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The purpose of this paper is to suggest short-term Seasonal forecasting for hourly electricity demand 
in the New England Control Area (ISO-NE-CA). Precision improvements are also considered when 
creating a model. Where the whole database is split into four seasons based on demand patterns. This 
article’s integrated model is built on techniques for machine and deep learning methods: Adaptive 
Neural-based Fuzzy Inference System, Long Short-Term Memory, Gated Recurrent Units, and Artificial 
Neural Networks. The linear relationship between temperature and electricity consumption makes the 
relationship noteworthy. Comparing the temperature effect in a working day and a temperature effect 
on a weekend day where at night, the marginal effects of temperature on the demand in a working day 
for power are likewise at their highest. However, there are significant effects of temperature on the 
demand for a holiday, even a weekend or special holiday. Two scenarios are used to get the results by 
using machine and deep learning techniques in four seasons. The first scenario is to forecast a working 
day, and the second scenario is to forecast a holiday (weekend or special holiday) under the effect of 
the temperature in each of the four seasons and the cost of electricity. To clarify the four techniques’ 
performance and effectiveness, the results were compared using the Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE), and Mean Absolute 
Percentage Error (MAPE) values. The forecasting model shows that the four highlighted algorithms 
perform well with minimal inaccuracy. Where the highest and the lowest accuracy for the first scenario 
are (99.90%) in the winter by simulating an Adaptive Neural-based Fuzzy Inference System and 
(70.20%) in the autumn by simulating Artificial Neural Network. For the second scenario, the highest 
and the lowest accuracy are (96.50%) in the autumn by simulating Adaptive Neural-based Fuzzy 
Inference System and (68.40%) in the spring by simulating Long Short-Term Memory. In addition, the 
highest and the lowest values of Mean Absolute Error (MAE) for the first scenario are (46.6514, and 
24.759 MWh) in the spring, and the summer by simulating Artificial Neural Networks. The highest and 
the lowest values of Mean Absolute Error (MAE) for the second scenario are (190.880, and 45.945 MWh) 
in the winter, and the autumn by simulating Long Short-Term Memory, and Adaptive Neural-based 
Fuzzy Inference System.
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ANFIS	� Adaptive neuro-fuzzy inference system
FIS	� Fuzzy inference system
ANN	� Artificial neural network
RNN	� Recurrent neural network
Čt 	� The cell’s state of LSTM
Ft 	� The forget gate of LSTM
it 	� The input gate of LSTM.

Ot 	� The output gate of LSTM
xt 	� The input signal of GRU
ht and h−

t  	� The transient outcome and the hidden layer output, at moment t in the GRU algorithm
Zt and Rt 	� The variables’ outcome of the modify and reset gates at t, respectively.
(X) and tanh(X)	� The sigmoid and tanh activation functions, respectively.
ai, bi and ci 	� The arrangement of elements that are determined throughout the model-learning process 

in the ANFIS.
Ri and Si 	� The fuzzy sets in ANFIS
Fi  	� The output of ANFIS
x1 and x2 	� The inputs of ANFIS
Ĉi 	� The candidate which is scaled by i·

t
  in LSTM and GRU structure

N	� Number of samples
ŷ,  y	� The forecasted value and the actual value of the load respectively.
SSE	� Sum squared error
MSE	� Mean squared error
RMSE	� Root mean square error
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error

Predicting the short-term load of electricity demand becomes a critical challenge for energy providers, system 
administrators, and other market stakeholders. Worldwide, power demand is determined by hourly bidding for 
a single day earlier than delivery occurs in numerous deregulated marketplaces for electrical power. Increased 
demand prediction accuracy can reduce operating costs and increase electrical power dependability. Developing 
reliable models is challenging due to the complex nature of power consumption. Enough electricity is required 
for intelligent systems, such as the Internet of Things (IoT), to link " whatever from wherever"1.

According to the United Nations Commission on Global Weather Change’s fifth annual report, global 
warming has led to an increase in the world temperature by almost 0.74 °C, and it is expected to reach 1.8–
4 °C by the end of the twenty-first century. The widespread installation of cooling (AC) units has caused the 
highest-demand events to move from the end of the day to daylight hours because of the rise in temperatures2,3. 
In addition, the widespread usage of air conditioning and heating appliances, which are mostly utilized by 
homeowners and companies in domestic, industrial, and commercial sectors, is generally associated with this 
impact4. In residential structures, the energy consumed by air conditioning, heating, and ventilation systems 
is greater than 50%5. Determined factors like day kinds and seasonal months also demonstrate their effects on 
demand, throughout the temperature. Demand patterns are strongly influenced by the industries that utilize 
electrical power6. The impact that household lifestyle has on energy consumption is becoming more and more 
notable. Effective power governance requires strict control over end-user demand because electricity cannot be 
stored efficiently7. To ensure the stability of the energy system while it is working and to retain a safe, sufficient, 
and effective availability of electrical power by lowering the danger of a blackout, The core objective of this 
manuscript is to develop a highly precise forecasting framework and conduct a quantitative investigation of the 
demand variables that influence it.

Therefore, to ensure dependability and continuation of improved power performance in the electrical power 
grid, anticipating the price of electricity requires both accuracy and stability8. The following are some of the 
main variables that affect how much electricity is consumed fluctuating: temperature effect, humidity, wind 
speed, cloud cover, intensity of daily activities, working and non-working days, special holidays, fuel prices, 
etc. These variables lead to price volatility and non-linearity. The energy market operators have to deal with the 
aforementioned problems as a result of the dynamic power price’s unpredictability and volatility9,10. To anticipate 
the price of energy, several elements, hourly demand and cost of electricity signals, for example, ought to be able 
to be expressed as inputs11.

While certain predictable patterns, like seasonal, weekly, and daily trends, are present, actual electricity usage 
varies as a result of consumers’ erratic habits. Lifecycle behaviors are brought about by variations in demand 
in the morning, afternoon, and evening. The researcher has two options for dealing with these during-the-
day periodicities: first, assign each hour’s or half-hour’s worth of variables individually. The second approach 
involves creating distinct models for every hour or half-hour to eliminate throughout-the-day seasonality12–15. 
In the same way, working and days off account for the seasonality of weekdays. A comparable practice with 
separate factors for every single day utilizing fictitious variables is used to eliminate such seasonality. The varying 
temperature in each season causes annual seasonality, which is eliminated by using fictitious variables. The 
fictitious factors additionally handle seasonality in each month14,16.

Most recent studies have been transformed by techniques based on machine learning and deep learning, 
which produce dependable and precise forecasting results17. In the electricity sector, time-series approaches that 
describe seasonality and patterns of historical data, such as seasonal autoregressive integrated moving average 
(SARIMA) or autoregressive integrated moving average model (ARIMA), have been extensively applied for 
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electric power forecasting18–20. One disadvantage of statistical approaches, which are usually linear and skilled 
in prediction, is that they may not work well with highly variable data, like hourly information at a rapid rate. 
Examples of such techniques include multiple linear regression, exponential smoothing, autoregressive moving 
average (ARMA), autoregressive integrated moving average (ARIMA), and vector autoregression (VAR). 
Specifically, hourly pricing’s unstable trends, which work well with low data frequency like weekly themes, 
may become too complicated for forecasting purposes21,22. In23,24 by using the advantages of many methods 
to improve the precision of predictions, mixed models that include several methods for forecasting have also 
demonstrated effectiveness. Consequently, dealing with time-series data presents several difficult challenges, 
investigators have turned to Artificial Neural Networks (ANN), which are modeled after the framework of the 
brain of humans. They have proven to be exceptionally accomplished in many different types of fields, including 
Natural Language Processing (NLP), audio identification, medicine, and load forecasting. The requirement for 
massive amounts of data to train ANN models is one of their difficult issues25–28.

Machine and deep learning models both incorporate intelligence-based approaches. Support vector machines 
and artificial neural-based networks are examples of machine learning approaches. However, Deep learning 
approaches have improved precision, efficacy, and outcomes during the past few years. The fast growth of efficient 
hardware for computing and useful applications has prompted the usage of advanced machine and deep learning 
techniques. Consequently, the precision and power of employing models based on machine learning and deep 
learning, and a mix of both, has led to the construction of a forecasting model with an intricate network topology. 
Deep learning methods include convolutional neural networks (CNN) with the immunity of the lion approach, 
long-short term memory (LSTM), gated recurrent units (GRU), and recurrent neural networks (RNN). ANFIS, 
fuzzy + neural network, ANN, SVM, and genetic algorithm (GA) are examples of hybrid techniques29–32.

An overview of relevant literature and history
Song et al.33 proposed in their studies in Bangladesh, that months of summer and wintertime months experience 
significant temperature variations. However, because of high temperatures throughout the summer, there is a 
large rise in the requirement for electrical load because of the frequent usage of air-cooling units. It is significant 
to remember that load prediction precision decreases in both two seasons when the relationship between 
load and temperature is not taken into account. By using the temperature-sensitive nature of demand in load 
forecasting, this issue can be resolved33.

The article in34 provided a method for analyzing the effects of global warming on the daily peak load using a 
linear regression model. Lastly, a three-point technique was applied to predict the temperature responsiveness 
of the load based on the outcomes. It had been noted that temperature had a noteworthy influence on the 
load pattern. The temperature impact of the load was predicted considering the historical data. All additional 
weather variables, such as moisture, wind speed, and cloud cover, can also be included in this study. According 
to the authors, the prediction of electrical consumption and temperature sensitivity would be highly useful in 
incorporating climate factors into electric power system design34.

