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Healthcare data protection in our mutually connected era has emerged as an issue of serious concern 
with private patient information, which has been exposed more often due to data violations and cyber-
attacks. Network structures CNN and LSTM as part of privacy-based encryption method. Research 
presents neurosis, a new structure, which combines CNN-LSTM architecture with privacy-secured 
encryption to provide safe healthcare analytics. Depending on the Kaggle healthcare dataset, the 
model receives an accuracy of 98.73%, which is better than the current functioning. “NeuroShield” 
includes characteristic-based access control (ABAC), Advanced Encryption Standard (AES), Multi-
Factor Authentication (MFA) and differential privacy-based optimizations that provide strong 
protection. To increase the interpretation, AI (XAI) is used on the basis of size, making health experts 
capable of understanding model decisions. Detailed evaluation accepts the performance of structure 
in maintaining privacy through providing high-demonstration analysis for healthcare data protection. 
Organized testing and comparative analysis suggest that neuroshield not only improves data security, 
but also provides excellent accuracy with better performing results in healthcare analytics.
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memory, Advanced encryption standard, Attribute-based access control, Multi-factor authentication

The medical system worldwide becomes more digital and adopts new technology, safety and privacy of medical 
records of patients is a major concern. In the case of sensitive patient data, medical records, and safety of 
health care systems from cyber-attacks, data violations and unauthorized access, health safety1 is a broad array 
of technology, processes and policies. Digitization of Electronic Health Records (EHRS), connected medical 
devices, telemedicine systems and patient data has promoted an increase in both healthcare data volume and 
sophistication. The risk of data violations, identity theft, and unauthorized access to confidential health data 
highlights the paramount importance of strong health care data security solutions2.

In relation to data security, unique problems and challenges in the healthcare sector face. Both individually 
identified information (PII) and protected health information (Phi) are strictly governed, which provide highly 
sensitive to health data. Data includes patient demographics, medical history and treatment. Protected health 
information is defined as any individually identified health information under HIPAA that a covered unit or its 
professional partner3–5. Medical history, billing information, insurance coverage, and any other data can be used 
to identify a person’s health status or healthcare provision.

Financial loss, damage to a person’s reputation, potential legal consequences, and compromised patient care 
are some consequences as a result of health care data violations. Similarly, the law for protecting healthcare 
data has also been applied in other countries and geographical areas, such as the European Union General 
Data Protection Regulation (GDPR) and Canada’s Personal Information Protection and Electronic Documents 
Act (Pipeda), both Are equal. Hipaa in America. Encryption, access control, audit trails, and brech reporting 
procedures are among the security of healthcare organizations, providers, insurers and others by these rules that 
handle the patient’s information6–8. Emerging cyber threats, changing regulatory requirements, and technology 
progress all lead to a constant developed landscape in which healthcare data security must be developed. When 
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it comes to the protection of confidential patient data, Tri-end-Tru classics such as firewalls, anti-virus software 
and circumference security are not enough9,10. During the data cycle, healthcare organizations and stakeholders 
need to apply preventive, investigative and reactionary solutions to maintain data security. Such a strategy 
should be multi -level and integrated11.

Protecting sensitive medical information from hackers and other bad actors is the primary goal of preventative 
measures. One of the best ways to secure data while it’s in use, in transit, or at rest is to utilize encryption. 
Healthcare organizations can protect the confidentiality and integrity of sensitive data by encrypting it using 
cryptographic techniques12,13. This renders the data unreadable to unauthorized users. The same is true for 
healthcare data: authentication methods, user permissions, and access controls all work together to ensure that 
only authorized individuals can see or change sensitive information in accordance with the concept of least 
privilege14–16. Healthcare systems and networks undergo audits and monitoring as a proactive measure to detect 
any unusual activity, attempted intrusion, or suspicious activity. A lot of healthcare companies utilize security 
information and event management (SIEM) platforms, intrusion prevention systems (IPS), and intrusion 
detection systems (IDS) to monitor for and react to security incidents in real-time. This helps them find threats 
early on and stop them before they get worse. By keeping meticulous records of all operations pertaining to 
healthcare data, strong logging and auditing procedures also assist with forensic investigations and meeting 
regulatory obligations. Figure 1 illustrates the healthcare data security challenges.

Quickly restoring regular operations, limiting downtime, and mitigating the effects of security incidents 
and breaches are the primary goals of responsive measures. The capacity of a healthcare organization to react 
promptly to security incidents, natural disasters, and other disruptive situations relies on the incident response 
plans, disaster recovery processes, and contingency preparations. Incident response teams should be equipped, 
with exercises and training, to manage security incidents properly and efficiently. This will minimize the 
potential effect on patient care and corporate reputation17. New answers to long-standing issues are emerging 
in the healthcare data security landscape, the commonality of the latest technology such as blockchain, 
machine learning (ML), and artificial intelligence (AI). An example is the capacity of AI and ML algorithms to 
analyze huge amounts of healthcare data in real-time. This enables proactive threat detection and response by 
recognizing trends, anomalies, and potential vulnerabilities. By enabling secure, tamper-resistant transactions 
and data exchange between stakeholders, blockchain technology can enhance data integrity, transparency, and 
trust in healthcare18,19.

