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The classification of tongue shapes is essential for objective tongue diagnoses. However, the accuracy 
of classification is influenced by numerous factors. First, considerable differences exist between 
individuals with the same tongue shape. Second, the lips interfere with tongue shape classification. 
Additionally, small datasets make it difficult to conduct network training. To address these issues, 
this study builds a two-level nested tongue segmentation and tongue image classification network 
named IF-RCNet based on feature fusion and mixed input methods. In IF-RCNet, RCA-UNet is used 
to segment the tongue body, and RCA-Net is used to classify the tongue shape. The feature fusion 
strategy can enhance the network’s ability to extract tongue features, and the mixed input can expand 
the data input of RCA-Net. The experimental results show that tongue shape classification based 
on IF-RCNet outperforms many other classification networks (VGG 16, ResNet 18, AlexNet, ViT and 
MobileNetv4). The method can accurately classify tongues despite the negative effects of differences 
between homogeneous tongue shapes and the misclassification of normal versus bulgy tongues due 
to lip interference. The method exhibited better performance on a small dataset of tongues, thereby 
enhancing the accuracy of tongue shape classification and providing a new approach for tongue shape 
classification.
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Clinical diagnoses in traditional Chinese medicine (TCM) are based on the clinical practice of doctors; after 
thousands of years of accumulated diagnostic experience, it has been theorized that diseases can be diagnosed on 
the basis of a patient’s external characteristics. Tongue diagnosis is an important diagnostic approach in TCM1,2. 
By analyzing the links of various tongue-related features, such as tongue shape, tongue coating, tooth-marked 
tongue, and tongue color, with internal diseases of the human body3, a TCM-based approach to tongue diagnosis 
that deduces the relevant diseases on the basis of the differences exhibited by tongue features has been developed. 
The size and geometric shape of the tongue (e.g., round, ellipsoid, hammer-shaped, or U-shaped) are important 
tongue features4 and are closely related to the patient’s age and health condition. By observing the changes in 
tongue shape in patients of a certain age, it is possible to diagnose whether a patient is suffering from a certain 
disease. Therefore, the study of tongue shape is highly practical. However, TCM-based tongue diagnosis relies 
heavily on the personal experience and subjective judgement of TCM doctors, which can lead to misdiagnosis 
and reduce diagnostic efficiency when facing complex tongue features. Figure  1shows three types of tongue 
shapes that have certain similarities in appearance and are prone to manual misdiagnosis. In recent years, 
medical diagnosis based on artificial intelligence (AI) assistance has gradually become a popular research topic 
with the development of artificial intelligence research5. Researchers have applied intelligent image processing 
technology to TCM-based tongue diagnosis6 to improve objectivity and diagnostic efficiency and reduce doctor 
workload in TCM tongue diagnosis. There has been some progress in research on tongue-related diagnoses, but 
some problems remain to be solved.

Owing to the multiple difficulties in performing quantitative and qualitative analyses of tongue features, the 
current stage of tongue diagnostic research focuses on tongue segmentation and classification tasks.

Tongue segmentation aims to extract the tongue body in a complex background environment to provide 
a basis for subsequent tongue diagnosis. Early research on tongue segmentation focused on traditional 
image processing methods based on edge detection, region growing and mixed processing7–10; however, the 
segmentation effect of such methods is sometimes unsatisfactory when dealing with problems such as tongue 
color similarity or blurring of tongue edge contours. In recent years, image segmentation methods based on deep 
learning have been widely used for tongue segmentation and have achieved superior performance compared with 
that of traditional image segmentation methods because deep learning methods can accurately distinguish the 
differences between pixels when processing images11. Zhou et al.12 combined deep learning methods to propose 
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an end-to-end network model called TongueNet for tongue localization and segmentation multitask learning. 
Huang et al.13 proposed an improved UNet model for tongue image segmentation by combining a residual soft 
join module and a salient image fusion module to address the effects of complex open environments and device 
factors. To address the interference of different tongue shapes and textures on tongue segmentation, Cai et al.14 
built TSRNet on the basis of encoder and decoder frameworks and by combining a priori knowledge and a patch 
segmentation module to accurately segment tongues with different shapes and textures. Song et al.15 proposed 
RAFF-Net, a network for automatic tongue segmentation, which was constructed via a residual architecture and 
a multiscale feature fusion module on a UNet-based backbone network. This construction approach improved 
the network’s ability to perceive the tongue by improving the training loss function. Experimental comparisons 
have revealed that the segmentation precision of RAFF-Net was greater than that of traditional UNet. The 
above study shows that the network architecture with encoder and decoder structures is currently a popular 
research direction for tongue segmentation, and UNet has shown extraordinary performance in the tongue body 
segmentation task.