The growing prevalence of smart grids has made forecasting future loads extremely important. Some variables, 
including weather conditions, could have an impact on the results when predicting future load consumption. 
The absence of upcoming weather has presented a difficult issue for load forecasting. This article has discussed 
the past demand as a predictor to estimate demand for one step forward. Certain non-deep learning techniques, 
such as ARIMA or linear regression, were effective methods for producing precise load forecasts. However, 
regression-based techniques do have certain drawbacks. By using autocorrelation (AC) quantities, lags are 
employed as variables in techniques like Support Vector Regression and regression with linearity. The number 
of lags as variables of regression systems might vary as a cutoff value is indeterminate. More inaccuracies could 
result from this process (identifying lags by autocorrelation graph). Two other recognized time-series study 
methods are Exponential Smoothing (ETS) and ARIMA. However, for these techniques to function, a few 
parameters must be adjusted. To figure out the most acceptable possible values for them, this technique requires 
several attempts. In addition, data analysis is required for time-series approaches to determine whether or not 
data are constant. On the other hand, even if the data was fixed, LSTM could still produce good results. Another 
hybrid model was employed in several load forecasting investigations by CNN-LSTM35.

Lopez et al.36 proposed a system’s load series that exhibited recurring trends on a daily, weekly, and annual 
basis. However, irregularities in this general periodic activity are brought on by other circumstances, such as 
social gatherings or temperature. Understanding and modeling these variations was essential to creating a load 
forecasting system that works, as a significant portion of load forecasting losses are frequently associated with 
the increased forecasting inaccuracy typical of these unique days. The impact of various special day kinds on the 
load distribution curve was the main topic of this research, along with the significance of accurately modeling 
these behaviors. This study modeled the impact of social occurrences, such as holidays or festive times, on the 
load distribution curve using linear regression and examined the Spanish national network. The findings in 
this research demonstrated that a comprehensive categorization of occurrences was required to precisely model 
every possible event during a seven-year timeframe. The primary inferences that can be made from this were 
that the mean error for special days produced by the suggested special day categorization was 1.84%, which 
was extremely close to the mean error for normal days which was estimated by 1.78%. Furthermore, in model 
7, the 95th percentile for special days was a mere 4.56%, down from 17.6% in model 0. This indicated that the 
simulation error for just 5% of exceptional days was greater than 4.56%. On ordinary days, the percentage was 
significantly lower estimated at 4.33%36.

Srinivasan et al.37 presented in this study, the execution and prediction outcomes of a hybrid fuzzy neural 
technique for power demand prediction, which blends fuzzy logic and the theory of fuzzy sets algorithms 
with neural network simulation. This potent technique’s capabilities were found in its capacity to predict with 
accuracy not only on weekends and public holidays but also on weekdays and days leading up to and following 
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them. Fuzzy logic was also a useful tool for handling load changes brought on by unusual events. A fuzzy neural 
network (FNN) for 24-h forward forecasting powered by anticipated weather data had been thoroughly evaluated 
using real data taken from a power system. The average inaccuracy on weekdays was 0.62%, on Saturdays it was 
0.83%, and on Sundays and public holidays, it was 1.17%37.

Ziel et al.38 discussed how to predict electricity demand during public or bank holidays. Specific features of 
public holidays, including their division into weekday and fixed-date holidays, were covered in depth. This study 
offered cutting-edge methods for handling public holidays, including their removal from the data set, treatment 
as Sunday dummies, and introduction of distinct holiday dummies. The study weighed the benefits and 
drawbacks of each strategy and presented a comprehensive load forecasting analysis for Germany that contrasts 
the methods based on accepted performance and significance metrics. The study offered broad guidelines 
for handling public holidays concerning electric power forecasting, highlighting specific ways to reduce the 
shortcomings of the majority of cutting-edge techniques. This was particularly helpful since it could increase the 
precision of forecasting by over 80% during public holiday periods. Even during non-holidays at certain times, 
the forecast error can be decreased by about 10%. The experimental outcomes demonstrated that adding holiday 
impacts could significantly increase predicting performance. The enhancement could reach up to 80% on public 
holidays, although interestingly, the precision of the forecast rises by roughly 10% even during non-holiday 
times owing to well-covered holiday effects. The public holiday fictitious approach was the most feasible strategy 
for handling public holidays. This methodology was particularly effective in modeling with multiple variables 
contexts. The workday dummies during the holidays were set to zero in the switching public holiday dummy 
strategy, but public holiday dummies were added to the framework as well38.

Lusis et al.39 examined the relationship between the length of the training set, forecasting precision, and 
calendar influences on the accuracy of a day-ahead load estimate for consumers in residential areas. The 
forecast error metrics that were measured were root mean square error (RMSE) and normalized RMSE. 
While the average RMSE results from regression trees, neural networks, and support vector regression were 
comparable, the statistical evaluation revealed that the regression trees approach was noticeably superior. The 
apparent calendar impacts had minimal prediction ability when daily and weekly seasonality in historical load 
profiles were supplemented with meteorological information. Using a finer prediction precision was found to 
decrease prediction errors in the simulation under study. Additionally, it was discovered that a load forecast 
model for residential users might be developed using just a year’s worth of information from past records, with 
the negligible effect of increasing the dataset used for training. For most of the scenarios in this study, it was 
found that the addition of binary variables representing calendar effects produced a lower error than the subsets 
strategy. However, static analysis failed to find a statistically significant difference between the scenarios with and 
without calendar impacts, indicating that calendar impacts were not repetitive. A smoother load profile from a 
considerably higher number of residences would render periodic load trends (intra-day, weekly, and seasonal) 
more pronounced and predictable39.

This research40 offered a thorough examination of numerous cutting-edge techniques for objective and 
deterministic LV demand predictions. Hapen et al. assessed the prediction accuracy of these out-of-sample 
approaches for up to four days ahead of time on 100 actual LV feeders. Furthermore, they investigated how the 
temperature—both real and predicted—affected the demand precision estimates. They also gave some significant 
findings regarding the factors that influenced forecast accuracy that relied on the empirical comparison of 
forecast indicators that are uncertain and point-based. Since the standards were set a full week in advance, they 
utilized each seven in the morning as the forecast starting point in the sampled-post information to maintain 
consistency with the temperature-predicted data from the observatory. As anticipated, the most accurate 
forecasts were a single day ahead of time, while the least precise predictions occurred for four days onward. It 
was found that a Strong correlation exists between the errors which was nearly 0.995. Furthermore, a minimum 
group of errors was obtained by using mean absolute percentage error (MAPE) and Root Mean Square Error 
(RMSE).

According to this analysis41, one of the most appealing stochastic alternative energy sources that lower 
greenhouse gas emissions is the development of battery-powered automobiles. The nature of seasonal influence 
has been investigated using four different forecasting models. Four distinct forecasting networks have been 
developed in order to increase the system’s accuracy and gain a better understanding of how seasonal elements, 
such as temperature differences over the four seasons, influence the battery of electric vehicles in both the 
charging and discharging phases. These factors affect how accurate the forecasting model is. Four featured 
algorithms are examined. Deep learning techniques like Long Short-Term Memory and Gated Recurrent Units 
are covered, in addition to machine learning techniques like Artificial Neural Networks and Adaptive Neuro-
Fuzzy Inference Systems. The Gated Recurrent Units network replicates somewhat better on an hourly basis 
median every day of the previous records of charging battery-powered cars than the long short-term memory 
network. The advantages of neural network technology and the fuzzy inference network are combined in the 
Adaptive Neuro-Fuzzy Inference System. Because deep learning technology is used, the projected outcome 
generated by the Gated Recurrent Unit technique is more accurate and has a smaller mean absolute percentage 
error (MAPE) than the outcomes produced by the Long Short-Term Memory algorithm. This is because, with a 
precision of 99.3%, 97.7%, and 98.3%, the total MAPEs in the 24-h period have decreased by 0.1203%, 0.2397%, 
and 0.0735% throughout the winter, spring, and summer, respectively. However, with a 98.08% precision, the 
overall MAPE increased by 0.2253% throughout the fall season. The expected dataset from the adaptive neuro-
fuzzy inference is more accurate with a less mean absolute percentage error than the results of the neural network 
modeling method. This is because, with an accuracy of 99.35%, 98.04%, 98.56, and 97.06%, the total MAPEs in 
the 24 h have decreased by 6.1907%, 1.2103%, 0.8812, and 0.7236% in the winter, spring, and summer seasons, 
and by 0.7236% in the fall. According to the Adaptive Neuro Fuzzy Inference System method, the projected 
dataset is consequently the most accurate and performs the best with the least accumulative mean absolute 
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percentage error among the other techniques presented. As a result, the ANFIS data is significantly impacted by 
changes in the season of plug-in EVs’ per-hour charging use41.

In 2015, Khawaja et. al. proposed a study that the effect of many factors such as dry bulb, dew point 
temperatures, the hour of the weekday and day of each week, a flag indicator for weekends or holidays, average 
load from the day before, load from the same hour from the day before, and load from the comparable hour from 
the same weekday from the week before are just a few of the variables that the data has been taken into account in 
the forecasting model. The power load profile is taught and predicted using these criteria. As a result, forecasting 
results of the data collected from New England in the years 2004, 2005, and 2006 were produced using the 
suggested neural network-based methodologies, with monthly MAPE results not exceeding 8%42.

In 2024, El-azab et al. 43 discussed a study that discovered that developing a forecasting model has been 
the primary means of addressing the sharp rise and nonlinear behavior of the energy load and the price of 
power. ANN, LSTM, GRU, and ANFIS have been four prominent ways that have been suggested to increase 
forecasting accuracy and speed with a collection of mistakes root mean squared error “RMSE”, normalized root 
mean squared error “NRMSE”, mean absolute error “MAE”, and mean absolute percentage error “MAPE”. The 
ISO-NE electricity market is the source of the complete dataset for hourly energy load, hourly electricity price, 
and other factors. Therefore, they could run the forecasting model in two scenarios: the first one would forecast 
the energy load and the price of electricity separately, and the second would forecast the energy load and the 
price separately based on other factors like temperature parameters, day type, load during the same hour last 
week and the previous day, and price during the same hour last week and the previous day43.

