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This study examines the spatiotemporal evolution of the coordinated development between carbon 
productivity (CP) and high-quality economic development (HQED) across 30 provinces in China from 
2008 to 2021. Using the entropy weight method, coupling coordination degree (CCD), kernel density 
estimation, spatial autocorrelation analysis, and spatial econometric models, the research identifies 
several key findings: first, a coupling and coordination relationship characterized by mutual influence 
and restraint exists between carbon productivity and high-quality economic development. Both carbon 
productivity and high-quality economic development, along with their coupling coordination degree, 
have exhibited continuous growth, demonstrating a spatial distribution pattern of “higher in the 
east than in the west, and higher in the south than in the north,” accompanied by expanding spatial 
concentration and pronounced regional disparities. Second, the global Moran’s I for the coupling 
coordination degree is positive, indicating significant spatial effects between carbon productivity and 
high-quality economic development. The LISA map highlights that high–high clusters are concentrated 
in the economically advanced eastern coastal areas, while low–low clusters are predominantly located 
in underdeveloped central and western regions and energy-dependent heavy industrial provinces. 
Third, the spatial effects of coupling coordination degree are influenced by factors such as economic 
development level, urbanization, technological progress, environmental regulation, the proportion 
of the secondary industry, and marketization level. The significance of these factors varies in the 
decomposition effect. Finally, this study provides policy recommendations. Within the framework 
of China’s “dual-carbon” goals, promoting the coupling and coordinated development of carbon 
productivity and high-quality economic development, while fostering balanced regional growth, holds 
substantial practical importance.
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The ecological environment and socio-economic systems are intricately linked, constituting a complex coupled 
system where mutual constraints and integration occur1. Harmonizing their relationship is crucial for survival 
and sustainable development of human society. The 20th National Congress Report emphasizes that “promoting 
the greening and low-carbon transformation of economic and social development is essential for achieving high-
quality development”2. Green and low-carbon development necessitates a win–win situation between economic 
growth and environmental protection, with CP serving as a crucial link between the two. As climate change 
emerges as a significant global challenge, exploring the coordinated development of CP and HQED has become 
central to China’s sustainable development strategy. HQED is a development model that takes innovation as the 
primary driving force, coordination as an inherent feature, green development as a universal form, openness as 
a necessary path, and shared prosperity as the fundamental goal. It is not only an adjustment of the economic 
growth rate but also a profound transformation of the development approach, economic structure, and driving 
forces. HQED provides the policy support and market environment needed to enhance CP, while improving CP 
aids HQED by reducing carbon emissions and boosting economic efficiency through technological innovation 
and industrial upgrading.
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Kaya and Yokobori3 first proposed the concept of CP to represent the economic benefits derived from each 
unit of carbon emissions. It serves as a key indicator for measuring economic output per unit of carbon emissions 
and is essential for evaluating both environmental and economic performance4. Evaluating carbon productivity 
enables the assessment of a country’s contribution to addressing global climate change5.

Currently, climate change is intensifying, primarily driven by excessive fossil fuel consumption, which is 
the leading cause of greenhouse gas emissions. These emissions drive global warming and pose significant 
environmental risks6. Notably, CO2 emissions accounting for over 80% of total greenhouse gas emissions7, are 
central to climate change mitigation efforts. Among the world’s major carbon emitters, China is the largest 
source of CO2 emissions (Fig. 1), primarily due to its status as the largest industrialized developing country. 
This ongoing rise in emissions highlights the immense pressure China faces in balancing economic growth with 
environmental challenges. In September 2020, President Xi Jinping announced at the 75th session of the United 
Nations General Assembly (UNGA) that China aims to peak CO2 emissions before 2030 and achieve carbon 
neutrality before 2060. Simultaneously, China seeks to build a modern socialist country that is prosperous, 
strong, democratic, culturally advanced, harmonious, and beautiful. These two national strategic goals present 
both unprecedented challenges and significant opportunities. Enkvist et al.8 proposed that improving CP can 
decouple economic growth from carbon emissions, facilitating the transition to a low-carbon economy. China 
can mitigate global climate change by improving CP9.

Therefore, scientifically assessing the CCD between CP and HQED as well as its spatiotemporal evolution 
pattern, provides valuable insights for enhancing the coordinated development of CP and HQED. This has 
significant practical implications for achieving the ‘dual carbon’ goals and fostering high-quality development.

Literature review
Relationship between carbon productivity and economic development
Wang et al.10 concluded that economic development positively influences CP, with this effect strengthening as 
economic growth increases. Furthermore, the relationship between economic growth and CP is highly nonlinear. 
Qi et al.11, using panel data from BRICS and G7 countries, analyzed economic growth patterns by integrating CP 
and economic growth, confirming the feasibility of low-carbon economic growth models. Moreover, promoting 
economic agglomeration, coordinating urban cluster development, and implementing fiscal policies can enhance 
carbon productivity and generate spillover effects in neighboring cities12,13. The study of this relationship can be 
examined from temporal and spatial dimensions.

At the temporal level, research methods primarily include the Environmental Kuznets Curve (EKC), 
decoupling theory, integrated approaches combining decoupling theory with other methods, and causal 
analysis. The EKC illustrates a potential pathway for sustainable economic development14. Building on the EKC 
framework, international scholars have introduced the Carbon Emissions Kuznets Curve (CEKC). While most 
researchers agree on the existence of the CEKC, its specific shape remains debated, with hypotheses including 
“U-shaped,” “inverted U-shaped,” “N-shaped,” and “inverted N-shaped” curves15–17.

Decoupling theory describes the dynamic relationship between economic development and environmental 
pollution, emphasizing whether the two variables change synchronously. Gbadeyan et al.18 emphasize that 

Fig. 1.  Top CO2 emitting countries in the world (1792–2023).
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achieving a low-carbon economy and supporting carbon reduction strategies require decoupling economic 
growth from carbon emissions growth. Economic growth remains the primary driver of global carbon emissions, 
and decoupling is essential for achieving environmental sustainability.

Iorember et al.19 utilized the Cross-Sectional Augmented Autoregressive Distributed Lag (C-S ARDL) 
method and the Tapio decoupling index to evaluate the decoupling status of BRICS countries, uncovering 
varying decoupling states among them. Numerous scholars have applied the Tapio decoupling index and the 
LMDI decomposition model, concluding that decoupling is achievable20–22.

At the spatial level, research methods primarily include spatial association and agglomeration analysis, 
Kernel density estimation, geographic weighted regression, CCD model, spatial econometric models, and their 
integration with Geographic Information Systems (GIS) to merge data visualization with analytic methods. 
Spatial econometric models are widely employed to analyze spatial dependence and heterogeneity in spatial 
data, focusing the spillover effects of regional economic activities or carbon emissions on neighboring areas23–25. 
Spatial association and clustering analysis investigate spatial autocorrelation, revealing relationships between 
neighboring regions and identify spatial clustering patterns26. owing to its simplicity, intuitive results, and 
broad applicability, the CCD model has become an effective tool for examining interactions and coordinated 
development between systems27,28 However, researchers should exercise caution to avoid common errors 
and misapplications29. Tools common used to integrate spatial econometric models with GIS include GeoDa, 
ArcGIS, and MATLAB, facilitating the fusion of data visualization and analytical methods30.

