Table 3 Comparative results of SFDAB-ARNNSHO technique with existing models19,46,47,48.

From: An advanced fire detection system for assisting visually challenged people using recurrent neural network and sea-horse optimizer algorithm

Technique

\(Acc{u_y}\)

\(Pre{c_n}\)

\(Rec{a_l}\)

\(F{1_{score}}\)

ConvNeXtTiny

90.08

82.46

81.65

81.77

ResNet152-V2

95.56

90.84

91.23

91.18

VGG19 algorithm

97.46

91.82

91.51

91.38

NASNet-large

96.29

92.34

92.52

92.27

DL-MFDSED

98.17

95.47

95.36

95.45

Bi-LSTM model

99.08

93.79

93.99

94.12

Inception time

98.25

96.05

95.37

96.11

Transformer model

98.97

94.53

94.21

95.65

ADLSTM

96.36

91.54

91.85

91.89

ANN

98.05

92.58

92.08

92.12

GNN

96.89

93.06

93.28

92.97

GAN

98.81

96.02

96.00

96.20

SFDAB-ARNNSHO

99.30

96.73

99.3

97.96