Although it has been acknowledged that the second scenario’s forecasting model performs better and more 
efficiently than the first scenario’s in tracking actual values with the lowest MAPE, the nature of the electricity 
price in the deregulated market is still unstable and non-stationary. Where the datasets span the period of 
January 1, 2021, to December 31, 2021, or one year. The four seasons—winter, spring, summer, and autumn—
have been represented by the dataset divisions. Following preprocessing and analysis of both the energy demand 
and electricity price datasets, the four featured algorithms in each of the two scenarios have been implemented. 
A collection of errors has been used to evaluate the four main algorithms. By comparing the findings from the 
two situations, it is discovered that ANFIS in the summer and winter provides the best predicting performance 
with the least amount of MAPE, and that the second scenario leads to a decrease in RMSE. The best forecasting 
performance is provided by ANN in the spring when MAPE is at its lowest and RMSE is reduced in the second 
scenario. However, the best forecasting performance with the lowest MAPE is provided by the autumn-season 
LSTM, while the second scenario has a lower RMSE43.

Additionally, the second scenario’s predicted outcomes from the machine learning and deep learning 
algorithms attempt to effectively track the actual values at the massive spikes that arise from the energy load’s 
non-linearity during specific seasons, which is reflected in the hourly electricity price. Because of the significant 
variations in the mean, standard deviations, minimum, and maximum for each season, there is a great deal of 
variability in both datasets. In addition, the second scenario requires more input parameters—like temperature, 
day type, hour-by-hour load, and price—than the first to produce anticipated outcomes that are more accurate 
and have less inaccuracy. The predicted results of the load and price that have emerged in minimizing the group 
of errors and tracking the actual values have been altered by the inclusion of external elements among the four 
seasons, particularly during the peaks of load and price. Furthermore, the load has been influenced by the 
cumulative effect of all the factors, such as the seasonal effects on weather temperatures and the weekday load 
profile, which is different on Mondays from the other weekdays. Furthermore, the hourly rate affects the load 
profile and is not fixed43.

According to the results in44, Random Forest performed the best at predicting power generation and wind 
speed, whereas the K Neighbors algorithm performed the worst and took the smallest amount of time to run44. 
Besides, S. M. Malakouti et al. in45–48 provided that the ensemble (light gradient boosting machine and Ada 
Boost) was used to forecast wind speed and solar farm production power of a supervisory control and data 
collection system to enhance the performance of the algorithms.

In addition to the ensemble approach, fourfold, fivefold, and tenfold cross-validation techniques were used 
to acquire the outcomes of machine learning algorithms. The algorithms’ outputs were contrasted with one 
another. The findings demonstrated that the ensemble method (light gradient boosting machine and Ada Boost) 
had a root-mean-square error of 11.78 with tenfold cross-validation in predicting the Supervisory control and 
data acquisition system’s three-month production power and 0.2080 with tenfold cross-validation in predicting 
the wind speed45.

Power plants that use fossil fuels will gradually be replaced by wind turbines as the main source of energy 
generation due to the scarcity of fossil fuels in many nations. These fossil fuel plants destroy the environment and 
increase the risk of disease in people and other living things. Investigations were conducted into wind turbines’ 
manufacturing potential. Thus, techniques like Multi-Layer Perceptron with Bayesian and XGBOOST49. CNN 
Long Short-Term Memory (CNN-LSTM), Ensemble (gradient boosting and xgboost), Gradient Boosting 
Regression Tree (GBDT), and Optimization (MLP + BO) have all been used. The Ensemble technique produced 
a mean square error (MSE) of 7.2 in 45 s, whereas the CNN-LSTM method produced an MSE of 6.8 in 450 s. 
Wind energy has the potential to be a dependable and sustainable energy source because it is easily accessible 
and affordable worldwide49.

Since most studies in the previous literature review have not been dependent on different factors as input 
parameters to the forecasting network such as temperature, day type (working day or special holiday), hour-by-
hour load, hourly electricity costs and the seasonality effect in order to forecast the hourly load. Therefore, the 
enhancements that this work has contributed are outlined below:
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•	 Building a forecasting network by utilizing large, high-quality datasets for two scenarios were provided in this 
manuscript to be utilized across the spring, summer, fall, and winter seasons. The two scenarios were:

•	 The machine learning and deep learning algorithms were chosen for training, testing, and predicting the load 
pattern were represented by the ANN, LSTM, GRU, and ANFIS.

•	 The suggested load forecasting models were analyzed using the four classes of errors root mean squared error 
“RMSE”, normalized root mean squared error “NRMSE”, mean absolute error “MAE”, and mean absolute 
percentage error “MAPE”, kurtosis coefficient, and coefficient of variation (CV) that were computed.

•	 The Nash–Sutcliffe Efficiency (NSE), and the determination factor (R2) established how accurate the simu-
lated model was.

	1	� Forecasting the hourly load for one working day which was considered the last day in each season based on 
additional variables including dewpoints, dry bulbs, workdays, and electricity costs.

	2	� Forecasting the hourly load for one weekend day or special holiday in each season based on additional varia-
bles including dewpoints, dry bulbs, workdays, and electricity costs.

•	 The machine learning and deep learning algorithms were chosen for training, testing, and predicting the load 
pattern were represented by the ANN, LSTM, GRU, and ANFIS.

•	 The suggested load forecasting models were analyzed using the four classes of errors root mean squared error 
“RMSE”, normalized root mean squared error “NRMSE”, mean absolute error “MAE”, and mean absolute 
percentage error “MAPE”, kurtosis coefficient, and coefficient of variation (CV) that were computed.

•	 The Nash–Sutcliffe Efficiency (NSE), and the determination factor (R2) established how accurate the simu-
lated model was.

The ISO (New England Independent System Operator) provided accurate data on the power market, which was 
where the information about hourly load, electricity prices, dewpoints, dry bulbs, workdays, weekends, and 
holidays originated in the four seasons. Four prominent algorithms—the Artificial Neural Network (ANN), the 
Long Short-Term Memory (LSTM), the Gated Recurrent Units (GRU), and the Adaptive Neural Fuzzy Inference 
System (ANFIS)—provided the results.

The paper contains eight sections. In brief, the machine and deep learning algorithms are displayed in Section 
"The recommended approaches". Section "Examining and preparing the dataset for processing" displays the 
examination and preparing the dataset for processing. Section "Seasonal short-term load forecasting procedure" 
describes the seasonal short-term load forecasting procedure. Section "Seasonal energy load consumption and 
tuning parameters of the suggested algorithms under study" proposes seasonal energy load consumption and 
tuning parameters of the suggested algorithms under study. Prediction results and discussion are discussed in 
section "Results of short-term forecasting model and discussion" discussion and the advantages of the proposed 
study are summarized in section "Discussion and the benefits of the provided study". Section 8 points to the 
conclusion of this study.

The recommended approaches
This section contains representations of the suggested algorithms. On the other hand, it would be better to 
introduce the model’s framework for short-term forecasting of the profile in four seasons. The section explains 
the suggested algorithms: artificial neural fuzzy inference systems, gated recurrent units, and long short-term 
memory.

Long short-term memory (Lstm) topology
An ANN type called an RNN manages prerequisites between nodes of information. The RNN model incorporates 
the notion of the concealed state. After alterations, the data’s eigenvalues can be extracted from the hidden state. 
For short-term dependency problems, RNNs work well. However, the long-term dependence issue is beyond the 
model’s capabilities. The gradient disappearance dilemma was the motivation behind the creation of the LSTM 
network. A gate control method is introduced by the LSTM network. The forgetting gate determines the data 
that is the subject of cell state loss, the information to be output is determined by the output gate, and the cell 
state to store new information is determined by the input gate50,51. Figure 1 depicts LSTM’s topology. The cell’s 
state at t is introduced by Čt and the forget gate is indicated by Ft. The input gate is indicated by it. 

.

Ot stands 
for the output gate. Its formula in mathematics is52:

	
Ft = σ(ωF · [ht−1, χt] + b· )� (1)

	

it. = σ


ωi·

· [ht−1, χt] + b·
i·


� (2)

	 Ĉt = tanh
(
ωĊ · [ht−1, χt] + ḃĊ

)
� (3)

	 Ċt = Ft ∗ Ċt−1 + it ∗ Ċt� (4)

	

O·
t

= σ


ωO·

·
[
ht−1, Ẋt

]
+ b·

O·


� (5)
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ht = O·

t
∗ tanh Ċt� (6)

Gated recurrent units (GRU) topology
A gating technique for recurrent neural networks called gated recurrent units (GRUs) was developed in 201455. 
The GRU has fewer settings than an outcome gate, however, it is comparable to an LSTM (long short-term 
memory) with a forget gate56. It has been shown that GRUs function superior on records that are smaller and less 
frequent57. GRU, which represents progress on the concealed layer of the standard RNN, is shown graphically 
and architecturally in Figure 2. An update gate, a reset gate, and a temporary output are the three gates that 
comprise a GRU. The following are the related symbols57:

	1.	� At time t, the framework input signal is represented by the parameter xt.
	2.	� The values of the vectors represented by variables ht and h−

t  at moment t are the transient outcome and the 
concealed layer output, respectively.

	3.	� The gate vectors Zt and Rt, represent the variables’ outcome of the modified and reset gates at t, respectively.
	4.	� (X) and tanh(X) indicate the sigmoid and tanh activation functions, respectively.

