>0,x€Q, (11)

Qui=0 V1<i<nid;>0,t>0,x€
In the above equation, u; is the density of individuals in the i*" compartment, while d;(x) is the corresponding
diffusion coefficient (representing the random movement of the population u;). The terms .%; and ¥; are the
reaction terms in the i*" compartment (accounting for transitions between compartments induced by the disease
spread). Specifically, .%; (x, u) characterizes the rate at which the newly infected population is introduced into a
given compartment i. Also,

Y (x,u) = (Y (xu) — ¥ (x,u) = (% (xu),...,% (x, u))T — (T (xu),. . T (x, u))T
= (“//1(X7u)7...,”//n(x7u))T

where 7t denotes the transfer rate of individuals into this compartment through all means, and ¥~ is the
transfer rate of individuals out of the compartments. We note that the PDEs are defined in the spatial domain 2
(a subset of R?), which is assumed to have a smooth (i.e. continuously differentiable) boundary 2. The symbol
v represents the outward-facing unit normal vector along the boundary 9. The second of the equations 11
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is the no-flux boundary condition and reflects the physical assumption that the boundary is impermeable to
individual movement in both the inward and outward directions.

It is useful here to write the system of Eq. (11) in an equivalent form by expanding the first term of the RHS
of the PDE using the product rule for differentiation as:

3;;' = i(X)v2ui - Ci(X)Vui + yi()g ’LL) - %(X7 U), <i<n,t> 07 X € Q7

(12)
Qui =0 V1<i<nyd;>0,t>0,x€ 0N
where,
ci(x) = —id-(x) (13)
T - dX T

Before proceeding to define the basic reproduction number %y corresponding to the PDE Eq. (12), we now
briefly discuss the key ideas behind the Next Generation Operator defined in terms of the key operators .%;
and ¥. Firstly we note that these operators were first defined in the context of ODE models as matrices®.
Accordingly, the Next Generation Matrix (NGM), is obtained in terms of the F and V matrices as FV ™! The
F matrix is called the “new infection matrix” or the “transmission matrix”. It represents the rate at which new
infections are generated by the currently infected individuals and is an m X m matrix (considering only the
infected group) with its (p, ¢)" entry given by:

8.7,

Fpq = ou
q

(). (14)

Here u° represents the disease-free equilibrium point. These matrices are evaluated at the Disease Free
Equilibrium (DFE), where no infections are present, serving as a crucial starting point for determining %o,
which quantifies the potential for disease spread in a fully susceptible population. Moreover, each element of the
matrix Fjq represents the expected number of new infections in the compartment p produced by an infected
individual in compartment q over a single infectious period in a fully susceptible population. On the other hand,
the V matrix, which is known as the “transition matrix” or “transfer matrix”, characterizes the movement of
individuals between different compartments due to recovery, progression of the disease, or death. It is also an
m X m matrix (once again considering only the infected group) with its (p, ¢)*" entry given by:

V= o (u®). (15)

P17 Dug

The basic reproduction number %y is then established as the spectral radius of the NGM. The underlying rationale
is the fact that the largest absolute eigenvalue—which is the spectral radius—of the NGM matrix represents the
peak average number of new infections produced by a single infected individual. This takes into account the
rate of transfer among various stages of the disease within a single infection cycle. Essentially, this value reflects
the most significant rate of disease transmission in a population, considering the detailed progression and the
contributing interactions.

Refocusing our attention on the PDE, and referring to the discussion in!®24 for more details, consider the
following vector-valued reaction-diffusion equation. We note that this is identical to the previous equations in
12, except that here only all the infected compartments are considered. Moreover, the corresponding population
densities are collected in a column vector. The vector-valued PDE is:

% = di(x)V?u — ar(x)Vur — V(x)ur, t>0,x € €,

(16)
9u =0, di>0,V1<i<m, t>0,x€0dQ,
Where ur= (u1, ..., um )" and dy(x) = diag(di(x),...,dm(x)) and ci(x) = diag(ci(x), ..., cm(x)).

Now, let .7 (t) be the operator that temporally propagates an initial spatial distribution that satisfies the PDE
Eqn. 16. If we take the initial infection distribution (arrangement of infections at the beginning of the observation
period) to be {(x)= (u1(t = 0,%),...,um(t = 0,x))", then, .7 (t)({(x)) represents the distribution of the
infections for any ¢ > 0. Therefore, the spread of new infections at any time ¢ > 0 can be given as F'.7 (t)({(x))
. The distribution of total new infections can then be represented by the following equation:

“+oo
/ F7()(¢(x)) dt. (17)
0

Next, consider the NGM operator K that takes the starting distribution of infections and describes how it spreads
to the total number of infected individuals over time, as explained in?3. It can be defined as:

+oo
K:Cx)— F T(1)(C(x)) dt. (18)

0
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Following!®*4%, the spectral radius of K yields the basic reproduction number of the PDE model:

o = p(K), (19)

where p is the spectral radius of the matrix. Moreover, Theorem 3.1 of Wang et al.!?, (which follows from
Theorem 3.12 of Thieme et al.3®), provides the following equation:

—+oo

K()=F F(t)(¢)dt = —FT(¢), (20)

0

where I' := V.(diVV') — V. The term V.(diVV) represents the divergence of the gradient of V multiplied by
a diffusion coefficient df.