The spatial weight matrix plays a crucial role in spatial analysis. Pijnenburg and Kholodilin31 highlighted the 
critical role of an appropriate weight matrix, emphasizing that the primary advantage of spatial analysis lies in 
spillover effects, which are largely determined by the choice of the weight matrix. Indirect effects are particularly 
sensitive to the specifications of neighboring areas. Thus, the spatial weight matrix is a fundamental component 
of spatial analysis and requires careful definition. Improperly specifying adjacency relationships can lead to 
significantly distorted and inaccurate results32.

The aforementioned methods have collectively established a robust theoretical foundation for this research.

Coupling coordination between carbon productivity and high-quality economic development
China has transitioned from relying solely on GDP to employing a multidimensional approach to evaluate the 
quality of its economic development. Resolving the conflict between economic growth and carbon emissions 
is essential to achieving high-quality economic development. Limited studies have focused on the coupling 
coordination analysis of CO2 emissions and HQED. This analysis typically explores CO2 emission intensity or 
efficiency in relation to HQED. For instance, studies have examined the spatiotemporal changes and factors 
influencing the coupling coordination between agricultural, marine, and land carbon emission efficiency 
and their relationship with HQED33,34. Another approach investigates the relationship between regional CO2 
emission intensity and HQED. For example, CO2 emission intensities in the Yangtze River Delta, the middle and 
lower reaches of the Yangtze River, and the Yellow River Basin are interconnected and aligned with HQES, as 
seen in provinces like Guangdong and Hubei35,36.

Literature evaluation
Current research has primarily focused on the relationship between carbon emissions and HQED. emphasizing 
specific indicators or dimensions, while analyzing unidirectional impacts and coupling relationships. 
Studies analyzing the coupling and coordination relationship between carbon emission and HQED a at the 
national provincial level remain relatively scarce. China’s economy is a complex system characterized by the 
interdependence, interaction, and mutual constraints of social, economic, and ecological components, resulting 
in imbalanced development trend. examining the coupling relationship with carbon emissions from a single 
region or industry, or through limited dimensions, fails to accurately reflect the broader context. Furthermore, 
this approach overlooks regional characteristics of China’s economic development and the effectiveness of policy 
implementations.

Existing studies have primarily relied on indicators such as carbon intensity or efficiency to evaluate 
harmonization with HQED. However, these indicators fail to comprehensively capture the coordination between 
China’s economic development and regional agglomeration. When comprehensive indicators are used, carbon 
emission efficiency may fail to accurately reflect CO2 production efficiency, potentially contradicting the “dual-
carbon” goal. Moreover, carbon emission intensity shows an inverse relationship with HQED, with unsatisfactory 
coupling and coordination effects.

In the existing literature, some studies fail to specify which spatial weight is used. Some simply employ the 
adjacency spatial weight matrix, while others utilize the weight matrix provided by the econometric software. All 
of these situations can lead to unreasonable analyses of spatial correlation.

The potential marginal contributions of this paper lie in three aspects:
This study employs the CP indicator as it aligns with the trajectory of HQED. CP embodies mutual influence, 

promotion, and coordination. This research identifies trends and effects across temporal and spatial dimension 
as CP and HQED progress in a coordinated manner.

The economic-geographic spatial weight matrix is selected. This matrix integrates economic and geographical 
factors, dynamically adjusting spatial weights according to regional economic-geographic characteristics37,38, 
thereby effectively capturing the spatial distribution patterns of CP and HQED.

This study addresses a gap in the literature by providing an in-depth analysis of the temporal evolution of the 
relationship between carbon productivity and high-quality economic development. This paper offers a valuable 
reference for policy formulation and coordination across regions, promoting sustainable economic development 
and advancing ecological civilization. The content framework of this study is illustrated in Fig. 2.
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Methods and data
Measuring carbon productivity
The existing literature on CO2 assessment addresses multiple perspectives, including total carbon emissions, 
intensity, performance indicators, and implied carbon emissions. Numerous studies focus on provincial, 
municipal, or industry data. Given data reliability, this study employs data from the Carbon Emission Accounts 
and Datasets (CEADs)39–41.

Calculating CP requires annual GDP data for each province, as well as the provincial and municipal GDP 
statistics from the China Statistical Yearbook. This study employs the GDP index method to calculate each 
province’s real GDP, using 2008 as the base year to ensure result comparability across years. The calculated 
formula is defined as follows:

	 CPit = GDPit/CEit� (1)

where i and t represent the city and year, respectively.

Measuring high-quality economic development
Two principal methods exist for measuring the level of HQED. One approach volves using single indicator, 
such as labor productivity, total factor productivity, green total factor productivity, the contribution rate of 
technological progress to economic growth, or welfare carbon emission intensity42–44. Another method involves 
creating composite indicators. These indicators are created using methods such as the relative index, hierarchical 
analysis, entropy value, and factor analysis. HQED is a multidimensional evaluation index45–47. This paper 
adopts Zhao’s (2020) perspective, defining HQED as encompassing three dimensions: economic foundation, 

Fig. 2.  Content framework. Source: Authors’ own illustrations.
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social foundation, and ecological foundation. It establishes a multidimensional evaluation system for measuring 
HQED, consisting of six secondary indicators: industrial structure, technological innovation, inclusive total 
factor productivity (TFP), openness to the outside world, residents’ livelihoods, and ecological environment. 
The composition of the specific indicators is detailed in Table 1.

Further elaboration on the indicators
Industry structure. The transformation and upgrading of the industrial structure are key driving force for HQED. 
The selection of indicators mainly focuses on the advancement and rationalization of the industrial structure. 
Moreover, producer services, as a core component of the ongoing technological revolution and industrial 
transformation, are included. The rationalization of the industrial structure is calculated using the structural 
deviation method48. The calculation formula is defined as:

	
E =

n∑
i=1

∣∣∣∣
Yi/Y
Li/L

− 1
∣∣∣∣� (2)

E: industrial structure deviation. Y: total output value. L: total employment. n: number of industrial sectors. i: 
Individual industrial sectors (primary, secondary, and tertiary).

Technological Innovation is a critical driver of HQED and a decisive factor in urban economic development 
quality. It exerts a direct and significant impact on economic development quality. This study uses the urban-level 
innovation index from the China Urban and Industry Innovation Report 2017 to measure innovation levels49.