Adaptive neural fuzzy inference system (ANFIS) topology
Figure 3 depicts the structure of the ANFIS. The ANFIS approach forms a fuzzy inference system (FIS) from a 
given the term "input” and the term “output” sets of data. The membership function parameters of the FIS are 
then configured employing a least squares-type approach or backpropagation technique independently. As a 
result, fuzzy structures can gain knowledge from the data that they simulate58,59. The FIS Design is a network 
structure that resembles a neural network in that it correlates inputs to outputs via output membership functions 
and related parameters after mapping inputs through input membership functions and corresponding factors. To 
identify the ideal membership function distribution using hybrid learning, an ANFIS can assist us in identifying 
the mapping relationship between the input data and outcome57.

The method employed by ANFIS can be implemented without just depending on the skills of expertise 
required for a fuzzy logic methodology. The ANFIS technique has the benefits of possessing both quantitative 
and language competence. ANFIS also makes use of the ANN’s capacity to categorize information and determine 
correlations. Compared to the ANN, the ANFIS structure is easier for users to understand and is less prone 
to cause memorization errors. Consequently, the ANFIS offers several benefits, including nonlinearity, rapid 
learning and training, and adaptability58.

Fig. 1.  A structure model of the LSTM network53.
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Fig. 3.  The fundamental architecture of ANFIS for a single output with two rules and two inputs58.

 

Fig. 2.  A structure of the GRU57.
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In essence, the ANFIS technique is a fuzzy logic strategy based on regulations, in which the regulations are 
developed during the algorithm’s training phase. The method is based on data-driven learning. The samples 
that are trained are used by ANFIS to construct the fuzzy inference system (FIS) function with its membership 
specifications. The two systems of fuzzy inference that are most commonly used are Mamdani and Sugeno. 
The key difference between the Sugeno and Mamdani procedures is that the membership outcome functions 
for the Sugeno approach can be fixed in nature or regular. However, the membership outcome functions of the 
Mamdani approach might be Gaussian, triangular, etc. This study employed the Sugeno-type fuzzy inference 
system since it computes more quickly than the Mamdani type. The Mamdani rely largely on knowledge. On the 
other hand, the Sugeno category was created using real data58–61.

To comprehend the ANFIS framework, we made the assumption that there are, in fact, two inputs: x and y. 
A double set of fuzzy if-then rules for a first-order Sugeno fuzzy framework can be mentioned in the following 
way in rules 1 and 2:

	 Rule 1 : if x1 is R1and x2 is S1then (F1 = a1x1 + b1x2 + c1)� (7)

	 Rule 2 : if x2isR2and x2isS2 then (F2 = a2x1 + b2x2 + c2)� (8)

where ai, bi and ci  are the arrangement of elements that are determined throughout the model-learning process, 
Ri and Si  are the fuzzy sets, and Fi  is the outcome. The ANFIS framework that was used to carry out the two 
rules is shown in Fig. 4. The two inputs that are provided to the fuzzy system, x1 and x2, will therefore be used 
to build layer 1’s fuzzy function of membership58.

	1.	� Equations (9) through (12) illustrate the four-level fuzzification of the two inputs, x1 and x2, to get the result 
Y. The first layer of the fuzzy system will receive the two inputs. The membership functions µRi (xi) and 
µSi (xi) are employed when the return of layer 1 is Oi,1,. The membership criteria include Gaussian in nature 
trapezoidal, and triangle-shaped forms58.

	 Oi,1 = µRi (xi) , for i = 1, 2

	 Oi,1 = µSi (xi) , for i = 3, 4� (9)

	2.	� The second layer of the fuzzy system, when i = 1, 2, the fuzzy rules are represented by Eq. (4).

	 Oi,2 = ωi = µRi (χi) µSi (χi) , for i = 1, 2� (10)

	3.	� The gate vectors Zt and Rt, represent the variables’ outcome of the modified and reset gates at t, respectively.

	1.	� The third layer of the fuzzy system, Eq. (11) illustrates the normalization of this layer’s output.

	
Oi,3 = wi = ω1

ω1 + ω2
, fori = 1, 2� (11)

	2.	� The fourth layer of the fuzzy system, the output of the membership function is shown in Eq. (12).

	 Oi,4 = wiFi = wi (aix1 + bix1 + ci) , for i = 1, 2� (12)

	3.	� The fifth layer of the fuzzy system, and for summary, all incoming signals will go through the activation 
function, which will cause them to become fuzzy, and the fuzzy rules, which will cause them to become less 
fuzzy. Ultimately, the outcome is ready for assessment, as indicated by Eq. (13).

	
Oi,5 =

2∑
i=1

wiFi =
∑2

i=1 ωifi

ω1 + ω2
, for i = 1, 2� (13)

Examining and preparing the dataset for processing
Throughout the data preparation phase, a suitable structure is produced for the analytical task. Because of this, 
data preparation is necessary in order to modify the data and effectively assess the results.

Dataset normalization and de-normalization procedures
When evaluations are made using scales that differ, like in the case of forecasting inputs. Ignoring this stage, 
especially when working with gradient descent approaches, causes the convergence rate to decrease to a 
minimum and distorts the usefulness of the outcomes by preventing them from gathering data. The normalizing 
technique used in almost all the publications is called min–max scaling, and it turns each value in the dataset 
into an interval between zero and one21. Owing to the significant variations in the target data, the normalization 
process helps to enhance the framework’s performance during learning, accelerating the training stage. The 
formulation of the min–max normalization is given by Eq. (14)62.
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y = z − min (z)

max (z) − min (z) � (14)

where the actual value is z, max (z), and min (z) are the maximum and the minimum values of z, and the 
normalized value is y62.

After being achieved, the predicted results of the framework ought to automatically be returned to their initial 
values for improved readability. This process is also known as denormalization or anti-normalization63. The 
normalization and the anti-normalization processes are carried out on the hourly load and the corresponding 
hourly price in order to easily deal with the pattern label each month.

Handling missing values and the outlier procedure
Throughout the outlier stage, a few ways are used to remove disruption and missing information that cause 
fatal errors in model-based forecasting. This process is advised when the zero data is eliminated after being 
transformed to null63.

Fig. 4.  Predicting the hourly energy load framework using the two scenarios’ performance calculations and 
the four suggested methodologies.
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Datasets clustering procedure
When pre-processing the datasets of the energy load, clustering may be employed to separate the database into 
seasons, patterns of the weather, or type of day such as a flag 0 or 1 to differentiate between the working day, 
day off (weekend, or special holiday)63. The clustering method is carried out on the hourly energy load and the 
related hourly price to clarify the pattern label each month.

Dataset smoothing procedure
Dataset assembly allows for the removal or reduction of fluctuations and various types of disruption. This is 
known as data softening64. In this paper, the hourly energy load dataset and the corresponding hourly price are 
smoothed using the moving average method.

Seasonal short-term load forecasting procedure
Predicting the electric energy load under two scenarios is the goal of this study. The first scenario involves 
Predicting 24 h for one working day, the final day of each season, taking into account several variables including 
dewpoints, dry bulbs, workdays, and the corresponding electricity costs of consumption. In the second scenario, 
predicting 24-h for one weekend day or special holiday every season, taking into account other variables 
including dewpoints, dry bulb conditions, off days, and the corresponding electricity costs of the consumption 
in the same season.

A forecasting load model framework based on the suggested machine learning and deep learning algorithms 
is shown in Fig. 4 for the two scenarios. These algorithms are described as follows:

	1.	� As the three phases in the analysis and preprocessing stage, the dataset is run through outlier, normalization, 
de-normalization, clustering, and smoothing in the two scenarios.

	2.	� Each suggested algorithm is prepared for application on the dataset in the input matrix for the load/price for 
the two forecasting model scenarios following the pre-processing of the dataset.

	3.	� There are separate datasets for training and testing for the hourly demand in each season.
	4.	� Using the optimizing solver and loss function to fine-tune each algorithm’s parameters throughout the train-

ing phase.
	5.	� Use individual machine and deep learning algorithm simulations to forecast the outcome matrix for the 

hourly load in the two scenarios.
	6.	� Use the measured performance root mean squared error “RMSE”, normalized root mean squared error 

“NRMSE”, mean absolute error “MAE”, and mean absolute percentage error “MAPE”, kurtosis coefficient, 
and coefficient of variation (CV) to assess how well each method performed in obtaining results for short-
term load forecasting in the two scenarios.

	7.	� Finally, an accurate simulation of the forecasting model is assessed using the determination coefficient R2.

It is crucial to decide on the best possible optimizer and loss function for the suggested algorithms to achieve 
optimal training results. The optimizer is a mathematical strategy that reduces losses in the suggested algorithm 
by adjusting its weights, bias, and learning rate, among other qualities. Consequently, by fine-altering the settings 
for each suggested algorithm and choosing the proper optimizer and loss function, the discrepancy between the 
tested and predicted data is decreased.

Software for engineering uses many efficient optimizing solvers, including the Levenberg–Marquardt 
algorithm (LMA)65, Adaptive Gradient (AdaGrad)66, Adaptive Delta (Adadelta)67, Adaptive Moment Estimation 
(Adam)66, and Nesterov Accelerated Gradient (NAG)68.

In this study, we select the most efficient and the most optimizing solver in the following manners:

	1.	� Adaptive Moment Estimation (Adam) is selected for ANFIS, GRU, and LSTM algorithms.
	2.	� The Levenberg–Marquardt algorithm (LMA) is selected for the ANN algorithm.