Basic reproduction number: numerical formulation

We now present the numerical formulation—within a discretized setting—corresponding to the mathematical
description of Zy provided in “Basic reproduction number: analytical formulationROspsanalytical”
Let p be an eigenvalue of K in Eq. (17) such that K({(x)) = p¢(x) with corresponding eigenvector

<( ) (Cl( )7 7Cm( )) . Then,
—FT 7 (¢(x)) = 1 (x). 1)

Suppose that V = diag(vi,...,vm), ¥(x)= —T7H((x)), where ¥(x) = (¢1(x), .., ¥m(x))T, then
—T((x)) = ((x)s ie.,

— (di(x) Vi (%) — ci(x) Vi (x) — vithi(x)) = Gi(x), 1<i<m. (22)

For numerical computation, we consider a square grid of size 4" x .4". We consider a sufficiently large integer
A > 0 that represents the grid size of the computational domain. In the formulation below, we compute the
reproduction number for each row indexed by y. For each row y, we consider a one-dimensional discretized
spatial domain (normalized) along the x-axis [0, 1]. Here,z; = j/ A", di; = di(z;), cij = ci(z;),%i; = i(x;)
and i; = Ci(z;) forj =1,..., 4. By applying a central difference scheme, we rewrite Eq. (22) as:

Yij+1 = 295 + i1 Yig+1 = Pij—1

(dij /.47 — Cij e — vithij) R Gij (23)

forall 1 << A, with ;1 = 9s,2,¥i, 4 = i,y —1 according to the no-flux, Neumann boundary conditions.
By combining the .4 terms in a matrix, we obtain:

AV = (. (24)
where A = diag(A1, ..., An), and:
a1 —2dia N0 0 0
b;‘tQai’Q b;2 : :
Ai = )
O b;‘,—m/—l i, ¥ —1 by y_1
0 0 —2d; 4 NP aiw (25)
wz 1 Gi1
Gi2
v, = and (; =
1/]7. N =1 Ci,ﬂ—l
wz N Ci,W
w i t h
bIj = —t/V(di,jJV-i- FL2J ), b;7 = —,/V(diyj. C;’j ), and ai,j = Qdiyj/l/z + Z/i;fOT‘ all 0<j5< N

From Theorems 3.1 and 3.2 in Wang et al.?4, it follows that:

Fip(z) = =FT ' (((2)) = pl(@). (26)
The above equation may also be written as:
(F Q) 74)¥ = puc. 27)
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where .74 is the identity matrix of dimensions (.#") X (.#") and ) is the Kronecker product. The standard
definition of the Kronecker product is as follows: Given an r X s matrix M with elements m;; and another
matrix Q of size p X ¢,

mllQ mlsQ
M®Q= : :
mMQ mrsQ

Substituting ¥ ~ A~'® in the above equation yields:
(F Q) 74)A™ ¢ . (28)
Therefore, we can now state the following central result:

Zo)” = p((F Q) F)A™H). (29)

We note the introduction of row index y in the subscript above to emphasize that the above equation computes
the reproduction number for row y.

As discussed previously, at the onset of an epidemic, % acts as a marker of the spread intensity, predicated on
the assumption that the entire population is susceptible. However, as the epidemic progresses, this assumption
becomes tenuous, owing to factors including the acquisition of immunity, behavioural modifications, and spatial
heterogeneities. In other words, % is an inadequate measure of the intensity of spread beyond the initial stages
of an active epidemic®’. This necessitates the introduction of Z., which reflects the actual average number of
secondary cases per infectious case at a given time and space for an evolving epidemic. Calculating Z. is crucial
for understanding the current state of epidemic spread at any point in time, as well as for assessing the impact
of public health interventions and making informed decisions about future strategies®. It helps capture the
dynamic nature of the epidemic by accounting for changes in susceptibility, contact patterns, and mobility, thus

providing a more timely and context-specific metric. Referring to!*, we note that:
Reiy)” = Aory)” % (S/P). (30)

where S = The total number of susceptible individuals at a point in time, and P = The total population at that
time.

Reproduction number for the discretized SLIR model

In the light of the discussion in the previous section, we now focus on the reproduction number Z. for the
discretized version (Egs. 5-8) of our underlying SLIR model. At the outset, we note that the two infected
compartments in our model are the Latent and the Infected ones given in (6) and (7), respectively. We recall
that when an individual gets infected, they first migrate into the Latent compartment (where they are considered
to be infected but not infectious). Once they are fully infectious after a specific incubation period (7), they
transition into the Infected compartment.