Inclusive TFP. Efficiency and equity in economic growth are fundamental dimensions for evaluating 
economic development quality. Capital and labor are incorporated as inputs, real GDP as expected output, and 
the urban-rural income gap as non-expected output to calculate TFP using the Hicks-Moorsteen index method. 
The Hicks-Moorsteen index is constructed using the Shephard distance function. The input and output distance 
functions are expressed as follows:

	

Y (y) = [D0(xhs, y, s)D0(xit, y, t)]1/2

X(x) = [D1(x, yhs, s)D1(x, yit, t)]1/2� (3)

X and y represent the vectors of input and output data, respectively; s and t denote time; D1(x, y) is the input 
Shephard distance function, and D0(x, y) is the output Shephard distance function50 then:

	
T F Phs,it =

{
D0(xhs, yit, s)D1(xhs, yhs, s)D0(xit, yit, t)D1(xhs, yit, t)
D0(xhs, yhs, s)D1(xit, yhs, s)D0(xit, yhs, t)D1(xit, yit, t)

}1/2

� (4)

The data processing and methods involved in this formula refer to these two papers51

Openness to the outside world. China’s reform and opening-up over the past 40 years has demonstrated that 
expanding openness to the outside world is a vital driver of economic and social development and a fundamental 
pathway to national prosperity and strength. Indicators such as trade dependence and foreign direct investment 
(FDI) openness effectively reflect the degree of economic openness and international competitiveness, offering a 
holistic assessment of high-quality economic development.

Fundamentals Primary indicators Second indicators (weight) Indicator description
Abbreviation 
(attributes)

Economic 
fundamentals

Industry structure 
(0.1407)

Percentage of productive service industry (0.0389) Proportion of productive service industries in urban employment PPS (+)

Rationalization of industrial structure (0.0350) Structural deviation method RIS (+)

Heightened industrial structure (0.0668) Ratio of the output value of the tertiary sector to the secondary 
sector HIS (+)

Technological 
innovation (0.2099) innovation index (0.2099) Innovation index at the urban level IN (+)

Inclusive total factor 
productivity (0.0346) Inclusive TFP (0.0346) Calculation using the Hicks-Moorsteen index method TFP (+)

Openness to the 
outside world 
(0.4581)

Foreign trade openness (0.3580) Foreign direct investment / regional GDP FDO (+)

Openness to foreign investment (0.1001) Total imports and exports / regional GDP OFI (+)

Social 
fundamentals

Residents’ Living 
Standards (0.1228)

Per Disposable personal income (0.0481) Regional GDP / total resident population PDPI (+)

Expenditure on education per capita (0.0452) Local government financial education expenditure / total resident 
population PCE (+)

Hospital beds per capita (0.0295) Number of hospital beds / total resident population PHB (+)

Ecological 
fundamentals

Ecodevelopment 
(0.0543)

SO2 emissions per unit (0.0008) SO2 / regional GDP SEP (−)

Comprehensive utilization rate of industrial solid 
waste (0.0389) Comprehensive utilization / total output + storage volume CUI (+)

PM2.5(0.0146) Population-weighted PM2.5 concentration PM (−)

Table 1.  Indicators of high-quality economic development.
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Residents’ living standards. The primary objective of high-quality economic development is to improve 
the well-being of the population. Thus, per capita disposable income, per capita education expenditure, and 
per capita hospital bed availability are included as indicators representing the dimension of residents’ living 
standards.

Ecodevelopment. The construction of ecological civilization is both a crucial foundation for high-quality 
development and a significant indicator of its achievements. Since the 18th National Congress of the Communist 
Party of China, China’s economic development strategy has prioritized green development principles. The three 
selected indicators effectively reflect urban environmental quality, resource utilization outcomes, and pollution 
control achievements.

Selection of influencing factors
The coupling and coordinated development of CP and HQED is shaped by various factors. These factors 
encompass social, economic, ecological, and spatial dimensions, including regional heterogeneity and spillover 
effects. Research on the coupling coordination mechanisms between the two remains in the exploratory stage, 
with limited focus on the spatial effects of their interaction. Some studies have examined the driving factors 
influencing the coupling and coordination of carbon emission intensity, carbon emission efficiency, and high-
quality economic development, using methods such as factor analysis and geographic detectors52,53.

Building on existing research, this study selects six variables—economic development, industrial structure, 
urbanization, marketization level, technological innovation, and environmental regulation—to construct a 
spatial econometric model for analyzing the influencing factors and spatial effects of the CCD. The selected 
variables do not overlap with those used to construct the HQED indicators. furthermore, considering the 
uncertainties of the current international political and economic landscape, the variables primarily focus on 
internal driving factors.

(1) GDP per capita (pgdp) indicates the level of economic development; (2) Environmental regulation (er) 
is assessed by the investment in industrial pollution control per thousand yuan of industrial added value; (3) 
Research and Development (rd) investment promotes green productivity and is measured by the proportion 
of R&D expenditure of large-scale industrial enterprises in regional GDP; (4) The urbanization rate (ur) is 
calculated as the ratio of urban population to the total resident population; (5) the marketization level (ml) 
reflects the ownership structure of China’s economy and is calculated as the proportion of employment in private 
enterprises and individual employment to total employment; (6) Industrial structure (si) enhances resource 
allocation and production efficiency and is measured as the proportion of secondary industry output value in 
GDP.

Data sources
Most of the data used in the study are sourced from the website of the National Bureau of Statistics of the 
People’s Republic of China, the Energy Statistics Yearbook, the Statistical Bulletin of National Economic and Social 
Development, the Industrial Statistics Yearbook of China, the Environmental Statistics Yearbook of China, the 
Statistical Yearbook of China for the period 2008–2021.

Methods
Entropy weight method
Data standardization
Suppose there are m evaluated objects, each with n indicators. consequently, an m × n judgment matrix can be 
constructed. after standardize indicators, a new matrix R = (rij)m×n. rij ∈ [0,1] is obtained, the formula is 
given as follows:

	 X = (rij)m×n(i = 1, 2, . . . , m; j = 1, 2, . . . , n)� (5)

If the indicator has a positive trend,

	
rij = xij − min xij

max xij − min xij
� (6)

If the indicator has a negative trend,

	
rij = max xij−xij

max xij − min xij
� (7)

Calculation of entropy:
We can calculate the contribution of year i under index j via the following equation:

	

eij = −k

n∑
i=1

Pij ln (Pij)

Pij = rij∑n

i=1 rij

k = 1
lnn

� (8)
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Calculation of weight values for indicators

	
Wj = 1 − ej∑m

j=1 1 − ej
� (9)

Calculation of the composite evaluation index for each year:

	
Si =

n∑
j=1

WjPij � (10)

Coupling coordination degree model
The CCD of CP and HQED is constructed to analyze their synergistic effect. The specific formulas are as follows:

	
C = 2

√
U1 × U2

U1 + U2
� (11)

C denote the coupling degree, and U1 and U2 represent the composite indices of CP and HQED for each 
province, respectively:

	

T = αU1 + βU2

D =
√

CT
� (12)

where D represents the CCD, ranging from 0 to 1; T denote the overall scores of the two systems; and α and β 
represent the contribution shares of CP and HQED, respectively. given that both CP and HQED play equally 
important roles in social development, α = β = 0.5. A higher CCD value indicates a strong correlation between 
CP and HQED, signifying that these two factors are advancing in close coordination. The specific classification 
is provided in Table 2.