Additionally, the following is the helpful loss function corresponding to the best-optimizing solver:

	1.	� Mean Squared Error (MSE) is selected for ANFIS, GRU, and LSTM algorithms.
	2.	� Sum Squared Error (SSE) is selected for the ANN algorithm.

Where Eqs.  (14) and (15) can be used to compute the Mean Squared Error (MSE) and Sum Squared Error 
(SSE). Where the number of samples is indicated as “N”, and the forecasted and actual values of the energy load 
consumption (Sys_demand) are indicated as zt, and yt, respectively68.

	
SSE =

N∑
t=1

(zt − yt)� (14)

	
MSE =

∑N
t=1 (zt − yt)

N
� (15)
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Seasonal energy load consumption and tuning parameters of the suggested 
algorithms under study
The dataset for the energy consumption load is shown in this section. In order to produce better-predicting 
results with less error, the setting parameters of each algorithm are adjusted to make it adequate to function with 
the dataset.

Compiling the dataset procedure
The New England power market, ISO-NE, is the source of the statistics. The Independent System Operator 
New England, also known as ISO-NE, is the organization in charge of producing, handling, and distributing 
electricity to end users or customers. ISO-NE offers a lot of data, including load, dew points, dry bulb, pricing, 
supply of energy, and generation of energy. For a year, from January 1, 2021, to December 31, 2021, this study 
used hourly load and pricing data each day from Independent System Operator New England (ISO-NE) ​(​​​h​t​t​p​s​:​/​
/​w​w​w​.​i​s​o​-​n​e​.​c​o​m​​​​​, accessed on: October 7, 2023). The data’s objective is to predict the energy load consumption 
of power in the aforementioned two scenarios. “Sys_demand” and “Market_Price” columns in our target records 
are indicated70.

Since the dataset was collected for twelve months, there are 8760 records. Consequently, the dataset is 
divided into two sets: the one used for the training set and the one used for the testing set. Since the forecasting 
framework will develop the datasets used to train the suggested algorithm. The dataset for each of the four 
seasons which is the hourly energy load consumption (Sys_demand) in MWh is displayed in Fig. 5. In addition, 
the corresponding dataset of the Market_price is considered as one of the inputs that affects forecasting the 
hourly energy load consumption (Sys_demand) is also shown in Fig. 5. Before beginning the analysis and pre-
processing procedures. Two scenarios exist:

Fig. 5.  The Sys_demand (MWh) hourly dataset for the four seasons, linked with the associated hourly Market_
price ($/h)70.
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	1	� In the 1st scenario, the hourly energy load consumption (Sys_demand) is forecasted for the workdays, based 
on some elements such as temperature, the power price in the electricity market, and the previous workdays 
(demand, and market price) profile in the same season.

	2	� In the 2nd scenario, the hourly energy load consumption (Sys_demand) is forecasting for the weekend days 
or even special holidays, based on some elements such as temperature, the power price in the electricity mar-
ket, the previous weekend (demand, and market price) profile in the same season.

The input factors and the outcome for the two scenarios are displayed in Table 1. The temperature, expressed in 
Celsius degrees, the Market_price, and the load are based on the same-hour price and load from the previous 
day, the same-hour price and load from the previous week, and the preceding 24-h average price and load. These 
correspond to three distinct calendar index flags, namely the day numbering of the week, the month, and type of 
the day where the day number flag is i = 1, 2, …, 7 for the seven days of the week (Monday, Tuesday, …, Sunday), 
the month indication is k = 1, 2, …, 12 for the twelve months (January, February, March, …, December), and type 
of the day flag is f = 0, 1 for the weekend or holidays, and the working days.

We suppose that the temperature records for a given year are divided over the four seasons. The range of 
temperatures within winter, spring, summer, and fall is therefore considered a seasonal factor in this study. For 
example, the average wintertime temperature ranges from − 1/− 11 to 5/− 5 °C for the highest and lowest points. 
For the spring, both the maximum and minimum mean temperatures have been between 12/1 and 24/12 °C. The 
mean variation in temperature between the highest and lowest points was 27/16 and 21/10 °C. During autumn, 
the average maximum and minimum temperatures have fluctuated between 14/4 and 2/− 7 °C71.

.
Figure 6 offers detailed information on the electricity pricing and energy load statistics utilized in this analysis, 

which were collected from the deregulated market (ISO-NE). Because of the significant variations in the mean, 
standard deviation, maximum, and minimum of the hourly energy demand consumption and the Market_price 
records, Fig. 6 shows the average, standard deviation, maxima, and minima of the datasets in the four seasons 
respectively. This shows large magnitude variations and swings in the hourly energy demand and Market_price 
records. Because of this, irregular samples cannot be simulated by traditional statistical models like ARMA and 
ARIMA. Given the non-linearity and fluctuation characteristics of the forecasting model, machine and deep 
learning approaches can be used to train and test the datasets.

Tuning the specifications of the selected algorithms

	1.	� The dataset is split in both the two scenarios into 70% allocated for the training set and 30% allocated for the 
test set.

	2.	� Four seasons, lasting three months apiece, are represented in the data being modeled. Where:

•	 January, February, and March are considered the wintertime months.
•	 April, May, and June are considered springtime.
•	 During July, August, and September are the summertime months.
•	 October, November, and December are considered the fall months.

	3.	� Workdays/ weekends and special holidays according to calendar 2021. The working days are from Monday 
to Friday, and the weekend days in this study are considered as a special holiday that may be followed by 
weekend days in the calendar.

•	 For workdays, the last day in each season is forecasted such as 31 March in winter, 30 June in spring, 30 
September in summer, and 31 December in autumn.

•	 For weekends which are considered special holidays in this study, these days are forecasted in each season 
such as 1 January in winter which is New Year’s Day, 19 April in spring, which is Patriot’s Day, 5 July in 
summer which is the Independence Day, and 11 October in autumn which is the Coulombs’ Day.

	4.	� The four suggested approaches—ANN, LSTM, GRU, and ANFIS—simulate the acquired findings.

ANN Algorithm tuning specifications
For the ANN algorithm, the Sum Squared Error (SSE) measures performance statistics. The internal optimizing 
solver Levenberg-Marquardt algorithm (LMA) trains the dataset to find the least SSE as the most efficient loss 
estimator. The following is how the other settings are tuned:

Input/Output Parameters Unit

Input Temperature in each hour °C

Input Demand/Price of the hour, a day, a week before MWh/$/h

Input Month Index K = 1, 2, 3, …, 12

Input Day Index i = 1, 2, 3, …, 7

Input Day Type (weekend/holiday, workday) F = 0, 1

output Hourly Sys_demand MWh

Table 1.  The input parameters and the outcome.
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•	 10 neurons are started in 3 layers. Where the three layers are composed of input, hidden, and outcome layers.
•	 [6, 1] is the value of the input weight "Wi".
•	 [2, 2] is the value of the layer weight "Wl".
•	 [6, 1] is the value of the bias "b".

LSTM and GRU algorithms tunning specifications
For both LSTM and GRU algorithms, Mean Squared Error (MSE) measures performance statistics. The internal 
optimizing solver Adaptive Moment Estimation (ADAM) trains the dataset to find the least MSE as the most 
efficient loss estimator. The following is how the other settings are tuned:

•	 In the instance of the two scenarios, there are six inputs, resulting in one output.
•	 The maximum epoch value is 500.
•	 The number of iterations is 50, and the number of hidden layers is 10 hidden units.
•	 The gradient threshold has a value of 1.
•	 The “piecewise” initial learn rate and its schedule are 0.005.
•	 The values of factor and learning rate drop period are 0.2 and 125, respectively.

ANFIS algorithm tuning specifications
For the ANFIS algorithm, Mean Squared Error (MSE) measures performance statistics. The internal optimizing 
solver Adaptive Moment Estimation (ADAM) trains the dataset to find the least MSE as the most efficient loss 
estimator. The following is how the other settings are tuned:

•	 There are 128 nodes in all.
•	 There are 100 nonlinear parameters.
•	 There are 247 training data pair pairings.
•	 There are ten fuzzy rules.
•	 The maximum epochs have a value of 100.
•	 There is zero mistake aim.
•	 The starting step size is 0.1. 0.9, and 1.1, respectively, for the reduction and increase rates.

Fig. 6.  Data from statistics on hourly Sys_demand and the corresponding Market_price throughout the four 
seasons.
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Results of short-term forecasting model and discussion
This section assesses the performance of the four suggested algorithms—ANN, LSTM, GRU, and ANFIS—after 
preprocessing, training, and testing the dataset of the hourly load consumption (Sys_demand). Next, utilizing a 
group of errors, the outcomes from the two scenarios are evaluated. The MATLAB 2021a edition with 16.00 GB 
RAM and an Intel® CoreTM i7-9750H CPU running at 2.60 GHz is used to simulate the results.

Emulation performance of the outcomes
The load in this instance may be estimated using the mean and standard deviation of the variable set as follows 
in Equations (16) through (17)72:

	
x = 1

n

n∑
i=1

xi� (16)

	
σ = 1

n

n∑
i=1

(xi − x)� (17)

where σ is the standard deviation of load x, xi is the load at time i, n is the load data length or forecasting 
horizon, and x is the load mean. To calculate the coefficient of variation CV  by the following Eq. (18)72:

	
CV = σ

x
� (18)

To assess the efficacy of the four suggested techniques, performance is evaluated using a set of errors, including 
mean absolute error (MAE), mean absolute square error (RMSE), normalized root mean square error (NRMSE), 
and mean absolute percentage error (MAPE)43.

The calculations of RMSE, NRMSE, MAE, and MAPE can be performed using Equations (19) through 
(22)43,73,74.