Next, we recall that in the model, all new infections are accounted for in the F matrix. The F and V matrices
can be derived by linearizing the discretized equations of the model; the linearization may be achieved by the
standard analytical method of computing the Jacobian (first-order partial derivatives of a vector function) of each
equation relative to the others at an infection-free equilibrium state denoted by (S°, L°, I°, R®) = (5°,0,0,0).
The infection-free steady state, as discussed previously, represents the initial scenario when the entire populatlon
is susceptible (denoted by S°), and, therefore, there are no individuals in the Latent, Infected or Recovered states.
The linearization procedure facilitates the estimation of %, as described analytically in the previous sections.
Next, we determine the F and V matrices for our underlying model, as outlined in the Egs. (6) and (7). As the
first step in this process, we compute the .% and ¥ matrices, defined in Eq. (12), as:

6 1T oT
F = [Nfzgsz,y] (31)

77L(Lz y+1 +Lzy 1 +Lz+ +Lz 1,y)+
. (1—dan)LT, —e2 7, S Ly T Sey T fal?
— (32)
nI(Ix y+1+13y 1+Iac+1y+-[x 1y)+
(1—4nr — +€N Ez IZy 1IT TST Tf‘ll2

From Eqns. 14 and 15, we obtain the matrices Fand V as:

F= {8 ;6690} (33)
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L —dnr _6% 21{1 Zy 1ST 7 fal?
V= (34)

0 (1_4771_5+6sz 1Ey 15 " fal®

We note that the disease-free equilibrium, S 0 represents a steady state where the number of individuals
becoming susceptible (e.g., through birth, represented by \) is balanced by the number of individuals leaving
the susceptible state (e.g., through natural death, which is represented by ). The equilibrium value of S° in Eq.
(33) is therefore determined by the ratio of these rates!®244;

5% =\/6. (35)

The numerical formulation presented in “Basic reproduction number: numerical formulation” is now used in a
grid framework where x and y represent the row and column indices. L., represents the Latent population for
the grid element positioned at row x and column y. We now apply Eq. (23) to obtain the Latent population L. ,
and arrive at the following equation:

— AN (dp % N )L y—1 + (2(dL)N? = Vi) Loy — A (dr * N VLo yi1 = Loy (36)

where V1, which represents the contributions to V' (see Eqn: 34) from the Latent compartment, is given by:

Vi = (1—4nL) —e—ZZSW ol (37)

=1 y=1

We also note, in deriving 36, that we assume the diffusion coefficient for the Latent population to be spatially
uniform and given by dr. From Eq. (23), we note that cz, vanishes under the above assumption. Therefore, the
Ar matrix is obtained as:

ar,1 —2dL,1/V2
by ar,2 br o

Ap=| - (38)
bj:r,dv71 ar, v -1 b;,ﬂfl

bz,w ar,x

where,

bf = =N (dpy + N)
ar.y = (2dL yJV2+VL) (39)
by, = —N(dpy +N)

Similarly, we now determine the matrix A;. First, we compute the I , using the Eq. (23):

— N (dy % N g1+ (20d1) AN = Vi) — N (dr x N yi1 = Loy, (40)

where V7, which represents the contributions in V (see Eq. (34)) from Infected compartment, is given by:

Vi =(1—4n; —90) +67225T’y7ﬁ112 (41)

=1 y=1

In the derivation of Eq. (40), we note that the diffusion coefficient for the Infected compartment (dr) is assumed
to be spatially uniform. This assumption leads to the elimination of the term c; in Eq. (23). Therefore, the A
matrix is given by:

ar,1 72d[71</1/2

b;:? arg,2 bI_,2
Ar = (42)
bf y—r arw—1 by,
b;rw ar,y
where,
b+ = /V(d[ y * </V)
ajy = (2d1 yJV2 + V[) (43)
bi,y /V(dLy * </V)
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Therefore, the matrix A is given by:
A
A= { L AJ (44)

By substituting the obtained expressions for the matrix A (Eq. 44) and the matrix F (Eq. 33) into Eq. (28) and
solving the eigenvalue problem described by Eq. (28), one obtains the principal eigenvalue p in the equation (Eq.
29). From there, we find the Z, f(f)E of the system by using Eq. (30) that provides the reproduction number of for

row y at any specified time. The overall reproduction number of the entire region is then computed by averaging
over all .4 rows using:
N PDE
B — Zy: Ze(y) (45)
c N

where, ’./” is the grid size of the spatial domain, %f(f)E is the reproduction number for the row (y), and Z. is

the reproduction number for the entire domain.