Kernel density estimation
Kernel Density Estimation (KDE), a non-parametric statistical method, effectively captures the distribution 
characteristics of multidimensional data, offering a more comprehensive analysis. This study applies KDE to 
analyze the distribution trend of the CCD between CP and HQED. The kernel density function for the random 
variable x is given by:

	
f(x) = 1

nh

n∑
i=1

K
(

x − Xi

h

)
� (13)

K(•) is the kernel function, x1 ~ xn represents the coupling coordination level values, x is the mean value, n 
denotes the number of observations, and h is the window width54. This study employs the Gaussian kernel 
function, known for its higher accuracy, to estimate the dynamic distribution characteristics of CP, HQED, and 
their CCD.

Exploratory spatial data analysis
Exploratory spatial data analysis (ESDA) is a method used to explore the distribution and relationships of spatial 
data55. ESDA operates under the assumption that nearby locations tend to exhibit similar attributes, with these 
similarities diminishing as distance increase. It considers both global and local autocorrelation analysis. The 
formula for global autocorrelation is as follows:

Coupled coordination development stage Type Range of D value

Incoordination

Severely incoordination 0 ≤ D ≤ 0.1

Extremely incoordination 0.1 < D ≤ 0.2

Moderately incoordination 0.2 < D ≤ 0.3

Mildly incoordination 0.3 < D ≤ 0.4

Adjustment
Critically coordination 0.4 < D ≤ 0.5

Critically coordination 0.5 < D ≤ 0.6

Coordination

Mildly coordination 0.6 < D ≤ 0.7

Moderately coordination 0.7 < D ≤ 0.8

Highly coordination 0.8 < D ≤ 0.9

Extremely coordination 0.9 < D ≤ 1

Table 2.  Coupling coordination degree classification.
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I =

n∑
i=1

n∑
j=1

Wij (xi − x) (xj − x)

n∑
i=1

(xi − x)2
� (14)

where xi and xj  represent the observations of region i and region j, respectively; x is the mean value of all sample 
observations within the study area; n denotes the number of cities; and Wij  represents the spatial adjacency 
matrix. which indicates the spatial proximity of cities. Moran’s I ranges from − 1 to 1, where values below 0 
indicate negative spatial correlation, a value of 0 indicates no spatial correlation, and values above 0 indicate 
positive spatial correlation56.

Global Moran’s I examines the overall spatial autocorrelation within an entire region but fails to capture 
spatial heterogeneity and specific clustering patterns between local areas. Local Moran’s I effectively addresses 
this limitation and can be measured via the following formula36:

	

Ii =
n(xi − x)

n∑
j=1

Wij(xj − x)

n∑
i=1

(xi − x)2
� (15)

Spatial econometric model
In studying the coupling and coordination relationship between CP and HQED, the spatial association must 
be considered when analyzing its influencing factors. Therefore, a spatial econometric model is employed as an 
effective tool to analyze the influencing factors and spatial effects. The Spatial Durbin Model (SDM) combines 
the advantages of the Spatial Autoregressive Model (SAR) and the Spatial Error Model (SEM), fully accounting 
for spatial dependence and spatial heterogeneity, thus offering a more comprehensive spatial perspective. Based 
on this, the SDM for the influencing factors of the coupling and coordination relationship between CP and 
HQED is formulated as follows:

	

Dit = β0 + ρωDit + β1pgdpit + β2erit + β3urit + β4rdit + β5mlit + β6siit

+ λ1ωpgdpit + λ2ωerit + λ3ωurit + λ4ωrdit + λ5ωmlit + λ6ωsiit + µi + νt + εit
� (16)

In the formula, Dit represents CCD of CP and HQED, ρ is the spatial spillover coefficient, ω is the spatial weight 
matrix, β1 ~ β7 are the regression coefficients for the explanatory variables. λ1 ~ λ7 denote the spatial spillover 
coefficients for each explanatory variable, μi and νt are the spatial effect and time effect, respectively, and εit is the 
random disturbance term.

Results
Spatiotemporal evolution patterns of carbon productivity
As shown in Fig. 3, CP in China exhibited an upward trend from 2008 to 2021. Beijing experienced the fastest 
growth, with CP increasing from 1205 CNY/ton in 2008 to 4105 CNY/ton in 2021, followed by Chongqing and 
Shanghai, where PC grew by 1303 CNY/ton and 1132 CNY/ton, respectively. These regions have successfully 
reduced carbon emissions while maintaining economic output. However, CP in Xinjiang and Shanxi has 
declined. The energy-dependent economic growth and lower energy efficiency in these regions have resulted 
in higher CO2 emissions per unit of GDP. The industrial structure in these provinces, which relies heavily on 
energy-intensive industries, presents a significant challenge to achieving carbon reduction targets.

The results presented in Table 3 indicate that the global Moran’s I for CP in each province of China is positive, 
signifying a significant spatial correlation. However, Moran’s I has demonstrated a decreasing trend over time, 
suggesting growing heterogeneity in CP across provinces also highlighted significant regional disparities in CP 
across China. The data reveal a pattern of “high in the east and low in the west, high in the south and low in 
the north, with rising levels in the center,” with CP growth being faster in the central region and slower in the 
western region.

To examine the spatial correlation of CP, this study utilizes global Moran’s I. The results presented in Table 
3 indicate that the global Moran’s I for CP in each province of China is positive, signifying a significant spatial 
correlation. However, Moran’s I has demonstrated a decreasing trend over time, suggesting growing heterogeneity 
in CP across provinces.

Spatiotemporal evolution patterns of high-quality economic development
The entropy method was employed to calculate the HQED index from 2008 and 2021, HQED consistently 
increased, with notable regional differences (see Fig. 4). The eastern region maintained a leading position, while 
the central and western regions exhibited more fluctuations. Some regions with initially high HQED declined, 
while others improved from a lower starting point. In 2008, provinces such as Hebei, Jiangxi, and Henan had 
lower HQED scores, and by 2021, provinces like Shanxi, Inner Mongolia, and Guizhou had some of the lowest 
scores.