	

RMSE =

√√√√ 1
n

n∑
i=1

(zi − yi)2� (19)

	
NRMSE =

√
1
n

∑n

i=1 (zi − yi)2

z
� (20)

	
MAE = 1

n

n∑
i=1

|zi − yi|� (21)

	
MAPE = 1

n
[

n∑
i=1

|zi − yi

yi
|]∗100% � (22)

where "n" is the number of samples, and "zi" and "yi" are the predicted and actual values, respectively, for a given 
time "i". On the other hand, z  represents the time series’ average values for sample “n”.

The kurtosis coefficient is a statistical measure that describes the shape of a probability distribution. 
Specifically, it quantifies the “tailedness” of the distribution, or how much data is concentrated in the tails 
compared to the center72,73.

Where the types of Kurtosis:

•	 Leptokurtic: Distributions with high kurtosis. They have heavier tails and a sharper peak than a normal dis-
tribution. This means there’s a higher probability of extreme values (outliers).

•	 Mesokurtic: Distributions with a kurtosis similar to a normal distribution. They have moderate peaks and 
moderate tails.

•	 Platykurtic: Distributions with low kurtosis. They have lighter tails and a flatter peak than a normal distribu-
tion. This means there’s a lower probability of extreme values.

The range of values for the kurtosis coefficient is:

•	 For positive kurtosis (kurtosis greater than 3): 1 to infinity
•	 For negative kurtosis (kurtosis less than 3): − 2 to infinity

Equation  (23) describes the Kurtosis that provides details about the shape. A sharper peak surrounding the 
distribution’s mode is indicated by positive kurtosis. In addition, a distribution with more extreme values than a 
normal distribution is indicated by a larger kurtosis. As a result, a forecasting model with a high kurtosis shows 
more outliers that deviate from the error distribution mean73.
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Kurtosis = n

(n − 1) (n − 2) (n − 3)

n∑
i=1

(
ei − ei

σei

)4

− 3 (n − 1)2

(n − 1) (n − 3) � (23)

where "n" is the number of samples, "ei" is the error between predicted and actual values, and "ei", and “σei ” are 
the mean and standard deviation of the error for a given time “i” respectively.

The Nash–Sutcliffe Efficiency (NSE) in Eq. (24) that quantifies how well a model’s simulated values match 
the observed data. It essentially compares the residual variance (the difference between the model’s predictions 
and the actual observations) to the variance of the observed data itself. It’s important to note that NSE can be 
sensitive to outliers in the data74.

Where;

•	 NSE ∼= 1: Indicates a perfect match between the model and the observed data. This is the ideal scenario.
•	 NSE = 0: Suggests that the model’s predictions are no better than simply using the average of the observed 

data.
•	 NSE < 0: Implies that the observed mean provides a better prediction than the model. This indicates poor 

model performance.
•	 Unsatisfactory prediction: NSE ≤ 0.40, Regular prediction: 0.40 < NSE ≤ 0.60, Good prediction: 

0.60 < NSE ≤ 0.80, Excellent prediction: 0.80 < NSE ≤ 1.0074.

	
NSE = 1 −

∑n

i=1 (yi (t) − zi (t))2

∑n

i=1 (yi (t) − zi (t))2 � (24)

Where the actual value is yi (t), the forecasted value is zi (t), and the mean value of the forecasted value is zi (t).
The determination coefficient R2 is the evaluation standard of the forecasting process using an artificial 

intelligence algorithm. The precision of the model increases as R2 approaches 1. The coefficient of determination, 
or R2, is a figure that expresses how well the data fits the regression model and can be either equal to or less 
than 1. It ranges from 0 (when there is no connection—poor correlation) to 1 (when the regression line crosses 
through all the data)74. The following Eq. (25) can express the determination coefficient R2.

	
R2 = 1 − SumofSquaredResiduals (SSR)

T otalSumofSquares (SST ) = 1 −
∑n

i=1 (yi (t) − zi (t))2

∑n

i=1 (yi (t) − zi (t))2 � (25)

where the actual value is yi (t), the forecasted value is zi (t), and the mean value of the forecasted value is zi (t).

Emulation of the 1st scenario’s outcomes
The 1st scenario takes into account the prediction of the hourly energy load consumption (Sys_demand) of 
a workday depending on other factors mentioned in Table 1. The results for the 24 h of the final day of each 
season—March for winter, June for spring, September for summer, and December for autumn—are displayed 
in Fig.  7. These days are regarded as workdays. Figure  7 compares the actual and forecasted values of the 
hourly energy load consumption (Sys_demand) in (MW), which are simulated by the four algorithms ANN, 
LSTM, GRU, and ANFIS in the four seasons of winter, spring, summer, and autumn split into four sections in 
one figure A, B, C, and D, respectively. The set of errors (RMSE, NRMSE, MAE, and MAPE) for the dataset’s 
estimated values is shown in Fig. 8. The four suggested algorithms—ANN, LSTM, GRU, and ANFIS—simulate 
the outcomes, which are simulated in the four seasons. Figure 9 shows the calculated performance (The Nash–
Sutcliffe Efficiency (NSE), the determination factor (R2), kurtosis coefficient, and coefficient of variation (CV)) 
for the four specified algorithms in the four seasons for the Sys_demand (MWh), 1st. Scenario (workdays).

Emulation of the 2nd scenario’s outcomes
The 2nd scenario takes into account the forecasting of the hourly load consumption (Sys_demand) of a weekend 
day that is considered a special holiday based on additional elements listed in Table 1. The results for the 24 h 
in each season—such as 1 January in winter which is New Year’s Day, 19 April in spring, which is Patriot’s 
Day, 5 July in summer which is Independence Day, and 11 October in autumn which is the Coulombs’ Day—
are displayed in Fig. 10. These days are regarded as special holidays that may be followed by weekend days. 
Figure 10 compares the actual and predicted values of the hourly load consumption (Sys_demand) in (MW), 
which are modeled by using the LSTM, and the ANFIS algorithm in winter, spring, summer, and autumn split 
into four portions in one figure A, B, C, and D, respectively. The measured performance (RMSE, NRMSE, MAE, 
and MAPE) for the dataset’s estimated results is shown in Fig. 11. Considering that the LSTM and the ANFIS 
propose the best solution in the first scenario, they are chosen to simulate the set values of the error, which are 
obtained in the winter, spring, summer, and fall. Figure 12 shows the calculated performance (NSE, R2, kurtosis 
coefficient, and coefficient of variation) for the specified algorithms (LSTM, and ANFIS) in the four seasons for 
the Sys_demand (MWh), 2nd. Scenario (special holidays).

The following notes can be summarized to describe the results in Figs. 7, 8, 9, 10, 11, and 12:

•	 The ISO-NE electricity market, which is split into four seasons, is where the datasets for the hourly load con-
sumption (Sys_demand) and the hourly Market_price of electricity are collected.

•	 There are two scenarios for predicting the hourly load consumption (Sys_demand). The 1st. Scenario fore-
casts the hourly energy load consumption of electricity (Sys_demand), in the working days depending on 
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other parameters that are listed in Table 1 in the four seasons which are simulated by the four recommended 
techniques (ANN, LSTM, GRU, and ANFIS). In the 2nd. Scenario, the hourly load consumption of electricity 
(Sys_demand), in the special holidays depending on other variables that are described in Table 1 by using the 
four seasons which is simulated by two of the four recommended techniques (LSTM, and ANFIS) that prove 
the best Nash–Sutcliffe Efficiency (NSE), determination factor (R2), kurtosis coefficient, and coefficient of var-
iation (CV) in simulation in the 1st. Scenario. The Nash–Sutcliffe Efficiency (NSE), the determination factor 
(R2), kurtosis coefficient, and coefficient of variation (CV) results in the two scenarios are:

	A.	� In the 1st scenario, the Nash–Sutcliffe Efficiency (NSE), and the determination factor (R2) are (0.764, 0.835, 
0.728, 0.999) for the winter, (0.804, 0.815, 0.796, 0.985) for the spring, (0.762, 0.961, 0.953, 0.974) for the 
summer, and (0.702, 0.898, 0.874, 0.987) for the autumn, modeled by the four featured algorithms (ANN, 
LSTM, GRU, and ANFIS). Hence, the LSTM as a machine learning technique and the ANFIS as a deep 
learning technique have proved the best Nash–Sutcliffe Efficiency (NSE), and determination coefficient val-
ues with excellent prediction rather than the other used techniques.

	B.	� In the 1st scenario, kurtosis coefficient, and coefficient of variation (CV) are (− 1.558, 0.676, 0.633, − 1.149), 
and (11.321, 8.587, 8.384, 8.487) for the winter respectively, (− 1.756, − 1.467, − 1.487, − 1.472), and (7.946, 
4.889, 4.750, 5.724) for the spring respectively, (− 1.715, − 1.122, − 1.152, − 1.070), and (11.262, 8.037, 7.930, 
7.631) for the summer respectively, and (− 1.610, − 0.743, − 0.689, − 0.969), and (16.214, 10.325, 10.018, 
8.498) for the autumn respectively, modeled by the four featured algorithms (ANN, LSTM, GRU, and AN-
FIS). It is obviously noted from the negative signs of the kurtosis coefficient Distributions with low kurtosis 
are referred to as platykurtic. Compared to normal distribution, they feature flatter peaks and lighter tails. 
This indicates that the probability of extreme readings is reduced.

Fig. 7.  The actual and the forecasted results in the 1st. Scenario (workdays) of the Sys_demand (MWh), 
throughout a 24-h period in each of the four seasons by the four featured algorithms.
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	C.	� In the 2nd scenario, the Nash–Sutcliffe Efficiency (NSE), and the determination factor (R2) are (0.711, 0.847) 
for the winter, (0.684, 0.947) for the spring, (0.856, 0.985) for the summer, and (0.729, 0.965) for the autumn, 
by two of the four featured techniques (LSTM, and ANFIS). Hence, the ANFIS as a deep learning technique 
have proved the best Nash–Sutcliffe Efficiency (NSE), and determination coefficient values with excellent 
prediction rather than the LSTM as a machine learning technique.