Tongue images include various features, such as color, tooth-marked, coating, and shape, and tongue feature 
classification is the key direction of current research on tongue diagnosis. Tongue feature classification via AI 
can assist doctors in objectively recognizing complex tongue features. For tongue color classification, Hou et 
al.16 used a convolutional neural network to classify tongue color, and Ni et al.17 proposed TongueCaps by 
combining CapsNet and a residual block structure to achieve end-to-end tongue color classification. Tooth 
marks have received increasing attention as more common and relatively obvious tongue features. For example, 
Li et al.18 proposed the use of a three-stage approach to classify the dentate tongue. In the first stage, a candidate 
region is extracted via the first neural network layer. In the second stage, deep features are extracted via a 
convolutional neural network. In the third stage, an accurate classification is performed via a multi-instance 
support vector machine (MI-SVM). Tang et al.19 proposed a two-stage classification strategy by introducing a 
cascaded convolutional neural network for detecting tongue regions and feature points, which are used for final 
classification via a fine-grained classification network. Because tongue mark labeling and region annotation 
require considerable work, which is not conducive to clinical applications, Zhou et al.20 proposed an end-to-
end deep neural network, i.e., the weakly supervised tooth-mark detection network (WSTDN), which only 
needs to annotate tooth-marked or non-tooth-marked tongue maps and can be used for tooth-marked tongue 
recognition on the basis of weakly supervised learning. As tongue coatings have certain color and shape features, 
tongue coating classification has received increasing attention. To classify tongue coatings accurately, Tang et 
al.21 first used a priori knowledge to obtain suspicious tongue coating patches; then, they used tongue coating 
features extracted by a convolutional neural network; finally, they used an MI-SVM to classify the extracted 
tongue coating features. To reduce the workload of processing tongue coating features, Okawa et al.22 proposed 
YOLOv2 as a tongue coating feature region extraction network by calculating the tongue coating index (TCI) 
for each region, using transfer learning on the ResNet-18 network, and finally completing the tongue coating 
classification task by calculating the TCI for each region.

Because similar tongue shapes have a certain degree of variability from one body to another, accurately 
categorizing tongue shapes is difficult. Most of the current methods for tongue shape classification still focus 
on traditional image processing methods. For example, Huang et al.23proposed a geometric feature defined by 
the length, area and angle measurements of the tongue to classify tongue shape. Zhang and Zhang24 used a 
computerized method to perform a quantitative analysis combined with a decision tree model to classify tongue 
shapes. Considering the prominence of deep learning methods in tongue feature classification, Huang et al.25 
built a tongue segmentation classification network (TSC-WNet) model based on a feature fusion approach, 
which combines the tongue segmentation results with the original inputs for tongue shape classification. 
However, considering tongue shape uncertainty, the effectiveness and practicality of the above methods need to 
be investigated further.

A single tongue segmentation task only involves tongue body extraction from the image and cannot analyze 
the features contained in the tongue body, thus making it difficult to provide efficient help for diagnosis. 

Fig. 1.  Classification of tongue shape (a) bulgy tongue (b) normal tongue (c) thin tongue.
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Most existing tongue feature classification tasks are completed by processing the global image information. 
Additionally, in the complex background environment of the tongue body, some similar interfering features 
are easily misperceived, which results in misclassification. Multiple interfering features contained in the 
complex background environment also require a greater number of network layers and more feature extraction 
computations, which lead to network overfitting and reduce network training speed. Tongue segmentation can 
extract the tongue from a complex background environment, and the feature fusion method can enhance the 
feature extraction ability of the network without increasing the number of network layers. Therefore, using the 
feature fusion method to combine tongue segmentation and image classification tasks can aid in recognizing 
tongue shapes in complex background environments. Herein, we propose a tongue-shaped classification 
network, IF-RCNet, which consists of a two-level structure of a segmentation network named RCA-UNet and 
a classification network named RCA-Net. Tongue shape classification is accomplished by feature fusion in the 
form of nesting the segmentation and classification networks, which can be accomplished with small samples 
and can accurately classify some of the different tongue shapes that have similar features.

Therefore, in this paper, IF-RCNet, a deep learning network based on feature fusion, is applied for tongue 
body segmentation and classification. The remainder of this paper consists of three parts. The “Methods” section 
describes tongue shape recognition based on IF-RCNet. The “Results” section describes the details of the 
experiment and reports the quantitative and qualitative outcomes. The experimental results are discussed in the 
“Discussion” section. Conclusions are drawn in the “Conclusion” section.

Methods
In this section, detailed explanations of the data collection and preprocessing, network construction, training, 
and evaluation of IF-RCNet are provided. The specific implementation flowchart is shown in Fig. 2. First, the 
captured tongue images undergo preprocessing to create a dataset for network training. The tongue image data 
are input into both the RCA-Net and RCA-UNet networks. After processing via RCA-UNet, the segmented 
tongue and learned tongue features are obtained. Next, the segmented tongue images are combined with the 
original inputs of RCA-Net, and the tongue features are processed via feature fusion operations to become part 
of the backbone network parameters of RCA-Net, thereby forming the IF-RCNet, which is used for tongue shape 
classification. Finally, the network parameters are continuously optimized on the basis of the model evaluation 
results to enhance the performance of IF-RCNet. The detailed implementation process is presented in the 
following sections.