The Wallinga-Teunis method

To carry out a comparative study with respect to established (albeit retrospective) methods for calculating the
reproduction number, we first choose the Wallinga & Teunis (W*-T) method?. To determine the reproduction
number for a primary case, the W-T method employs the probability distribution for the generation interval
(also called the serial interval), which is the time from symptom onset in a primary case to symptom onset in
a secondary case. By using this distribution, the method estimates the relative likelihood that a secondary case
has been infected by a specific primary case, given the observed difference in their time of symptom onset. The
effective reproduction number is then calculated by summing over all observed secondary cases, each weighted
by its relative likelihood of being infected by the particular primary case. Our calculations applying the W-T
method were carried out through the R package, EpiEstimv2.2 — 426, This framework assumes that there
is a complete recording of cases and that there are no asymptomatic cases. The W-T method is completely
retrospective, meaning it contains a sliding window that takes in the data for the previous 30 days as input to
provide the Z. estimates for a given day.

We choose the Wallinga-Teunis (W-T) method as a validation tool for our study as it is a well-established
method that has been widely used in the field of epidemiology and by public health agencies, including the
Center for Disease Control (CDC), the World Health Organization (WHO), as well in academic research.
In addition to being used in multiple studies during the COVID-19 pandemic (see, for instance,*"*2), it was
also used during the previous SARS epidemic and for other infectious respiratory disease epidemics to gain
a comprehensive understanding of the transmission dynamics over time. For our purposes, one of the main
strengths of the W-T method is that it does not assume a constant serial interval, allowing for dynamic changes
over time resulting from interventions and changes in the pathogen (virus). It is also robust when the incidence
is low, and it considers the entire epidemic curve, thus providing a good benchmark?*2, Moreover, it relies
on retrospectively collected data. For those reasons, we employ the W-T method to validate the prediction
performance of our framework.

Cori method

To further buttress the validation, we also employ the Cori method—yet another widely adopted, retrospective
method in epidemiology for reproduction number computations®. The Cori method focuses on obtaining
instantaneous values ofZ.. This method assumes that the random spread of disease over time follows a Poisson
process with mean R 22:1 I:—sws, where I;_; is the incidence infected in time step (¢ — s) and ws is a

probability distribution describing the average infectiousness profile after infection, approximated by the
distribution of the serial interval.

The infectiousness profile of individuals-indicating how contagious they are after becoming infected-is
modeled using a distribution of the serial interval. The model assumes that the transmissibility of the disease
(i.e., the ease of spread) remains constant over a fixed period. To estimate the reproduction number (%), this
method follows a Bayesian framework. In this framework, prior information about transmissibility is represented
by a Gamma prior distribution, which is based on previous knowledge or appropriate assumptions.

Post observing new data, the model updates its estimate of the reproduction number using this Bayesian
estimation approach. The updated estimate (posterior distribution) for the reproduction number also follows a
Gamma distribution but with new parameters that reflect the observed data.

Similar to the W-T method, the latest R package of EpiEstimv2.2 — 426, developed by the Cori team at
Imperial College, London, UK** was employed. We ran the program on R4.2.2 (64 bit), using the function
“estimate_R’for the Cori method. We calculated the Z. values over sliding weekly windows in each timeframe.

Case study

Hamilton County, Ohio

We now apply the ideas and methodology presented in the previous sections to numerically compute
reproduction numbers from COVID-19 data for Hamilton County, Ohio, USA, and also validate the results by
comparing them to those obtained from the W-T and Cori methods. To this end, we first follow our previous
work** to predict the trajectory of the S, I, and R variables for Hamilton County for time frames of 15 days,
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based on actual data for the preceding 30 days. We refer to this actual dataset - provided by the Epidemiology
Division of Hamilton County Public Health?® - as the“true dataset” We note that this spatiotemporal dataset
provides the daily count of infections and deaths in each zip code across the entire county, starting from April
20,2020 (Day 1 in our study). We examined three distinct periods, each spanning 45 days, in our case study. The
first timeframe, spanning from April 20, 2020, to June 3, 2020, represented the initial stage of the epidemic. The
second timeframe analyzed data from October 15, 2020 to December 28, 2020, and lastly, the third timeframe
focused on the time period February 15, 2021, to March 31, 2021. The considered timelines and the rationale
supporting their selection are as follows:

1. Timeframe-1 (T1): April 20, 2020, to June 3, 2020. This period represents the initial phase of the pandemic
for the County, coinciding with the commencement of lockdowns and other containment measures.

2. Timeframe-2 (T2): October 15, 2020 to December 28, 2020. This timeframe captures the onset of increase
of infections trend and thereby offers a window into the rapid dynamics of the spread.

3. Timeframe-3 (T3): February 15, 2021, to March 31, 2021. This period corresponds to the decline of
infections immediately following the peak, offering insights into the relaxation dynamics of the post-peak
scenario.

We initiate the process by considering the entire population of the county as the initial value for S. When
individuals in the S compartment become infected, they transition to the Latent (L) compartment, characterized
as infected yet incapable of transmitting the disease. After this latency phase, guided by the convolution kernel’s
dynamics, these individuals then progress to the infected compartment. For the duration of the latency period
in this study, we reference the work of He et al.*®. This period, indicated by the symbol 7, is assigned to be 5
days. For each subsequent day, we calculate the value of S by deducting the total number of cases, recoveries,
and deaths from the previous day’s data. We emphasize that we have completely and comprehensively utilized
all the available data as such for each specific time frame. Once we pre-process the dataset in this manner, we
incorporate it into our discretized model.