	D.	� In the 2nd scenario, kurtosis coefficient, and coefficient of variation (CV) are (-0.645, 0.693), and ( 8.153, 
7.825) for the winter respectively, (-1.164, -0.673), and (12.636, 9.769) for the spring respectively, (− 1.314, 
− 1.327), and (8.127, 6.466) for the summer respectively, and (− 0.832, − 1.092), and (6.863, 7.101) for the 
autumn respectively, modeled by two of the four featured techniques (LSTM, and ANFIS). It is obviously 
noted from the negative signs of the kurtosis coefficient Distributions with low kurtosis are referred to as 
platykurtic. Compared to normal distribution, they feature flatter peaks and lighter tails. This indicates that 
the probability of extreme readings is reduced.

•	 When forecasting the hourly energy load consumption (Sys_demand) in the 1st scenario that forecasts the 
working days by using the four techniques (ANN, LSTM, GRU, and ANFIS), Fig. 7 demonstrates that:

	A.	� During the winter, the ANN’s predicted values and the real points match except for hours 8 through 11, and 
hours 19 through 21. The predicted results from LSTM and GRU progressively approach the real points ex-
cept for hours 6 through 7, and 18 through 19. The ANFIS’s predicted results and the real points match very 
well.

	B.	� During the spring, the ANN’s predicted results and the real points match except for hours 16 through 18. The 
predicted results from LSTM, and GRU progressively approach the real points except for hours 1 through 4. 
The ANFIS’s predicted results and the real points match very well.

	C.	� During the summer, the ANN’s predicted results match the real points except for hours 20 through 22. Ex-
cept for hour 18, the LSTM, GRUS, and ANFIS’s predicted results match the real points.

Fig. 8.  The calculated performance (RMSE, NRMSE, MAE, and MAPE) for the four specified algorithms in 
the four seasons for the Sys_demand (MWh), 1st. Scenario (workdays).
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	D.	� During the fall season, the results predicted by the ANN match the real points except for hour 18. The LSTM 
and GRU’s predicted results progressively approach the real values, except for hours 6 through 7. The AN-
FIS’s predicted values and the actual values match very well.

•	 Through a comparison of the performance parameters (RMSE, NRMSE, MAE, and MAPE) derived from the 
four proposed algorithms, in the two scenarios. It has been observed that:

	1	� Figure 8 in the 1st scenario forecasting model for workdays in the four seasons shows that:

	A.	� During the winter, Gru’s performance (NRMSE, MAE, MAPE) is the best among the other techniques, 
which are decreased by (0.0003, 0.0077, 0.0258) for the NRMSE, (41.872, 54.832, 80.091) for the MAE, and 
(0.457, 0.399, 0.774) for the MAPE with respect to the same performance obtained from the ANN, LSTM, 
and GRU. However, the ANN’s performance in the RMSE is the best among the other techniques, which 
are decreased by (96.979, 30.171, 64.033) with respect to the same performance obtained from the LSTM, 
and GRU, ANFIS. In addition, the determination coefficient R2 indicates the best accuracy by simulating the 
results using the LSTM, and the ANFIS which are (0.835, and 0.999) for the winter.

	B.	� During the spring, the ANN’s performance (NRMSE, RMSE, MAE, and MAPE) are the best among the oth-
er techniques, which are decreased by (533.223, 2055.742, 361.678) for the NRMSE, (0.031, 0.132, 0.038) for 
the RMSE, (231.746, 608.182, 243.171) for the MAE, and (0.238, 1.544, 1.143) for the MAPE with respect to 
the same performance obtained from the LSTM, GRU, and ANFIS. However, the determination coefficient 
R2 indicates the best accuracy by simulating the results using the LSTM, and the ANFIS which are (0.804, 
0.815, 0.796, 0.985) for the spring.

	C.	� During the summer, the ANN’s performance (NRMSE, RMSE, MAE, and MAPE) are the best among the 
other techniques, which are decreased by (233.114, 1223.357, 110.061) for the NRMSE, (0.021, 0.113, 0.027) 

Fig. 9.  The calculated performance (The Nash–Sutcliffe Efficiency (NSE), the determination factor (R2), 
kurtosis coefficient, and coefficient of variation (CV)) for the four specified algorithms in the four seasons for 
the Sys_demand (MWh), 1st. Scenario (workdays).
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for the RMSE, (86.007, 309.340, 74.783) for the MAE, and (0.068, 1.516, 0.624) for the MAPE with respect to 
the same performance obtained from the LSTM, GRU, and ANFIS. However, the determination coefficient 
R2 indicates the best accuracy by simulating the results using the LSTM, and the ANFIS which are (0.961, 
0.974) for the summer.

	D.	� During the autumn, the LSTM’s performance (NRMSE, MAE, MAPE) is the best among the other tech-
niques, which are decreased by (0.0004, 0.0164, 0.0156) for the NRMSE, (1.344, 28.215, 52.125) for the 
MAE, and (0.118, 0.166, 0.499) for the MAPE with respect to the same performance obtained from the 
ANN, GRU, and ANFIS. However, the ANN’s performance in the RMSE is the best among the other tech-
niques, which are decreased by (33.659, 166.418, 78.110) with respect to the same performance obtained 
from the LSTM, and GRU, ANFIS. In addition, the determination coefficient R2 indicates the best accuracy 
by simulating the results using the LSTM, and the ANFIS which are (0.898, 0.987) for the autumn.

	2	� Figure 11 in the 2nd scenario, which is simulated by one of the machine learning (LSTM) and one of the deep 
learning (ANFIS), for forecasting model of the special holidays (weekends) in the four seasons shows that:

	A.	� During the winter, the LSTM’s performance (RMSE, NRMSE, MAE) is the best compared to the perfor-
mance of the ANFIS, which is decreased by (30.130) for the RMSE, (0.00023) for the NRMSE, and (10.974) 
for the MAE with respect to the same performance obtained from the ANFIS. However, the ANFIS’s perfor-
mance in the MAPE decreased by (0.2008) with respect to the same performance obtained from the LSTM. 
In addition, the determination coefficient R2 indicates the best accuracy by simulating the results using the 
LSTM, and the ANFIS demonstrates that the precision of the ANFIS is better than the LSTM which are 
(0.711, 0.847) for the winter.

Fig. 10.  The actual and the forecasted results in the 2nd scenario (special holidays) of the Sys_demand 
(MWh), throughout a 24-h period in each of the four seasons by only two featured algorithms (GRU, and 
ANFIS).
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	B.	� During the spring, the ANFIS’s performance (RMSE, NRMSE, MAE, MAPE) is the best compared to 
the performance of the LSTM, which is decreased by (334.770) for the RMSE, (0.0328) for the NRMSE, 
(127.183) for the MAE, and (1.393) for the MAPE with respect to the same performance obtained from the 
ANFIS. In addition, the determination coefficient R2 indicates the best accuracy by simulating the results us-
ing the LSTM, and the ANFIS demonstrates that the precision of the ANFIS is better than the LSTM which 
are (0.684, 0.947) for the spring.

	C.	� During the summer, the ANFIS’s performance (RMSE, NRMSE, MAE, MAPE) is the best compared to 
the performance of the LSTM, which is decreased by (347.002) for the RMSE, (0.0516) for the NRMSE, 
(163.6651) for the MAE, and (1.305) for the MAPE with respect to the same performance obtained from the 
ANFIS. In addition, the determination coefficient R2 indicates the best accuracy by simulating the results us-
ing the LSTM, and the ANFIS demonstrates that the precision of the ANFIS is better than the LSTM which 
are (0.856, 0.985) for the summer.

	D.	� During the autumn, the ANFIS’s performance (RMSE, NRMSE, MAE, MAPE) is the best compared to 
the performance of the LSTM, which is decreased by (223.860) for the RMSE, (0.0343) for the NRMSE, 
(105.792) for the MAE, and (0.431) for the MAPE with respect to the same performance obtained from the 
ANFIS. In addition, the determination coefficient R2 indicates the best accuracy by simulating the results us-
ing the LSTM, and the ANFIS demonstrates that the precision of the ANFIS is better than the LSTM which 
are (0.729, 0.965) for the autumn.

Discussion and the benefits of the provided study
It is evident from the literature reviewed in previous sections just how challenging it is to set up a load forecasting 
mechanism. Notwithstanding variations in the choice of the input variable, scope prediction, preprocessing to 
be used, method selection, parameter estimate, and performance assessments, a few recommendations to assist 

Fig. 11.  The calculated performance (RMSE, NRMSE, MAE, and MAPE) for the specified algorithms (LSTM, 
and ANFIS) in the four seasons for the Sys_demand (MWh), 2nd. Scenario (special holidays).
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the novice developer have been recorded. The primary factors that our study has attempted to implement and 
address when building a load/price-forecasting challenge are as follows:

	a.	� One of the biggest oscillations and the root causes of daily price changes is the features of the electrical mar-
kets under the effect of the temperature and the calendar (workdays, and weekends).

	b.	� To obtain more accurate predictions, large records of the hourly load and price are necessary due to the 
short-term inelasticity of power demand among the seasons.

	c.	� Additional characteristics, such as weather parameters (dew point and dry bulb), humidity, day type, hour-
by-hour load, price, and GDP, are taken into account in the forecasting model. These are intrinsic factors that 
affect the prediction of either the load or the price.

	d.	� The requirement for more advanced and reliable algorithms that can forecast non-linear and inelastic data 
and price, such as neural-based networks.

	e.	� The suggested algorithms’ evaluation performance showed that the best solutions had the fewest group of 
errors (RMSE, NRMSE, MAE, and MAPE), with a MAPE of no more than 6%. High accuracy has also been 
attained during unexpected surges in the load/price patterns under the effect of the temperature and the 
calendar (workdays, and weekends).