Spatiotemporal evolution patterns of coupling coordination degree
As shown in Fig. 5, from 2008 to 2021, CP, HQED, and CCD all increased. Before 2012, CP and HQED grew 
slowly. In 2011, severe natural disasters caused by climate change affected 430 million people and resulted in 
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Fig. 3.  Spatial distribution pattern of CP in 2008, 2011, 2014, 2017 and 2021. Notes: ① Source: Authors’ own 
drawing, based on GeoDa 1.22.0.4 software. ② Source of the map of China: GeoAtlas (areas_v3). Map Review 
Number: GS Jing (2022) No. 1061. Obtained from ​h​t​t​p​s​:​​​/​​/​d​a​t​a​​v​.​a​l​i​y​u​​n​.​c​​​o​m​/​p​o​r​​t​​a​l​/​s​​c​h​​o​o​l​/​​a​t​​l​a​s​​/​​a​r​e​a​_​s​e​l​e​c​t​o​r; ③ 
Undefined are Tibet, Hong Kong, Macau, Taiwan, and the Nansha Islands, which are not included in the study 
scope.
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direct economic losses of 309.6 billion yuan. In response, the Chinese government made climate change a key 
focus in national planning and promoted green development. The 12th Five-Year Plan in 2012 aimed to advance 
environmental protection and foster a sustainable society. As a result, from 2013 onward, the growth rates of CP, 
HQED, and CCD significantly improved.

Table 4 presents the CCD from 2008to 2021, highlighting significant differences across provinces. Notably, 
all provinces, except Shanxi, shows a continuous upward trend. Provinces with higher levels of economic 
development tend to have higher CCD. As shown in Table 2, Beijing, Shanghai, and Guangdong have already 
reached the coordination stage.

Shanxi, known for its significant coal production, has leading industries in traditional heavy sectors such 
as coal, iron and steel, and chemicals, all of which are energy-intensive and high-emission57. In response to 
national policy shifts, the provincial government has implemented a series of environmental measures 
aimed at promoting green, low-carbon, and sustainable development. However, due to limited technological 
innovation and geographical constraints, Shanxi faces greater challenges in industrial upgrading and economic 
transformation compared to other provinces58. These factors have hindered province’s economic development, 
leading to a decline in its economic indicators. Figure 6 illustrates the CCD for 2008, 2011, 2014, 2017, and 2021. 
The quantile map, created using GeoDa, visually represents the spatial distribution and changes of the CCD over 
time, providing a clear view of its spatial and temporal evolution.

Figure 6 visualizes the regional changes in the CCD, revealing a pattern characterized by “high in the east and 
low in the west, high in the south and low in the north”. Between 2008 and 2011, 27 provinces exhibited a state 
of incoordination or coupling coordination, with some provinces, such as Jiangxi, Shandong, Hunan, and Hubei, 
experiencing a decline in the CCD. Beijing,

Shanghai, and Guangdong were in a state of adjustment. During this period, despite China’s high economic 
growth, the trend of coordinated development between HQED and CP was not particularly evident.

From 2011 to 2014, the number of provinces in a state of incoordination decreased from 27 to 24, while the 
number of provinces undergoing adjustments increased from 3 to 5. Only Beijing entered a stage of coordinated 
development during this period. In 2012, China’s GDP growth rate began to decline. In 2013, General Secretary 
Xi Jinping emphasized at the National Organizational Work Conference that judging success on the basis solely 
of GDP growth was no longer appropriate. In 2014, General Secretary Xi Jinping stated that China’s economy 
had entered a “new normal,” where the economic growth rate shifted from high to medium–high, with a focus on 
continuously optimizing the economic structure and prioritizing the quality of economic development.

Between 2014 and 2017, the CCD experienced significant changes, with the number of incoordination 
incidents decreasing from 24 to 19 and the number of provinces undergoing adjustments increasing from 5 
to 10. During this period, the State Council issued action programs focused on energy conservation, emission 
reduction, and low-carbon development. With the continuous introduction of these policies, significant progress 
was made in both environmental protection and economic upgrading, leading to marked improvements in the 
coordination of these efforts.

Between 2017 and 2021, despite the global economic impact of the COVID-19 pandemic, the CCD in most 
provinces improved. The number of incoordination incidents decreased from 19 to 11, while the number of 
provinces in the adjustment phase increased from 10 to 16. Additionally, the number of provinces achieving 
coordination increased from 1 to 3. In 2017, the report from the19th CPC National Congress clearly stated that 
China’s economy had shifted from a high-speed growth stage to a high-quality development stage. During this 
period, China’s ecological environment significantly improved, regional development coordination and balance 
increased, and emissions per unit of CO2 steadily declined. In March 2020, China committed to achieving dual 
carbon goals as part of the Paris Agreement. This commitment was incorporated into the 14th Five-Year Plan 

Year I Sd(I) Z P value

2008 0.3174 0.092 3.8267 0.0001

2009 0.3599 0.0916 4.3053 0.0000

2010 0.3274 0.0901 4.0153 0.0001

2011 0.3380 0.0883 4.2185 0.0000

2012 0.3511 0.0896 4.3031 0.0000

2013 0.3197 0.0879 4.0299 0.0001

2014 0.3538 0.0892 4.3518 0.0000

2015 0.3211 0.0884 4.0229 0.0001

2016 0.3373 0.0861 4.3192 0.0000

2017 0.3087 0.0841 4.082 0.0000

2018 0.2944 0.0847 3.8826 0.0001

2019 0.2669 0.084 3.5878 0.0003

2020 0.2399 0.0848 3.2369 0.0012

2021 0.2322 0.0811 3.2893 0.0010

Table 3.  Global Moran’s I of CP for the years 2008–2021. Source: Authors’ owns estimation, based on Stata 14.0 
software.
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and the 2035 Vision Outline59, providing clear guidance for China’s future direction in terms of carbon emissions 
and economic development.

Fig. 4.  Spatial‒temporal evolution of HQED in 2008, 2011, 2014, 2017 and 2021. Source: Authors’ own 
calculations, using GeoDa 1.22.0.4 software.
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Data distribution characteristics
To more vividly and intuitively the levels, distribution evolution, extensibility, and polarization trends of CP, 
HQED, and the CCD between CP and HQED, the study employs 3D dynamic Kernal density estimation to 
generate Fig. 7.