Dataset construction and preprocessing
Considering that the subsequent network training and evaluation require a relatively stable dataset with 
consistent data forms, we used an EOS RP professional camera manufactured by Canon Japan and acquired 
tongue images in a well-lit and consistent indoor environment. The processed tongue images were transferred to 
a computer with a clear display, and three professional Chinese physicians with many years of clinical experience 
from the Second Affiliated Hospital of Dalian Medical University labeled the tongue regions and classified the 
shapes. Then, the processed images were made into a standard image dataset. The specific labeling results are 
shown in Fig. 3.

Moreover, the publicly available tongue image dataset BioHit Tongue is introduced for network training and 
evaluation. This dataset contains a total of 300 tongue photos, and each image is annotated via a segmentation 
mask. The dataset was processed by a TCM doctor to remove 95 images, making it difficult to discriminate the 
tongue shape, and the selected tongue images were classified. Table 1 shows the total data volume of the two 
datasets and the data volume of each tongue shape.

A cross-validation method is introduced to evaluate the performance of the network model and solve the 
problem of the limited data in the two datasets. First, the dataset is divided into a training set, a test set and an 
evaluation set according to ratios of 3.5, 0.5 and 1, respectively. During the training process, a different subset 
is selected as the test set each time, and the rest is used as the training set and evaluation set. The process is 
repeated five times. Finally, the five performance evaluation results are averaged to obtain the evaluation results. 
Moreover, the format of the images is unified to 224 × 224 pixels to reduce the overall network parameters and 
reduce the network training time.

Ethics statement. The data collection and processing methods used in this study were conducted in 
accordance with guidelines and regulations. This study was approved by the ethics committee of the Second 
Affiliated Hospital of Dalian Medical University. All participants were informed of the purpose of the study 
and their privacy was protected before the start of the study. Informed consent was obtained from all individual 
participants included in the study.

Construction of tongue shape classification based on IF-RCNet
The performance of deep learning network models is affected by a variety of factors, including network depth, 
structure and input data quality. Therefore, we propose a tongue shape classification network with a two-
level structure nested with tongue segmentation and tongue shape classification (shown in Fig. 4 to improve 
classification network accuracy and reduce the dependence on data sample quality). By using mixed input and 
feature fusion, the segmentation mask of the segmentation network is mixed with the original input as the 
classification network input. The features extracted from the segmentation and classification networks are fused 
to accomplish tongue shape classification. The network can complete model training on a small tongue image 
dataset with a strong ability to perceive complex features and high classification accuracy. To ensure the quality 
of the input data and make full use of the data, cross-validation is used for network training, and the average of 
the results from five training runs is taken as the final output.
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Classification network To obtain high tongue shape classification accuracy, a classification network including 
an improved backbone and improved network classifier, namely, RCA-Net, is proposed, and its overall network 
structure is shown in the left half of Fig. 4. On the one hand, the improved backbone is proposed on the basis 
of a convolutional neural network structure containing five convolutional blocks, all of which are composed of 
a 3 × 3 convolution, a batch normalization (BN) layer and a rectified linear unit (ReLU) activation function. In 
particular, in all five convolutional blocks, the first two convolutional layers are replaced by dilated convolutions 
with a larger receptive field, and a residual convolutional block attention module (RCBAM) that embeds into 
all the convolutional layers is proposed. On the other hand, the improved network’s classifier focuses mainly on 
structural improvement.

First, common approaches that add pooling operations to increase the receptive field often result in the 
loss of some details and smaller targets, leading to decreases in the network’s learning ability. By enlarging the 
learning scope of the pixel points, dilated convolution can increase the receptive field while keeping the input 
feature dimensions unchanged, thereby enhancing the network’s feature extraction capability. Therefore, the first 
two convolutions in the network are designed as dilated convolutions with dilation factors of 3 and 2, which 
learn the target information from the 6 × 6 and 5 × 5 pixel regions, respectively, to allow the network to learn 
shallow features.

Furthermore, considering that the background environment of the tongue is more complex and that the 
network will lose part of the feature information during downsampling, the network’s ability to learn complex 
features needs to be enhanced. The attention mechanism processes the information in the feature map, selects 
important information vectors, derives the weights of the target feature information on the basis of their 

Fig. 2.  Flow of tongue shape recognition based on IF-RCNet.

 

Scientific Reports |         (2025) 15:7301 4| https://doi.org/10.1038/s41598-025-91823-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4.  Overall framework of IF-RCNet. The two dashed boxes represent RCA-Net, whereas the remaining 
portion on the right represents RCA-UNet. The light blue font represents improvements in data processing, 
whereas the dark red font represents improvements in network structure.