Fig. 12.  The calculated performance (NSE, R2, kurtosis coefficient, and coefficient of variation) for the 
specified algorithms (LSTM, and ANFIS) in the four seasons for the Sys_demand (MWh), 2nd. Scenario 
(special holidays).
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Temperature effects
Many studies have examined the impact of climate variables, particularly temperature, and short-term demand 
forecasting models take this into account. Geographical diversity has a significant cooling influence in warm 
nations and a significant heating effect in cold countries15,19,43,50,51,75.

Wintertime temperatures in New England can range from mild to bitterly cold, and as one might expect, 
the further north you go in the state, the lower the average annual temperature where the average winter 
temperature is − 6.111 degrees Celsius. For this reason, heating equipment is widely used in NEW England. In 
the Northeast, the average June, July, and August temperatures are (29.444 to 32.222) degrees Celsius (including 
overnight lows). This highest range of average temperatures encourages utilizing cooling appliances like air 
conditioners. The difference in demand between non-holiday and holiday periods at peak hours (6 p.m.) in 
winter, (8 p.m.) in spring, (2 p.m.) in summer, and (7 p.m.) in autumn owing to temperature. The temperature 
has a discernible effect on peak demand. During working days, there is a sharp and linear demand for electricity. 
A large fluctuation is considered in load patterns on holidays when the weather falls beneath 30 °C or ascends 
above 35 °C.

Calendar effects
Demand for electricity exhibits a recurring pattern that is based on weekly, monthly, and seasonal patterns. 
However, variables like temperature or social gatherings frequently throw off these trends and introduce 
unpredictable outlier data. In order to categorize exceptional days without requiring any prior database 
knowledge, it is insufficient to simply divide special days into two or three categories because there are various 
nuances in customer behavior on these days. However, categorizing special days into a broad variety of groups 
necessitated a thorough comprehension of how customers behaved on various days and throughout the year76,77.

Calendar effects have a very predictive value for the hourly demand consumption prediction, according to 
the metric performance results (RMSE, NRMSE, MAE, MAPE). When compared to the first scenario which 
forecasts the workdays with the second scenario which forecasts special holidays, the prediction models using 
dummy variables demonstrated a consistent forecast improvement when using many dummy variables in the 
forecasting model. Adding more dummy variables to the forecast for weekends, and weekdays in different seasons 
did help. The somewhat increased accuracy or the determination factor R2 when all calendar effects are taken 
into account. Calendar effects are such as national holidays, days adjacent to a holiday, partial holidays, common 
vacation periods, and other calendar factors that cause the load profile of a day to change drastically. Including 
all calendar effects may result in a significant improvement in the metric performance (NRMSE, and MAPE) in 
addition to the determination factor R2. Results from dividing by day and time of day were significantly better 
than those from dividing by season. Although groups with more distinct load and weather characteristics are 
created when sequential input data is joined into subsets based on similar calendar effects, The swings in demand 
at peak times resulted in greater RMSE and NRMSE.

Therefore, potential limitations that we could conclude from this study in the future, and areas for 
improvement:

	1.	� Data limitations:

•	 The need for larger datasets spanning multiple years is emphasized, as consumer behavior and consump-
tion patterns can change over time.

•	 Incorporating sociodemographic factors into the analysis could help account for these shifts.

	2.	� Day type classification:

•	 The importance of accurately classifying different types of day (weekdays, weekends, holidays, etc.) is high-
lighted to be built in a special forecasting network.

•	 A technique for automating the classification process based on historical data and calendar factors is sug-
gested.

	3.	� Algorithm enhancement: 

•	 Combining existing techniques like ANFIS, AGA-LSTM, and LSTM-RNN with other machine and deep 
learning methods is proposed to achieve even lower forecasting errors (MAPE).

Conclusion
It became obvious that developing a forecasting model was considered the main way of addressing the sharp 
rise in nonlinear load patterns and power price dynamics. ANN, LSTM, GRU, and ANFIS were proposed in this 
study as four prominent ways that were suggested to increase forecasting accuracy and speed with a collection of 
mistakes (RMSE, NRMSE, MAE, and MAPE). The ISO-NE electrical power energy market was the source of the 
complete dataset for hourly demand consumption (Sys_demand), hourly Market price, and other factors. Where 
the datasets spanned the period of January 1, 2021, to December 31, 2021, or one year. The four seasons—winter, 
spring, summer, and autumn—were represented by the dataset divisions. Following preprocessing and analysis 
of both the hourly demand consumption (Sys_demand) and Market_price datasets, the four featured algorithms 
in each of the first scenarios, and two of the best of the four featured algorithms were implemented in the second 
scenario. Where the first one was to forecast the workdays and the second one was to forecast the special holidays 
as an example of weekend days. The two scenarios were divided into four seasons. The forecasting model has 
been affected mainly by calendar, temperature, and seasonality.
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A set of errors was used in assessing the four main algorithms. By comparing the findings from the two 
scenarios, it has become apparent that ANFIS in the summer and autumn in the 1st scenario, and in the spring 
and autumn in the 2nd scenario, has provided the best-predicting performance with the least amount of MAPE. 
The best forecasting performance (MAPE) was provided by GRU in the winter in the first scenario when MAPE 
was at its lowest value (0.1422). The best forecasting performance (MAPE) was provided by ANFIS in the autumn 
in the second scenario when MAPE was at its lowest value (0.3643). However, for the two scenarios, it was found 
that the best forecasting accuracy with the lowest MAPE was provided by LSTM and ANFIS.

By comparing the accuracy from the two scenarios, it has become apparent that ANFIS in the 4 seasons 
in the 1st scenario, and the 2nd scenario except in the winter, has provided the highest accuracy. Where the 
determination factor R2 has a minimum value (97.40%) in the summer and a maximum value (99.90%) in the 
winter for the 1st scenario. For the 2nd scenario, the determination factor R2 has a minimum value (98.50%) in 
the summer and a maximum value (84.70%) in the winter.

For simulating the results by LSTM, by comparing the accuracy from the two scenarios. It is found that the 
determination factor R2 has a minimum value (81.50%) in the spring and a maximum value (96.10%) in the 
summer for the 1st scenario. For the 2nd scenario, the determination factor R2 has a minimum value (68.40%) 
in the spring and a maximum value (85.60%) in the winter.

The majority of demand consumption forecasting studies used the impact of calendar and load data profiles 
from past records as self-explanatory factors. This manuscript has shown how different seasonal effects, and 
temperature, calendar effects, hourly price, hourly demand itself affected the precision of the hourly short-term 
load forecast for one day while taking different predicting algorithms into consideration. We showed that the 
dividing approach into seasons and types of days according to the calendar has had a higher forecast accuracy 
because more training data would increase the precision of forecast models. In this study, the calendar effects that 
were included as binary variables produced a smaller inaccuracy. To reduce the amount of time and computing 
resources needed, only significant predictors should be included in forecasting models. Such as calendar, 
seasonal, and temperature effects, hourly price and demand need inside data, this study has demonstrated that 
they have become more significant in the forecasting model. Since the LSTM as one of the machine learning 
algorithms, and the ANFIS as one of the deep learning algorithms achieve the best in accuracy or determination 
factor R2 and the performance of the measured performance (RMSE, NRMSE, MAE, and MAPE) in simulating 
the first scenario, they are used in the second scenario.

However, the characteristics of the electrical markets are one of the main oscillations and the main drivers 
of daily price fluctuations. Because of the seasonal variations in the short-term inelasticity of power demand, 
extensive hourly load and price records are required to produce more precise forecasts. The forecasting model 
also considers other elements including humidity, day type, hourly load, price, GDP, and meteorological 
parameters like dew point and dry bulb. These are inherent factors that influence the load or pricing projection.

This work could lead to the conclusion that several issues might need to be investigated further in future 
research:

•	 One could argue that this could be resolved by having the ability to make use of a bigger dataset. The issue 
with data from multiple years indicates that there typically are different and various lifestyles of the consum-
ers, and the population or consumption pattern may alter over time. Then, adding sociodemographic factors 
may aid in addressing these shifts.

•	 A technique suggests an algorithm to automate branching into as many categories as necessary to match an 
actual and a large database for many years, starting with a basic day-of-the-week classification. Classification 
of the type of the day is necessary, especially for national holidays, days adjacent to a holiday, partial holidays, 
common vacation periods, and other calendar factors that cause the load profile of a day to change unexpect-
edly.

•	 To get forecasted values with the lowest MAPE, it is required to combine existing techniques—like the hybrid-
ized ANFIS, the adaptive genetic algorithm (AGA-LSTM), and the integration of LSTM and recurrent neural 
network (RNN)—with additional machine and deep learning techniques.

Data availability
All data generated or analysed during this study are included in this manuscript [References in the manu-
script:70 Independent System Operator New England (ISO-NE) https://www.iso-ne.com, (accessed on: 7 ​O​c​t​o​
b​e​r 2023)71.Index of /Data. Available online: ​h​t​t​p​s​:​​/​/​w​w​w​.​​t​i​m​e​a​n​​d​d​a​t​e​.​​c​o​m​/​w​​e​a​t​h​e​r​​/​@​7​,​2​8​​8​,​0​4​7​/​​c​l​i​m​a​t​e​/, (ac-
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