Province 2008 2011 2014 2017 2021

Beijing 0.5060 0.5507 0.6084 0.7076 0.8149

Shanghai 0.4645 0.4841 0.5329 0.5903 0.6475

Guangdong 0.4407 0.4511 0.4910 0.5427 0.6016

Jiangsu 0.3705 0.3836 0.4273 0.4810 0.5559

Tianjin 0.3691 0.3714 0.4236 0.4762 0.5250

Zhejiang 0.3580 0.3822 0.4256 0.4764 0.5160

Chongqing 0.2848 0.3204 0.3903 0.4490 0.5150

Hainan 0.3123 0.3052 0.3309 0.3557 0.5059

Hunan 0.2906 0.3122 0.3769 0.4167 0.5047

Sichuan 0.2866 0.3157 0.3727 0.4448 0.4938

Hubei 0.2986 0.3048 0.3743 0.4158 0.4667

Fujian 0.3579 0.3616 0.3931 0.4341 0.4539

Jiangxi 0.2848 0.3150 0.3576 0.3884 0.4382

Henan 0.2803 0.2626 0.3251 0.3565 0.4348

Shandong 0.2834 0.3144 0.3503 0.3854 0.4275

Jilin 0.2592 0.2767 0.3269 0.3582 0.4163

Guangxi 0.3088 0.2930 0.3359 0.3670 0.4081

Anhui 0.2541 0.2737 0.2962 0.3458 0.4067

Yunnan 0.2621 0.2861 0.3183 0.3570 0.4015

Hebei 0.2411 0.2528 0.2850 0.3381 0.3839

Liaoning 0.2702 0.2980 0.3315 0.3597 0.3701

Heilongjiang 0.2605 0.2623 0.3064 0.3366 0.3639

Qinghai 0.2247 0.2389 0.2638 0.3168 0.3549

Shaanxi 0.2154 0.2428 0.2576 0.2730 0.3236

Guizhou 0.2004 0.2150 0.2361 0.2602 0.3195

Gansu 0.2232 0.2359 0.2649 0.3007 0.3165

Inner Mongolia 0.2005 0.1986 0.2269 0.2591 0.2582

Xinjiang 0.2321 0.2197 0.2342 0.2430 0.2366

Ningxia 0.1401 0.1158 0.1608 0.1789 0.1856

Shanxi 0.1612 0.1712 0.0686 0.1397 0.1267

Table 4.  CCD of CP and HQED. Source: Authors’ own calculations, based on Excel and Stata software.

 

Fig. 5.  Trends of average values of CP, HQED, and CCD from 2008 to 2021.Source: Authors’ own calculations.
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Fig. 6.  Spatial evolution of the CCD in 2008, 2011, 2014, 2017, and 2021. Notes: ① Source: Authors’ own 
drawing, based on GeoDa 1.22.0.4 software. ② The map of China includes Tibet, Hong Kong, Macau, Taiwan, 
and the Nansha Islands. These areas are not included in the study data, so the value of (0, 0.1] needs to be 
subtracted by 5.
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As seen in Fig. 7, the kernel density curves of CP, HQED, and CCD exhibit a consistent pattern, all displaying 
an overall upward trend. In 2008, They all show sharp peaks, indicating that CP, HQED, and CCD were 
concentrated in the lower value regions at that time, reflecting weak synergy between economic development 
and carbon reduction. Following this, the sharp peaks gradually transition into wider peaks, suggesting that 
the polarization effect is weakening, meaning that CP, HQED, and CCD are improving synchronously, and the 
coupling development between the two is gradually strengthening. Additionally, the curves clearly exhibit a 
right-skewed tail, indicating that in some regions, CP, HQED, and CCD are significantly above average, with 
a few areas outperforming others. This suggests considerable regional disparity in the coupling coordination 
levels. The shape of the peaks in the kernel density map and their changes over time align with the analysis 
presented above.

Spatial correlation analysis
Table 5 shows that from 2008 to 2021, the global Moran’s I values of the CCD are consistently greater than 0, with 
p-values consistently below 0.01, confirming statistical significance. This suggests that the CCD exhibits a strong 
positive spatial correlation and has significant global spatial clustering characteristics. Additionally, the trend 
in the Moran index over time reveals a gradual weakening of spatial correlation. This weakening indicates that 
GDP is progressively decoupling from CO2 emissions, thereby reducing the spatial correlation effect.

Year I Sd(I) z p value

2008 0.4119 0.0914 4.883 0.0000

2009 0.3995 0.0913 4.7514 0.0000

2010 0.3836 0.0911 4.5872 0.0000

2011 0.3828 0.0906 4.6058 0.0000

2012 0.3839 0.0912 4.5854 0.0000

2013 0.3749 0.0913 4.4817 0.0000

2014 0.3379 0.0907 4.1074 0.0000

2015 0.3360 0.0911 4.0681 0.0000

2016 0.3514 0.0911 4.2362 0.0000

2017 0.3311 0.0907 4.0294 0.0001

2018 0.3107 0.0907 3.8046 0.0001

2019 0.2803 0.0906 3.4734 0.0005

2020 0.2539 0.0910 3.1685 0.0015

2021 0.2393 0.0906 3.0202 0.0025

Table 5.  Global Molan’s I of the CCD. Source: Authors’ own estimation, based on Stata software.

 

Fig. 7.  3D Kernel Density Estimation. Source: Authors’ own calculations, based on MATLAB software.
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Spatial agglomeration analysis
To better understand the evolution of the CCD from 2008 to 2021, we concentrated on the years 2008, 2011, 
2014, 2017, and 2021. Stata and GeoDa were employed to generate LISA agglomeration maps. Through the 
analysis of Fig. 8, we explored the spatial agglomeration patterns over time.

Between 2008 and 2021, the “H–H” agglomeration areas of CCD were primarily concentrated in 
economically developed regions along the eastern coast, including Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, 
and Guangdong. The number of “H–H” areas increased in 2014, 2017, and 2021.

The number of “L–L” agglomerations is higher in provinces with high energy consumption and relatively 
underdeveloped economies. These include Heilongjiang, Liaoning, and Jilin in Northeast China, as well 
as Shanxi, Hebei, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. These regions exhibit 
significant spatial incoherence between CP and HQED. The low-value clustering areas reflect limited economic 
influence on neighboring provinces, highlighting a lack of advantage in fostering HQED. This underscores the 
regional disparities and challenges in the coordinated development of CP and HQED.

Meanwhile, the number of “H–L” agglomeration areas has increased, indicating that some provincial 
regions have achieved more coordinated development within their jurisdictions but have limited influence on 
surrounding areas.

Spatial effect analysis of coupling coordination degree
Analysis of spatial spillover effects
Based on the strong positive spatial autocorrelation of the CCD between CP and HQED, further analysis is 
conducted using a spatial econometric model to verify the spatial effects of the CCD. First, the appropriateness 
of selecting a spatial panel model for estimation should be confirmed. As shown in Table 6, the Variance Inflation 
Factor (VIF) value is 2.75, indicating no multicollinearity. The Hausman test statistic is 35.55, with a p-value of 
0.0000, suggesting that fixed effects are preferred over random effects. Both the LM and Robust LM tests pass the 
significance tests, indicating that the SDM is more appropriate for estimation than the SLM or SEM, these results 
confirm that the SDM does not degrade into either the SEM or SLM. By comparing the R2 and Log-Likelihood 
values, the SDM model with both time and space fixed effects is the most scientifically reasonable approach for 
analyzing the spatial heterogeneity of factors influencing the CCD.

From the econometric estimation results in Table 6, comparing the OLS model without considering spatial 
factors with the SDM model reveals that in the ordinary panel regression model, all variables except for 
environmental regulation pass the significance test at the 5% level. However, in the SDM model, both urbanization 
level and environmental regulation do not pass the significance test. There are significant differences in the 
regression coefficients and their significance between the two models.