 

Datasets Thin Bulgy Normal Total

Our 253 331 226 800

BioHit 58 49 98 205

Table 1.  Number of images of the three tongue shapes in the two datasets.

 

Fig. 3.  Tongue body labeling. (a) original tongue body image and (b) tongue body with background labeling 
image.
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relevance, and effectively improves the ability to learn complex features. Moreover, by compensating for the 
output end with the input, the residual architecture can effectively compensate for the feature loss caused by 
pooling operations. After combining the attention mechanism and residual architecture, as shown in Fig. 5, an 
RCBAM is proposed. Specifically, an RCBAM is an attention module that is based on a residual architecture and 
is built from two submodules, the channel attention module (CAM) and the spatial attention module (SAM). 
By multiplying the output features of the CAM and SAM element by element and adding them to the input 
features of the residual branch to obtain the final output features, this attention module can be used to enhance 
the feature representation of different channels and extract the key information of different locations in space. 
Moreover, a branching structure with RCBAM and a maximum pooling operation is added to the backbone to 
enhance the network’s ability to model and represent the image features and reduce network complexity to some 
extent.

Finally, to adapt to the feature fusion operation, after the last network convolutional block, an adaptive 
average pooling operation is used to adjust the pooling size and stride according to the input size, performing 
average pooling adaptively at each position in the input, and then delivering to a classifier. Considering that a 
powerful classifier is essential for ensuring the performance of the classification network, an improved network 
classifier consisting of three fully connected layers is proposed, and the ReLU activation function and dropout 
layer are added between the two fully connected layers to prevent overfitting in the network.

Segmentation network As part of the data input and tongue feature source for the tongue shape classification 
network RCA-Net, the tongue segmentation network needs to have strong segmentation accuracy and feature 
extraction capabilities. To achieve this, RCA-UNet is also built by using RCBAM. In addition, the network’s 
downsampling and skip connection are enhanced by dual convolution and the multiscale attention gate (MSAG), 
respectively. The overall network structure is shown in the right half of Fig. 4.

First, a dual-structured convolution and maximum pooling layer are used as the network downsampling 
layer. Downsampling occurs four times, and the same RCBAM as the classification network is added to each 
downsampling layer. The dual convolution consists of two identical 3 × 3 convolution layers, ReLU activation 
functions, and BN layers. The first 3 × 3 convolutional layer extracts shallow features such as edges, whereas the 
second 3 × 3 convolutional layer learns deeper abstract relationships between pixel points. This dual convolution 
structure helps extract deeper tongue body feature information, improves the network’s ability to extract tongue 
body features from complex backgrounds, and provides more tongue shape-related information as input to 
RCA-Net.

Considering that the UNet network is a convolutional neural network structure, information extraction from 
higher layers is often partially lost during the downsampling process. Therefore, the skip connections in the 
network are also strengthened. The MSAG module (shown in Fig. 6) is added to the network skip connection. 
The first part of the MSAG is composed of pointwise, ordinary, and dilation convolutions. They filter the feature 
information of the input feature map to complete tongue feature extraction. In the second part, the BN layer 
performs normalization after splicing, and the ReLU activation function performs activation. The third part, i.e., 
vote convolution processing, is followed by the output results, and input feature map multiplication is performed. 
Finally, the multiplication results and the input feature map are summed to obtain the results.

After downsampling and skip connection, network upsampling occurs, which consists of double-structured 
convolution and deconvolution. The feature map output from the downsampling process is input into the 
corresponding upsampling module through skip connections. After being processed by the dual convolution, 
the feature map is upsampled through deconvolution to increase its dimensionality. After four upsampling 
operations, the feature map is processed by the activation function and restored to a tongue segmentation result 
map that matches the size of the input image.

Training the tongue shape classification model
The tongue classification model is trained and evaluated via IF-RCNet in PyTorch 1.9.0 with CUDA 11.1 
and cuDNN 8.2.0. We set the batch size to 2 to implement the training for the classification network, use the 
ReLU as the activation function, and use the Adam algorithm with a learning rate of 0.0001 for optimization. 

Fig. 5.  RCBAM with a residual architecture.
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The training process uses stochastic gradient descent (SGD) to achieve faster convergence. For the binary 
classification problem, the segmentation network classifies only single pixels in the image and uses the cross-
entropy loss function as the single-pixel binary classification training strategy. The network is trained via the 
same training strategy as the classification network. We used three fully connected layers as classifiers for IF-
RCNet, AlexNet, VGG16 and ResNet18. The first and second fully connected layers use the same 512 nodes for 
feature representation; in the third fully connected layer, three nodes are used to accomplish label prediction. 
The implementation environment was a 64-bit Windows server with hardware comprising an Intel Core i5-
12400 F CPU, 64 GB of RAM and an Nvidia RTX 3080Ti GPU.

Evaluation indicators
The overall performance of the classification network was examined via the accuracy rate and F1 score to 
complete the test and obtain accurate evaluation results for the quantitative tongue classification network. The 
specific evaluation formulas for the accuracy rate and F1 score are shown in Formulas (1), (2), (3), and (4).