For our spatial analysis in the study, the shapefile of Hamilton County was utilized, obtained specifically
from the IPUMS National Historical Geographic Information System dataset?”. The county’s geography was
methodically divided into a structured cellular grid, comprising of 3600 cells in a 60 x 60 arrangement,
cumulatively spanning roughly 410 square miles in area. The dimensions of this mesh grid were chosen by
considering the following three pivotal factors:

1. The precision necessary for the study’s accuracy,
2. The computation cost, and
3. The granularity of the available data, particularly the population statistics detailed at the zip code level.

A coarser mesh might simplify the computations but at the cost of missing details and increased discretization
errors, while an excessively fine mesh could lead to computational loads. Our selected grid size thus represents an
optimized compromise, aligning the model’s accuracy with feasible computational demands. Figure 1 provides
a visual representation of the Hamilton County shapefile and the corresponding grid size distribution. Each cell
within this grid is characterized by the following attributes:

(i) A logical value indicating whether the cell belongs inside Hamilton County,
(ii) alogical value indicating if the cell is part of the boundary,
(iii) Initial values for Susceptible (S), Infected (I) and Recovered (R) population to each cell.

Figure 2 demonstrates the distribution of population in each cell, with respect to the population in the zip code
to which the cell belongs. It's important to note that our model operates in terms of population densities and
the provided data from the shapefile of Hamilton county®” contains actual population numbers for each Zip-
code in Hamilton county. To bridge this gap, we assume that the data is uniformly distributed within each zip
code. By doing so, we calculate the actual values of S, I, and R for each cell in our grid. We achieve this by evenly
distributing the true numbers of S, I, and R from the dataset across all cells representing that county. This results
in an estimated population density for each category in each cell, which we then utilize in our model. It is to be
noted that this model does not assume spatial uniformity over the entire county. For numerical computations,
we divide the county (more generally, any spatial region) into a number of grid cells. We assume uniformity
in population distribution in each of those cells. Moreover, we note that the finest granularity of publicly
available population data for the county is at the level of zip-code. Hence, we are constrained to assume uniform
population density for all cells that belong to a zip-code. The use of population demographic information (age,
gender, ethnicity, and so on) may affect the model output if such factors are considered in the underlying PDE
model equations. Such a study, though of interest, is beyond the scope of the present manuscript. We note that
a case study on predicting spread dynamics across a larger spatial domain was reported in our previous article
Majid et al.**4, where we analyzed the PDE model predictions using COVID-19 data from entire state of Ohio,
USA.

For our simulations, we consider a Neumann (no-flux) boundary condition, which treats the cells on the
boundary as a solid wall, that the population can not cross. Any attempt to cross the boundary will result in the
individual being reflected to their nearest neighboring cell, which is present within the boundary. This allows us
to maintain population conservation in the domain (apart from the deaths).

To get the Z. estimates for validation, we run the W-T and Cori methods on the Hamilton County
COVID-19 dataset. We have used the parametric method to define the serial interval to have a Gamma prior
distribution with a mean of 5 days and a standard deviation of 3 days*®. The “wallinga_teunis” function in the R
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Fig. 1. Discretized cell representation for Hamilton County, Ohio.
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Fig. 2. Distribution of population in Hamilton County. The map was generated using QGIS (version
3.22.10)*, a free and open-source geographic information systems software, using the publicly available
shapefile data?’” of Hamilton County, Ohio.
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package“EpiEstim”was used to carry out the calculation with 100 simulations. The size of the window was set to
30 days to match the amount of training data used in our PDE model.

Model parameter optimization

Our objective is to obtain the model parameters that minimize the objective function representing the error
between the ground truth and the model results. By comparing the model results with the ground truth data
for each timeline, we aim to fine-tune the model parameters to better reflect the real-world infection dynamics
during these periods. The objective function used in this study is given by:

N, T
_ 1 X 2
Ln= |57 > (X(A,t) — X(N,1)) (46)
Xe{S,I,R} z=1 t=1

Ly, is the error between the model data and true data is calculated using the root-mean-square approach. IV,
is the number of zip-codes (N, = 58). T is the total number of days in the trainin% phase (T = 30). t is the
current time index. z is the current zip-code index. X is the ground truth data of the 2*" zip-code. X is the model
output obtained by summing the values for all the cells belonging to the 2" Zip-code.

We initialize the values of the non-dimensional parameters under a reasonable range and start optimizing
the parameters using the initial 30 days’true data. Adopting the methods described in these references:*->!,
we employ a Genetic Algorithm (GA) to optimize the non-dimensional parameters in our model equations,
ensuring a good fit to the actual data spanning 30 days (called training phase) from Hamilton County. Once we
have obtained the parameter values that best match the true data, we then use them to predict the trajectory of
infections for the next 15 consecutive days.