The SDM results shows that the coefficient estimates of the spatial lag terms for environmental regulation 
(W*er), technological progress (W*rd), per capita GDP (W*pgdp), and the share of the secondary industry (W*si) 
are all significant at the 1% level. However, urbanization and marketization level do not pass the significance 
test, indicating that technological progress (W*rd) and economic development level (W*pgdp) in neighboring 
regions have a significant positive spatial spillover effect on the local coupling coordination level. In contrast, 
environmental regulation (W*er) and the share of the secondary industry (W*si) in neighboring areas have a 
significant negative spatial effect on the local coupling coordination level. The spatial impact of urbanization and 
marketization level on the local coupling coordination level is insignificant.

There is a significant spatial spillover effect in the CCD between CP and HQED. The ρ value of the SDM 
model for coupling coordination is − 2.577, which is significant at the 1% level. The main reason for this is that 
the CCD is still in its early stages. Regions with high coupling coordination tend to have a siphon effect on 
surrounding areas, while the radiation and demonstration effects on neighboring low-value areas have not yet 
fully materialized, thus resulting in a spatial negative effect.

Analysis of spatial effects
Table 7 demonstrates that the variables have significantly different effects on the CCD.

From the perspective of the total effect, both economic development and environmental regulation have a 
significantly positive impact on the CCD. The proportion of the secondary industry exerts negative total effect on 
the CCD, while the urbanization level, marketization level, and technological progress do not have a significant 
spatial total effect on the CCD.

From the perspective of direct effects, Economic development, R&D investment, and marketization 
all have significant positive impacts on the CCD. Economic development is the primary driver of the CCD, 
significantly influencing local coordination and exerting a notable spatial spillover effect on neighboring 
regions. R&D investment supports local economic growth and industrial upgrading through technological 
innovation, knowledge accumulation, and human capital enhancement, playing a central role in fostering low-
carbon economic growth. Meanwhile, marketization typically improves resource allocation efficiency, drives 
technological innovation, optimizes industrial structure, and enhances the policy environment. The interaction 
of these factors promotes the positive coupling coordination between CP and HQED. The share of the secondary 
industry has a significantly negative effect, reflecting the degree of regional industrialization. As industrialization 
progresses, CO2 emissions rise, and the quality of economic development improves more slowly, leading to a 
decline in the CCD. This is particularly evident in regions such as the three northeastern provinces and Shanxi.

From the perspective of indirect effects, except for the insignificant impact of urbanization level, all other 
variables have a significant impact on the CCD. Among these, environmental regulation and economic 
development have a positive effect, while R&D investment, marketization level, and the share of the secondary 
industry have a negative effect. Economic development is tightly interconnected between regions; the economic 
growth of one area positively influences neighboring regions through various channels, promoting their growth 
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and development. The direct effect of environmental regulation is negative but insignificant, possibly due to 
short-term cost burdens, unreasonable industry structures, and the lag in industrial transformation. However, 
its indirect effect is significantly positive, reflecting the positive role of mechanisms such as policy spillover 
effects, technological diffusion, and regional collaboration in enhancing the CCD of neighboring regions. The 
negative indirect effect of R&D investment suggests that, in regional interactions, factors such as competition, 
resource siphoning, and technology protection may lead to uneven development, thereby hindering the CCD. 

Fig. 8.  LISA chart of CCDs in 2008, 2011, 2014, 2017 and 2021. Source: Authors owns drawing, based on 
GeoDa 1.22.0.4 software.
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The negative significant effect of the secondary industry share is primarily due to the high energy consumption 
and emissions associated with the secondary industry, as well as the suppressive effect on the environmental 
quality and economic development of neighboring regions through industrial transfer. While improvements in 
marketization can optimize local resource allocation and stimulate enterprise vitality, they also lead to increased 
regional competition, resource siphoning effects, the lag of industrial restructuring, and policy differences with 
spatial spillover effects, which negatively impact the CCD in surrounding areas.

Discussion
This study thoroughly explores the spatiotemporal evolution patterns of the CCD between CP and HQED 
in China, revealing the process of their coordinated development and regional disparities. Through 
multidimensional spatiotemporal analysis, including CCD, three-dimensional kernel density estimation, spatial 
autocorrelation analysis, and spatial econometric models, the study provides a more comprehensive perspective 
for understanding the coupling relationship between CP and HQED.

Spatiotemporal evolution and development trends
Temporal Dimension: The coupling coordination degree between carbon productivity and high-quality 
economic development shows a fluctuating upward trend over time, reflecting progress in balancing economic 

Variables Direct effect Indirect effect Total effect

ur 0.1448
(1.539)

 − 0.1552
(− 1.132)

 − 0.0104
(− 0.150)

er  − 0.0009
(− 1.565)

0.0058***
(3.680)

0.0049***
(3.481)

rd 0.5023***
(5.397)

 − 0.7034***
(− 3.924)

 − 0.2012
(− 1.336)

pgdp 0.0059***
(3.321)

0.0189***
(5.203)

0.0248***
(8.712)

si  − 0.1266***
(− 3.877)

 − 0.1946**
(− 2.547)

 − 0.3212***
(− 4.170)

ml 0.0938***
(5.264)

 − 0.0554*
(− 1.803)

0.0385
(1.247)

Table 7.  Spatial effect decomposition of coupling coordination between CP and HQED. Statistics at the 
significant level are shown in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1

 

Variables OLS SDM

ur 0.1305*** (2.74) 0.1362 (1.556)

er 0.0004 (0.67) − 0.0007 (− 1.218)

rd 0.1957** (2,04) 0.4694*** (5.034)

pgdp 0.0121*** (7.92) 0.0067*** (3.791)

si − 0.1239 *** (− 3.38) − 0.1339*** (− 4.029)

ml 0 .1426*** (7.92) 0.0919*** (5.083)

_cons 0.1914*** (6.84) 0.4021*** (6.609)

W*ur − 0.1439 (− 1.016)

W*er 0.0064*** (3.434)

W*rd − 0.7231*** (− 3.479)

W*pgdp 0.0233*** (6.471)

W*si − 0.2538*** (− 3.148)

W*ml − 0.0462 (− 1.294)

ρ − 0.2061*** (− 2.577)

R2 0.49 0.56

LM-spatiallag 139.618***

LM-spatialerror 226.738***

Rubust LM-spatiallag 20.532***

Rubust LM-spatialerror 107.653***

Vif 2.75

Hausman test 35.55 *** 20.74

Both fixed Yes yes

Table 6.  Estimation results of spatial econometric model for CCD. Statistics at the significant level are shown 
in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1
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growth and carbon emission reduction in China. The growth rate varies across different stages, with slower 
improvements in the early stages and accelerated growth in later stages driven by policy support, technological 
advancements, and increased environmental awareness.