	
Precision=

TP
TP+FP

� (1)

	
Recall=

TP
TP+FN

� (2)

	
Accuracy=

TP+TN
TP+TN+TP+FN

� (3)

	
F1 score = 2 × Precision × Recall

Precision + Recall
� (4)

Tongue segmentation is a type of semantic segmentation, that involves pixel-level classification. We use the 
mean intersection over union (MIoU), Dice coefficient and mean Hausdorff distance (MHd) for segmentation 
evaluation to quantitatively analyze the tongue segmentation accuracy. The formulas for the MIoU, Dice 
coefficient and MHd are shown in (5), (6) and (7).

	
MIoU = 1

k + 1
∑

k
i=0

T P

F N + T P + F P
� (5)

	
Dice = 2 × T P

F N + 2 × T P + F P
� (6)

	
dH (X, Y ) = max

{
sup

x ∈ X
inf

y ∈ Y d
(

x, y
)

sup
y ∈ Y

inf
x ∈ X d

(
x, y )}� (7)

In the above equation, k represents the number of all image categories except the image background, TP indicates 
that the predicted samples and the real samples are both positive cases, FP indicates that the predicted samples 
are positive cases and the real samples are negative cases, TN indicates that the predicted samples and the real 
samples are both negative cases, and FN indicates that the predicted samples are negative cases and the real 
samples are positive cases. x and y denote two sets. x and y represent the two points in the set. sup(supremum) 
and inf(infimum) denote the upper and lower bounds of certainty, respectively.

Fig. 6.  Overall structure of the MSAG. H, W, and C represent the height, the width, and the change of the 
feature map.
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Results
Ablation experiment results and analyses
Ablation experiments are conducted on the tongue-shaped classification network via BioHit and a self-
constructed dataset to validate the effectiveness of the proposed feature fusion and mixed input methods. 
The performances of a single tongue classification network, RCA-Net, and three improved networks based on 
RCA-Net with feature fusion, mixed input, and both feature fusion and mixed input are tested and evaluated. 
The specific performance is shown in Table 2. The results of the ablation experiments are quantitatively and 
qualitatively analyzed in this section.

To show the effectiveness of the proposed method quantitatively, the ablation experiment results are shown 
in Table  2, where RCA-Net is used as the baseline model for comparison. As shown in the table, the RCA-
Net + mixed input indicates the application of the segmentation results mixed with the original tongue image 
as the input to the classification network to obtain more tongue feature inputs for expanding the data input to 
the network. RCA-Net + feature fusion refers to applying the fusion of the tongue feature information extracted 
from the coding layer of RCA-UNet with the tongue feature information extracted from the backbone network 
of RCA-Net, thus enhancing the overall quantity of data input to the network. IF-RCNet is a tongue classification 
model that applies both mixed input and feature fusion. Table 2 shows that using mixed inputs on both datasets 
resulted in 0.75% and 4.98% increases in accuracy, respectively, as well as 0.3% and 8.42% increases in F1 scores, 
respectively. Applying feature fusion increased the accuracy by 1.00% and 3.42% and increased the F1 score 
by 0.86% and 2.16%, respectively. Each of the improvement approaches improves the network performance 
at different levels. Table  2 shows that IF-RCNet (RCA-Net + Mixed input + Feature fusion) performs best. 
The accuracies of IF-RCNet are 2.12% and 12.68% greater than those of RCA-Net. In terms of F1 scores, IF-
RCNet achieves increases of 2.68% and 13.72% over those of RCA-Net on both datasets. These findings further 
demonstrate that IF-RCNet can effectively learn more representations of tongue features and can achieve more 
accurate classification results.

Moreover, the results of qualitative analyses further validate the effectiveness of the proposed method. To 
visually evaluate the effectiveness of IF-RCNet for tongue shape classification, the classification results of tongue 
shape in the two datasets are shown in Figs. 7 and 8. The blue part of the figure represents the classification 
results on our dataset, and the red part represents the classification results on the public dataset BIoHit. Some 
bulgy tongues have a high degree of similarity in shape to normal tongues, and it is difficult to distinguish them 
accurately on the basis of the contour appearance of the tongue alone. Additionally, the complex background 
environment contained in tongue images easily interferes when extracting tongue features. Furthermore, there 
is some similarity between the lips present around the tongue and the textural features of the tongue body; 
thus, it is easy to misclassify the tongue that is in contact with the lips as a bulgy tongue in the tongue shape 
classification. The above problems can be effectively solved by adding mixed input and feature fusion methods. 
These matrices show that adding input mixing to RCA-Net can effectively improve the network’s overall ability 
to classify normal tongues; adding feature fusion to RCA-Net can reduce the network’s misclassification of 
normal and bulgy tongues. Finally, IF-RCNet performed better in terms of recognizing all three tongue shapes 
compared to the other three networks, i.e., the basic RCA-Net classification network, RCA-Net with a mixed 
input structure, and RCA-Net with feature fusion.