Employing GA, we heuristically optimize the 10 non-dimensional parameters in our discretized PDE
compartmental model (Egs. 5-8). The GA was chosen specifically for its ability to navigate complex, multi-
dimensional parameter spaces effectively. The fitness function, derived from Eq. (46), quantitatively demonstrates
how well the parameters fit the actual data. We initialized the GA with a random population of candidate
solutions and utilized parallel processing to enhance computational efficiency. Furthermore, to preserve the
biological relevance of these parameters, we enforce that all parameter values be positive-invariant, meaning they
are constrained to remain strictly positive throughout the optimization process. This comprehensive approach
ensures that the optimized parameters are robust and reliable for fitting the actual infection trajectories.

Model validation

We emphasize that during the numerical analysis, the model parameters were optimized using data from the
initial 30 days of the true dataset, which served as the training phase. Throughout the analysis, we ensured that
the parameter values remained within physically reasonable ranges.

Subsequently, we employed the optimized parameters obtained from the training phase to predict the values
of S, I, and R for the following 15 days, which formed the testing phase.

The optimized parameters derived from the training data are presented in Table 1, and their consecutive
training vs prediction graphs are presented in Figs. 3, 4 and 5. Here, Susceptible, Infected, and Recovered plots
are obtained for each day by summing over the S, I, and R values for all the cells.

While the model prediction results demonstrate its ability to effectively capture the dynamic trends of the
susceptible, infected, and recovered populations, it is essential to acknowledge potential sources of error. One
limitation of the model is that it assumes constant parameter values throughout the simulation period and
considers spatial uniformity throughout Hamilton County. However, in reality, parameter values may change
over time due to different factors such as super-spreaders, the intensity of the epidemic, Non-Pharmaceutical
Interventions, and they can also vary across different regions based on local government actions.

To address these limitations and improve the model’s efficacy, future work could involve using a longer
training period, which may provide a more comprehensive understanding of the parameter variations over time.

Parameters | Timeframe-1 Timeframe-2 Timeframe-3

2 0.072 0.068 0.084

ns 4.8818 x 107° | 6.7088 x 10~ | 6.1000 x 10~°
MR 2.8900 x 107° | 5.3970 x 108 | 6.8410 x 10~°
N1 1.8013 x 1075 | 0.0062 2.2501 x 107°
L 3.1601 x 10~° | 0.0816 2.9251 x 10~°
[4 3.0700 x 107° | 2.8200 x 10~° |2.8030 x 10~°
@ 4.0284 x 10™% | 4.6908 x 10™* | 3.2884 x 10~*
5 0.0280 1.0002 x 103 | 0.0280

w 0.0283 0.0517 0.0490

. 0.1353 0.1631 0.1500

« 0.8019 0.0029 0.6315

Table 1. Optimized model parameters.
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Alternatively, focusing on specific time periods when Non-Pharmaceutical Intervention (NPI) measures were
consistently implemented as per public health policy can help enhance prediction accuracy.

Additionally, considering smaller spatial regions instead of assuming spatial uniformity could provide more
localized insights and improve the precision of predictions. By incorporating these refinements, the model’s
predictive capability can be enhanced, leading to more accurate representations of real-world epidemic dynamics.

Results

Hamilton County, Ohio

Next, we present the results, observing at the outset that they fall under two categories. Firstly, for each of the
three timelines considered, we present the respective effective reproduction numbers (Z.) and compare them
against the corresponding reported case incidence data for Hamilton County. This comparison provides the
basis to evaluate the efficacy of our method in accurately forecasting the trend of infection spread. Secondly,
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we independently compute the corresponding effective reproduction numbers (Z.) using the W-T and Cori
methods and directly compare the results obtained using both approaches. We reiterate and underscore here that
the W-T method and Cori method are essentially retrospective methods and, as such, are incapable of forecasting
.. However, as an established epidemiological framework, it validates the results obtained from our method.
While we compare the results from our framework with those of the comparative methods, we need to consider
the difference in how computations using the two methods are carried out. For calculating the %, value for
any day, both the W-T method and Cori method use the previous 30 day data. However, the method based
on our framework uses the first 30 day data for optimizing the model parameters and then uses the optimized
parameters to calculate the Z. values for the entire 45 day period in each of the three timeframes.

As the basis to understand and evaluate the results, in Fig. 6 we present the actual daily reported cases in
Hamilton County for the entire period between 7 March 2020 to 15 September 2022. In addition, the three
timelines T1, T2, and T3 chosen for the analysis are indicated in the figure, along with the points in time at which
the Alpha, Delta, and Omicron variants of SARS-CoV-2 (the causative virus for COVID-19) are estimated to
have emerged in circulation®. Next, the results corresponding to the first timeline T1 are presented in Fig. 7.
The graph in the top part of this figure presents the effective reproduction numbers (%.) plotted against time.
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Fig. 7. Plot of Z. and daily incidence during Timeframe-1.