Spatial Dimension: Significant spatial heterogeneity is observed in the distribution of carbon productivity, 
high-quality economic development, and their coupling coordination degree. Regions with high carbon 
productivity and high-quality economic development are often concentrated in specific areas, such as the 
Yangtze River Delta and the Pearl River Delta. The eastern region, characterized by the rapid development of 
high-tech industries and continuous optimization of industrial structures, achieves a relatively high coupling 
coordination degree. In contrast, the western region, with a single economic structure and a high proportion of 
resource-intensive industries, exhibits a lower coupling degree between carbon productivity and high-quality 
economic development. This finding is consistent with previous research, which also highlights the regional 
disparities in China’s economic development and carbon productivity, particularly the east–west divide.

Spatial autocorrelation and regional clustering
Spatial autocorrelation analysis reveals significant spatial clustering effects in CP, HQED, and their coupling 
coordination. “H–H” clustering regions are primarily concentrated in the developed eastern areas, where 
technological spillovers and industrial linkages drive mutual promotion between CP and HQED. In contrast, “L-
L” clustering regions are found in relatively underdeveloped areas, including energy-dependent heavy industrial 
provinces, the three northeastern provinces, and parts of the central and western regions. This phenomenon 
underscores the uneven development across regions. This result corroborates previous studies that emphasize 
the spatial autocorrelation and clustering effects in China’s regional economic and environmental development. 
However, this research goes further by using spatial econometric models to quantify the spatial spillover effects, 
which have often been overlooked in earlier studies.

Analysis of key influencing factors
In terms of variable selection, key variables were chosen based on China’s unique economic development 
trajectory, with particular emphasis on domestic circulation, considering the unprecedented changes over 
the past century. Using a spatial econometric model, this study identifies urbanization level, environmental 
regulation, R&D investment, per capita GDP, and marketization level as critical factors influencing the CCD. The 
results indicate that economic development, environmental regulation, and the share of the secondary industry 
have the most significant total effects on the CCD, playing pivotal roles in driving coordinated development.

Analysis of effect pathways
Compared to traditional ordinary least squares (OLS) methods, spatial econometric models provide a more 
comprehensive understanding of spatial relationships and interaction mechanisms between variables, reducing 
potential bias from ignoring spatial effects. Analyses of total effects, direct effects, and indirect effects reveal that 
variables not only exert direct impacts within their own regions but also influence neighboring regions through 
spatial spillover effects. This underscores the importance of considering the interactions and linkages between 
factors during policy implementation to maximize policy effectiveness.

Limitations of the study
In comparison to earlier studies, which typically analyzed carbon productivity and economic development 
in isolation, this study combines both spatial econometrics and multidimensional variables to offer a more 
comprehensive approach. However, his study has certain limitations. In selecting indicators for high-quality 
economic development and the factors influencing the coupling coordination degree, although various aspects 
were considered, the potential issue of omitted variables remains. Future research could broaden the scope of 
influencing factors by incorporating variables from additional dimensions. Furthermore, while an economic-
geographical weight matrix was used for the spatial weight matrix, future studies could refine the indicator 
system and explore more appropriate methods for constructing spatial weight matrices to improve research 
accuracy. Future studies could also extend the time span of the research and include forecasting analyses to 
explore the future relationship between the two. Additionally, investigating regional heterogeneity and examining 
the specific effects of policy interventions by region could provide more scientifically grounded insights for 
policy-making.

Conclusion and policy implications
Conclusion

	1.	� Significant regional development imbalance. There are pronounced regional disparities in CP, HQED, and 
the CCD between the two, characterized by a spatial distribution pattern of “higher in the east and lower in 
the west.” This research conclusion aligns with previous literature and is closely linked to varying regional 
economic development levels, industrial structures, and resource endowments, thereby highlighting the im-
balance in regional development across China.

	2.	� Strong spatial dependence. Carbon productivity, high-quality economic development, and the coupling coor-
dination degree between them exhibit strong spatial autocorrelation, indicating significant spillover effects 
between regions. This provides a theoretical basis for regional coordinated development and underscores the 
necessity of cross-regional cooperation and coordination.

	3.	� Multifactor influence on CCD. Factors such as urbanization level, environmental regulation, R&D invest-
ment, per capita GDP, and marketization level collectively influence the coupling coordination degree. These 
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factors exert both direct and indirect effects, impacting local areas and regions, thereby shaping the spatial 
pattern of the coupling coordination degree.

	4.	� Advantages of spatial econometric models. Compared to traditional OLS regression, spatial econometric mod-
els excel in addressing spatial correlations between regions. They provide more accurate analyses of influenc-
ing factors and clearly reveal the profound impact of spatial spillover effects on the coupling coordination 
degree.

Policy implications

	1.	� Formulate region-specific policies. Regions should develop differentiated development strategies based on 
their resource endowments, industrial structures, and development stages. Eastern regions should continue 
advancing green technology innovation and high-tech industry development to consolidate carbon reduc-
tion achievements. Western regions should focus on strengthening green infrastructure construction, pro-
moting industrial restructuring, and improving the coupling coordination degree.

	2.	� Strengthen regional collaboration. Given the spatial spillover effects, cross-regional cooperation should be 
enhanced to facilitate the flow of technology, capital, and talent while establishing mechanisms for green 
development collaboration. In particular, complementary regional strengths in green industries, technolo-
gies, and the low-carbon economy should be fully leveraged. Initiatives such as jointly building industrial 
parks and fostering technological cooperation can enable resource sharing and synergy, promoting balanced 
improvements in carbon productivity and high-quality economic development across regions.

	3.	� Increase R&D investment and deepen market reforms. Governments should enhance support for technologi-
cal innovation and incentivize enterprises to increase R&D investment in green technologies and low-carbon 
economy sectors. Simultaneously, market reforms should be deepened to improve market efficiency and 
optimize resource allocation. Joint innovation among industries, academia, and research institutions should 
be promoted, alongside establishing a more robust intellectual property protection system to stimulate cor-
porate innovation and accelerate the development of green technologies.

	4.	� Optimize environmental regulation policies. While strengthening environmental regulations to enhance 
carbon productivity, it is essential to consider regional economic capacity and the practical challenges of 
industrial transformation. Flexible environmental policies should be implemented to balance carbon reduc-
tion and economic growth objectives. In particular, the overdevelopment of high-energy-consumption and 
high-pollution industries should be avoided in central and western regions.

	5.	� Improve monitoring and evaluation systems. Develop a comprehensive evaluation system for carbon produc-
tivity and high-quality economic development, ensuring regular monitoring of regional indicator changes. 
Timely policy adjustments should be made based on these evaluations to enhance the precision and effec-
tiveness of policy implementation.

Data availability
The data used in this study will be available upon request. Please contact the author via email at: 21010362@
siswa.unimas.my.
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