Tongue shape classification comparative experiment results and analyses
The comparison models for the experiments are AlexNet, VGG16, ResNet18, Vision Transformer (ViT)26and 
MobileNetv427. Among the five comparison models, the first three are all classical convolutional neural network 
structures and have the same fully connected layers as IF-RCNet. The fourth comparison model, namely, ViT, 
is an image classification model based on the transformer architecture, primarily utilizing the self-attention 
mechanism to extract contextual information from images and using a multilayer perceptron (MLP) for feature 
extraction and classification. The last model, MobileNetv427, is a lightweight classification network model built 
upon the improved MobileNet architecture and optimized via neural architecture search (NAS) methods. The 
results of both quantitative analyses and qualitative analyses are reported herein to fully illustrate the effectiveness 
of the proposed method.

First, the results of the quantitative analyses are shown below. The specific results of the evaluation of the 
proposed IF-RCNet and the competitor models on both datasets are shown in Table 3. Obviously, IF-RCNet 
achieves the best results in terms of accuracy and F1 scores on both datasets, and in our dataset, ResNet-18 

Dataset Model Mixed input Feature fusion Accuracy F1 score

Our

RCA-Net 74.75% 73.61%

RCA-Net + Mixed input √ 75.50% 73.91%

RCANet + Feature fusion √ 75.75% 74.47%

RCA-Net + Mixed input + Feature fusion √ √ 76.87% 76.29%

BioHit

RCA-Net 72.19% 70.50%

RCA-Net + Mixed input √ 77.17% 78.92%

RCA-Net + Feature fusion √ 75.61% 72.76%

RCA-Net + Mixed input + Feature fusion √ √ 84.87% 84.22%

Table 2.  Evaluation metrics obtained from the ablation experiments performed on the two datasets.

 

Scientific Reports |         (2025) 15:7301 8| https://doi.org/10.1038/s41598-025-91823-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


exhibits better classification performance than AlexNet and VGG 16, which proves that the residual architecture 
strategy can improve the overall network accuracy. Moreover, the proposed IF-RCNet has the same residual 
architecture as ResNet-18, while the classification accuracy is greater than that of ResNet-18, not only because of 
the residual architecture but also because the other improvements can enhance the performance of the proposed 
network. Additionally, ViT demonstrates superior performance compared with other network architectures, 
which proves that the attention mechanism is effective in handling more complex classification tasks. Although 
RCA-Net enhanced by RCBAM and MSAG lags behind ViT with an MLP, which is mainly limited to the self-
performance of convolutional neural networks, it still exhibits excellent performance and benefits from the 
structural improvement approach of this study. Moreover, the performance of IF-RCNet, which improves upon 
that of RCA-Net through the introduction of mixed inputs and feature fusion methods, outperforms that of 
ViT. On the one hand, this improvement is due to the segmentation of the tongue image in the mixed inputs, 
which removes some of the interference. On the other hand, this improvement is due to the feature fusion 
method, which expands the number of tongue features in the RCA-Net backbone. Specifically, IF-RCNet 

Fig. 7.  Tongue classification results on the self-constructed dataset.
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resulted in improvements of 5.12% and 6.19% in accuracy and F1 score compared with AlexNet, respectively, 
and improvements of 9.00% and 12.34% in accuracy and F1 score compared with VGG 16, respectively. 
Compared with ResNet18, IF-RCNet achieved improvements of 1.87% and 2.92%, respectively. Compared with 
MobileNetv4, the performance was improved by 1.80% and 3.07%, respectively. Moreover, compared with the 
most powerful ViT, the accuracy and F1 score were increased by 1.15% and 1.64%, respectively.

In the BioHit Tongue image dataset, the evaluation results of VGG16, ResNet18 and ViT are significantly 
lower than those on our dataset, mainly because of the influence of the quantity of data in the dataset and because 
overfitting may occur in networks that are too deep. MobileNetv4 performs similarly on the two datasets, which 
implies that, specific to this task, its structural improvement has a weak ability to handle insufficient data. In 
contrast, in this study, the receptive field is enhanced by replacing classic convolution with dilated convolution, 
which increases the ability of the proposed model to learn the global information. Then, the input data of the 
classification network are expanded by adding the classification results, which ensures the required information 
for model training, while also removing the background interference of the classification results, which enhances 

Fig. 8.  Tongue classification results on the BioHit dataset.
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the backbone network’s ability to focus on target learning. Furthermore, sufficient fusion of the classification 
network features is implemented, which reduces the complexity of the network structure and avoids overfitting 
during network training. The proposed IF-RCNet is 10.63% better than MobileNetv4 in terms of accuracy in 
handling limited data and 11.34% better in terms of F1 scores. The quantitative results fully support the above 
analyses.