Specifically, here the ’Model training’ (Solid blue line) plot represents the learning period during which the model
parameters are computed from actual data using the optimization scheme. The forecast reproduction numbers
(i.e., the model predictions) are represented by the ‘Model testing’ (Dotted red line) plot. The corresponding
reproduction numbers obtained from the W-T method are shown in the ‘Z.-WT Method’ (Yellow line with
circles at each time axis data point) plot. To facilitate easy comparison with these results, the graph in the bottom
part of this figure presents the incidence rates during T1. Here, the ‘True Incident Cases’ plot (Magenta line with
circles at each time axis data point) indicates the reported daily cases, whereas the ‘5-day Moving Average’ (Blue
line) plot indicates the corresponding stated average.

The plot of the reproduction number calculated for T1 is demonstrated in Fig. 7. The numerical estimation
of the reproduction number for the simulation in this timeframe initiates at approximately 0.95 and appears to
decrease slightly as the simulation progresses, following a relatively stable trajectory with minor fluctuations. In
contrast to our framework’ results, the results obtained from the W-T method and especially the Cori method
appear to display a more pronounced change, starting from approximately 1.2 and rapidly moving down to
match our results. This is common for both methods at the beginning of the pandemic. While the comparative
methods demonstrate a higher reproduction number at the beginning of the simulation, it undergoes a linear
decrease over time, ultimately converging with the output of our framework towards the end of the simulation.

The graph in Fig. 8 illuminates the computed reproduction number for T2. This timeframe is characterized
by an upward trend in daily incidence. Initially, the value starts at approximately 1.1. with minor fluctuations,
generally maintaining this level. As the simulation progresses, it slowly decreases, eventually dropping below
1, indicating a decrease in daily incidences. In comparison, results from the W-T and Cori methods tend to
fluctuate around 1.2 for most of the simulation period but decline towards the end. The observed differences may
be due to the high incidence rates and significant fluctuations of infections within this timeframe. The W-T and
Cori method’s 30-day window could contribute to its insensitivity to these fluctuations. Nonetheless, the initial
increase in daily incidence rates and subsequent levelling off and the decline appears to be better captured using
our framework than the W-T method. To provide further insight, we extended the daily incidence graph by an
additional 15 days, clearly showing that the moving average of daily incidence decreases as the value of Z. falls
below 1 as obtained by our method.

Finally, Fig. 9 provides the simulation results for the reproduction number during T3. The value of the
reproduction number, as calculated by our method, starts a little above 0.95, with only slight variations, it stays
consistent throughout this period. The daily incidence cases show similar flat behaviour as seen by the 5-day
moving average values. Meanwhile, the result from the W-T method starts at almost the same value as ours but
then briefly falls below this mark before experiencing a sudden upswing. This interesting behaviour might stem
from the comparative methods initially including the data from before T3 in its 30-day sliding window, where
the daily cases dropped quickly. After 30 days, the Z. values from both the W-T method and Cori method start
to closely align with our Z. values.
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Discussion and conclusions

In this article, we presented a new analytical methodology for accurately forecasting the basic (%) and effective
(Z.) spatiotemporal reproduction numbers at any point in an epidemic, based on available infection spread data
at that point. Furthermore, the methodology was anchored on a PDE-based, compartmental model of epidemic
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spread that: (1) accounts for stochastic aspects essential to describing spread dynamics influenced inevitably by
uncertain factors, including human behaviour and pathogen transmission characteristics, and (2) was validated
using COVID-19 spread data from both Hamilton County, Ohio, and the entire state of Ohio, United States, in
our previous work. As the first step in the research methodology, we developed a new computational framework
for numerically computing reproduction numbers from actual data—the computational framework faithfully
mirrors the fundamental mathematical derivations of reproduction numbers obtained from the theory of PDEs
applied to epidemic compartmental models. In the second step, we followed our previously developed strategy
of training the PDE model to learn its key parameters from available infection spread data corresponding
to a period of 30 days based on an optimization scheme, based upon which the model forecasts the spread
for the next 15 days. The results from the first two steps then together facilitated our third step, wherein we
numerically computed the predictions of the model for the reproduction numbers themselves. These predictions
were validated against spread data from Hamilton County, Ohio, and further reinforced by a secondary set of
validations against independent results obtained independently from applying the traditional Wallinga-Teunis
(W-T) and Cori methods to identical data sets. Moreover, this exercise in the third step was repeated for infection
spread datasets corresponding to three distinct phases witnessed by Hamilton County during COVID-19.