The results of qualitative analyses further confirm the above results. Figures 7 and 8 show that classifying thin 
and normal tongues is a problem that is easily confused by all networks, mainly because part of the normal tongue 
has some similarity with the thin tongue in terms of texture and color features. It is also easy to see that some of 
the normal and thin tongues have the same morphological features because of the influence of individual body 
mass. Additionally, the contact between the thin tongue and the lips leads to the misclassification of the thin 
tongue as a bulgy tongue. Nevertheless, IF-RCNet still achieves the highest number of accurate classifications for 
thin and normal tongues, largely addressing the issue of similarity between thin and normal tongues, as shown 
in Fig. 7. The main reason is that the feature fusion method provides more detailed information to the RCA-
Net backbone, thus allowing the network to capture the subtle differences between normal and thin tongues. 
Compared with ViT (which performs the second best in terms of accuracy), IF-RCNet better addresses the 
misclassification issue of thin tongues in contact with the lips. This is mainly due to the mixed inputs, which 
remove the lips from the segmented tongue images, thereby reducing the impact of complex backgrounds on 
the learning process.

As shown in Fig. 8, IF-RCNet performs best for classifying normal tongues and outperforms other models in 
terms of accurately classifying thin and bulgy tongues. Although VGG performs well in classifying thin tongues, 
it incorrectly classifies many normal tongues as thin, resulting in lower overall accuracy. Its model shows 
clear overfitting and a poor ability to learn tongue shape features. Moreover, IF-RCNet clearly outperforms 
MobileNetv4 in accurately classifying thin tongues. This process primarily depends on the mixed input, which 
expands the input data for RCA-Net and allows the network to learn more about the subtle differences between 
normal and thin tongues. Additionally, the feature fusion operation also results in more feature information. 
While retaining as much of the texture information as possible, a single tongue contour that removes the 
interference information is added, which greatly improves the generalization ability of the network on different 
datasets and enables the network to achieve excellent classification performance. The qualitative results fully 
support the above analyses.

Overall, the quantitative and qualitative experimental results and analyses on both datasets fully validate the 
effectiveness of the proposed IF-RCNet.

Tongue segmentation comparative experiment results and analyses
In IF-RCNet, accurate segmentation of the tongue body is important for the mixed input, while the tongue 
feature extraction capability also has an impact on the subsequent feature fusion. Therefore, the effectiveness 
of the proposed improved tongue segmentation network RCA-UNet was analyzed on two datasets; the specific 
evaluation results are shown in Table 4. Moreover, to visualize the performance differences between the networks 
more intuitively, the segmentation results were qualitatively analyzed, as shown in Fig. 9.

Qualitative analyses, which are also presented in this section, illustrate the effectiveness of the improvements 
of the proposed IF-RCNet in tongue segmentation. By observing the two images in the upper part of Fig. 9, 
the RCA-UNet with the residual RCBAM structure is shown to have a stronger feature extraction ability when 
confronted with the shadows contained in the tongue body. Compared with UNet, the RCA-UNet with the 
residual RCBAM structure achieves accurate segmentation of the tongue’s shadowed areas, which strongly 
validates the powerful feature extraction ability of RCBAM. When segmenting the input image in the following 
two images, the tongue body appears to be somewhat curved, as shown in the lower part of Fig. 9. The curved 
tongue in this section is similar to the lips in other images; therefore, during the downsampling process of the 
UNet network, some of its information may be lost, leading to incorrect identification as lips. In RCA-UNet, the 
combination of the RCBAM-enhanced backbone and MSAG-enhanced skip connections effectively learns the 

Dataset Model Accuracy F1 score

Our

AlexNet 71.75% 70.10%

VGG 16 67.87% 63.95%

ResNet 18 75.00% 73.37%

ViT 75.72% 74.65%

Mobilenetv4 75.07% 73.22%

IF-RCNet 76.87% 76.29%

BioHit

AlexNet 74.14% 72.50%

VGG 16 59.51% 38.90%

ResNet 18 68.78% 67.53%

ViT 61.90% 41.11%

Mobilenetv4 74.24% 72.88%

IF-RCNet 84.87% 84.22%

Table 3.  Evaluation results obtained from comparison experiments of multiple models on two datasets.
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differences between the lips and the curved tongue. This combination greatly preserves detailed information 
during downsampling, improving the network’s ability to handle such similarity issues in the samples. Overall, 
RCA-UNet demonstrates better performance in terms of handling detail and similarity issues, which proves 
that the residual architecture and attention mechanisms play critical roles in enhancing network performance.

In summary, as a part of IF-RCNet, RCA-UNet plays a nonnegligible role in improving the quality of the 
input information in the proposed IF-RCNet. These findings indicate that RCA-UNet is an indispensable and 
necessary component of IF-RCNet.

Discussion
In this study, an IF-RCNet that shows excellent performance was proposed to address the problem of classifying 
tongue shapes with similar texture or shape features, especially in terms of classifying thin tongues and some 
normal tongues with special body types. To achieve accurate tongue shape classification, RCBAM with a 
residual architecture is utilized to enhance the feature perception and extraction ability of the segmentation 
and classification network. The tongue features extracted by the segmentation network and those extracted by 
the classification network are combined with the feature fusion method, which allows more tongue features to 
be acquired without deepening the network structure. In addition, the mixed input approach is combined to 
expand and process the input data by mixing the tongue texture information obtained from the original input 
and the segmented tongue contour as the input to the classification network to further improve the tongue shape 
classification accuracy. The ablation study results clearly demonstrated that, for datasets with different data sizes, 
the performance of the model with the inclusion or exclusion of feature fusion and mixed inputs exhibited a 
significant gap, which verified the validity of the proposed method. Moreover, comparison experiments with 
other tongue classification networks demonstrated that the proposed network outperforms lightweight networks 
on small sample datasets while being superior to complex networks on challenging datasets. Therefore, the 
comparison experiments highlighted the superior performance of the proposed IF-RCNet in terms of handling 
small sample data and similar sample issues. Finally, the effectiveness of the improved tongue segmentation 
network based on the RCABM and MSAG was analyzed, thus confirming the effectiveness of the residual 
architecture and attention mechanism-based improvements.

Nevertheless, this study has several limitations. In the future, it will be necessary to develop an AI model 
specifically for tongue diagnosis to assist physicians in achieving objective and accurate clinical diagnoses. 
However, challenges such as the difficulty in capturing high-quality tongue images and limitations in the 
subject population size led to the limited amount of data in this study to support high-performance network 
training. Additionally, although the investigation results preliminarily validated the potential effectiveness of the 
proposed method in tongue shape classification tasks, there is still room for further promotion in clinical trials. 
Considering that deep learning models are often regarded as ‘black box’ models, there is a need for enhanced 
transparency and interpretability of AI tongue diagnosis models. Further exploration is needed to provide 
medical professionals with more valuable diagnostic evidence for reference. In the future, more tongue image 
data will be collected to train high-precision models, and the overall logic of the network will be improved to 
address interpretability challenges, thereby providing support for the practical application of this model in the 
health care industry.

Conclusion
This study investigated a deep learning-based network model for classifying tongue shape, namely, IF-RCNet. 
The mixed inputs were combined with the feature fusion method to expand the amount of data of the network 
input and the amount of feature information. An RCBAM and improved convolutional groups were proposed 
to reinforce the backbone network of the tongue shape classifier, namely, RCA-Net, and that of the tongue 
segmentation network, namely, RCA-UNet, respectively. To compensate for the upsampling loss, an MSAG was 
applied to enhance the ability of the skip connection to perceive important features. Thus, the proposed model 
learned more complex feature information from limited data samples and compensated for the feature loss via 

Dataset Model MIoU Dice MHd

Our
UNet 93.08% 96.28% 4.51

RCA-UNet 93.70% 96.64% 4.40

BioHit
UNet 96.05% 97.61% 3.63

RCA-UNet 98.49% 99.23% 3.23

Table 4.  Shows that the proposed RCA-UNet performs better on the two tongue image datasets. In terms of 
the MIoU score, RCA-UNet improves by 0.62% on our dataset compared with UNet and improves by 2.44% 
on the public dataset BioHit. In terms of the dice score, the proposed RCA-UNet outperforms UNet by 0.36% 
and 1.62%, respectively. Additionally, RCA-UNet decreases by 0.11 and 0.4 on MHd, proving that RCA-UNet 
segmentation produces results that are more similar to those of the manually labeled mask model. These 
data indicate that the introduced RCBAM has learned more tongue features, which effectively improves the 
network’s ability to distinguish between the target and the background. The changes in MHd indicate that 
RCA-UNet, compared with UNet, retains more information, thus compensating for the feature loss in the 
network.
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the residual architecture and the attention mechanism. An accurate tongue shape classification was achieved, 
and the adverse effect of insufficient data on network performance degradation was effectively addressed.

A series of rigorous experiments and analyses verified that the proposed network model outperformed most 
known network models in terms of performance for both tongue shape classification and tongue segmentation 
tasks. The experimental results illustrated that combining the proposed RCBAM with the improved convolutional 
groups and the MSAG could simultaneously improve the accuracy of the tongue shape classifier and the 
performance of the tongue segmentation network. Furthermore, the mixed inputs and the feature fusion method 
provided an important approach for addressing the limited data and similar samples. These results not only fully 
confirmed the effectiveness of the proposed IF-RCNet in terms of handling tongue shape classification problems 

Fig. 9.  Comparison of tongue segmentation results.
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but also highlighted the potential of mixed inputs and feature fusion methods in solving challenges associated 
with limited medical image data.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reasona-
ble request. The code used in this study are publicly available at https://doi.org/10.5281/zenodo.14874334. Other 
detailed documents can be obtained by contacting 15672806923@163.com.
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