That the predictions of the effective reproduction number Z. obtained from our framework—applied to the
three distinct periods T1, T2, and T3—accurately trace the corresponding trends in actual infection spread data
for each of those periods is a central result of this article. Indeed, this result establishes that this new approach
to computing reproduction numbers rests on sound analytical foundations and inspires confidence about its
predictive efficacy when supplied with real-time infection spread data as input. Furthermore, the framework
predictions were observed to be accurate for T2 (a period marked by a significant rise in infections) and T1 and
T3 ( both periods with decreasing numbers of infections). This is a testament to the robustness of the framework
in predicting reproduction numbers during surges as well as recessions, both of which typically recur multiple
times throughout an epidemic.

Since the predictions were also compared to reproduction numbers computed independently using the W-T
and Cori methods, reiterating the fundamental contrast between these approaches appears to be in order here.
Both the W-T and Cori methods are essentially retrospective or a posteriori methods and, as such, are not
designed for forecasting reproduction numbers. Furthermore, significant errors that could potentially accrue
should the W-T or Cori methods be wantonly employed for prediction have been illustrated as part of our
discussion of the results from T2 and T3 in “Discussion and conclusions”. More to the point, comparison with
actual data buttressed the credentials of the proposed approach for accurate forecasting.

Turning now to potential directions for further research, firstly, it will be interesting to investigate the fidelity
of the computational framework across spatiotemporal scales. Moreover, the ability to predict Z. from data
collected at any level of granularity is a highlight that inspires confidence in the computational framework,
particularly when employed for forecasting in smaller regions and for shorter durations.

Secondly, it will be interesting to apply the framework to compute reproduction numbers for other (periodic
and otherwise) epidemics, such as influenza. While the specifics of the transmission dynamics can indeed
be expected to change depending on the pathogen, we believe that the mechanistic nature of the underlying
PDE model provides a foundation robust enough to effectively forecast Z. in the case of other epidemics.
In particular, we expect this robustness to result in reasonably reliable predictions even in the face of data
moderately constrained owing to the presence of outliers. In other words, the proposed framework inherits all
the inherent advantages of mechanistic models, which are, in general, less susceptible to incomplete data than
exclusively data-driven approaches to forecasting.

A third interesting research direction will be to investigate the efficacy of the approach in predicting Z. in
the event of rapid surges in infection spread. Such surges could, for example, be triggered by superspreader events
and were a major concern during the COVID-19 pandemic. We expect that the underlying PDE model will
need to be analyzed more extensively to understand both the dynamic instabilities that will likely characterize
the surges in infection spread as well as the post-surge relaxation dynamics that mark the return to equilibrium.

The framework presented in this article to compute reproduction numbers is based on the estimates
of infection spread obtained from the underlying PDE model. Therefore, revisiting the computation of
reproduction numbers guided by improvements to the PDE model constitutes an interesting fourth direction
for future research. In particular, allowing the critical model parameters to be time-varying and estimating them
using a dynamic optimizing process could enhance the accuracy of the PDE model. Motivated thus, we recently
developed a time-varying infection parameter estimation model using Long Short-Term Memory (LSTM)
networks and a data-driven approach. This iterative approach allows us to effectively capture the complex day-
to-day dynamics of infection parameters while efficiently managing computational complexity. By leveraging
the capabilities of LSTM networks, we can track infection dynamics over longer time frames and across larger
regions with improved computational feasibility. This data-driven methodology not only enhances the accuracy
of parameter estimation but also broadens the applicability of traditional PDE models in practical settings. The
details are provided in our conference paper®, and we intend to investigate the implications of the results for the
computation of reproduction numbers in future work.

Accurate forecasting is a critical precursor for the development and implementation of control interventions
aimed at mitigating infection spread. Therefore, control-theoretic analyses of Non-Pharmaceutical interventions
such as social distancing, as well as vaccinations, predicated on %Z. numbers obtained from the proposed
framework present a fourth promising future research direction. Pursuing this line of research, we recently
investigated a Nonlinear Model Predictive Control (NMPC) framework® applied to the PDE model. This
control method introduces an open loop control input into the system, the optimal value of which is computed
using a receding horizon scheme. The computational results indicated a significant reduction in the number of
infections upon implementation of the control input obtained from the NMPC framework. Investigating the
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expected reduction in reproduction numbers due to applying control to the PDE model represents yet another
exciting direction for future research.

To conclude, reproduction numbers are fundamental quantitative metrics that characterize an epidemic
spread, and the ability to accurately predict them from available data is a critical predicate for effective spread
mitigation. The available data often being sparse—especially in the early stages of unprecedented epidemics
such as COVID-19—predictive computations of reproduction numbers built upon mechanistic, mathematical
models are essential, also as they tend to be more robust and reliable compared to exclusively data-driven
methods. In this article, we presented such a predictive computational framework for forecasting reproduction
numbers from available infection spread data and validated the same using COVID-19 data. We hope that the
results reported in this article spur further research and, most importantly, open new pathways in forecasting
reproduction numbers that will help significantly enhance our preparedness to swiftly conquer future epidemics.

Data Availability
Numerical code as well as corresponding datasets used for this study have been made available in our GitHub
repository.
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