Healthcare data security has evolved a great deal, but there remains much to be tackled. Establishing robust 
security protocols end-to-end across healthcare firms is difficult owing to various reasons like the intricacy of 
healthcare ecosystems, interoperability issues, aged systems, and scarce resources. Moreover, it is also important 
to remain watchful, adapt, and spend money on cybersecurity infrastructure and expertise since cyber-attacks, 
such as phishing schemes, insider threats, and ransomware attacks, keep evolving. Health care data protection 
is vital in order to secure patients’ private data, sustain trust in the health care systems, and ensure the reliability 
of the health care services. Healthcare businesses may reduce the likelihood of cyber threats, data breaches, and 
compliance violations by implementing a thorough, risk-based data security strategy that combines technical 
controls, regulatory compliance, and organizational governance. The healthcare industry can benefit patients, 
providers, and stakeholders by embracing innovation and collaborating. By leveraging emerging technology and 
best practices, they can solve increasing security concerns and develop a robust, secure healthcare ecosystem20.

The impetus for this activity comes from the growing complexity and sensitivity of healthcare information, 
in addition to the inability of legacy security solutions to manage changing cyber threats. Modern techniques 
of healthcare data protection usually fail to provide simultaneous provision of dynamic adaptation of threats, 
effective data handling, and the preservation of privacy. Past literature has emphasized data encryption or machine 
learning models separately, with relatively few having used a complete end-to-end holistic approach combining 

Fig. 1.  Healthcare data security challenges.
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complex neural networks and optimization algorithms tailored for healthcare analytics. This work seeks to 
bridge these gaps by introducing a new framework that not only strengthens data security but also improves 
interpretability and efficiency in healthcare data analysis. Classic models such as Logistic Regression, Decision 
Trees, and SVMs are usually incapable of capturing the intricate relationships between high-dimensional and 
sequential healthcare data. Though such models may work well for some tasks, they usually entail a great deal of 
feature engineering and do not support spatial or temporal data natively. In contrast, more advanced models such 
as Transformers, though formidable with sequential data, could be computationally infeasible in environments 
where computational power is scarce, such as in most healthcare environments. In contrast, the integration of 
CNNS and LSTMs provides uniform-handed approach that is capable of effectively dealing with both spatial and 
temporary characteristics of health data without consuming too much more computational power.

The neuroshield models combine the CNNS and LSTM network as they complement each other’s strength 
in dealing with the complex nature of healthcare data. This architecture was preferred for other potential 
models because healthcare data contains both spatial and cosmic characteristics that demand a strong analytical 
method. CNNs were chosen due to their established capacity in extracting and processing spatial features from 
data such as medical images, sensor data and structured patient records. For example, in medical imaging, the 
edges, textures and complex structures such as spatial patterns may be important for diagnosis. CNNS employs 
conversional filters to directly learn these features from data without requirement for manual extraction of 
features. Unlike other machine learning models such as support vector machine (SVM) or Random Forest (RF), 
which depend on pre-specified features, CNN can learn the most suitable features for work by itself, increase 
the accuracy and credibility of analysis. The LSTM network was chosen to identify the temporary dependence 
inherent in health care data. Most healthcare dataset consists of time-series data, e.g., patient significant signs, 
treatment history and pharmaceutical regime. LSTMs are specially engineer for sequence data and have the 
ability to learn long -term dependence using their special gating mechanisms. This ability enables them to 
remember longer information, which is important in healthcare applications where it is important.

This model is designed to catch the spatial and cosmic characteristics inherent in health care data efficiently, 
which facilitates more accurate and meaningful analysis of patient records, medical images and time-series data. 
In addition, the framework includes advanced data preprocessing methods, such as the K-nearest neighbor 
(KNN) copy, to manage the missing values ​​in the healthcare dataset without compromising on data integrity. 
Furthermore, robust encryption techniques like AES are employed for securing sensitive health data and 
maintaining patient privacy as per privacy laws. Furthermore, the framework proposes that access controls 
should be regulated using ABAC policies and MFAs to govern data access as a function of user role and privilege. 
This integrates data protection through the prevention of unauthorized access to health data and protecting 
against data violations. Finaly framework employs differential privacy-based adaptation techniques to ensure the 
privacy of individuals by adapting machine learning models for sensitive health care data. Through such privacy-
protection techniques, framework guarantees analytical insight can be derived from health care data without 
cheating the patient’s privacy or breaching privacy policies. The neurocardiac is separated from others in that it 
integrates a hybrid CNN-LSTM model to facilitate enhanced spatial-temporal analysis and privacy-protection 
adaptation for safeguarding sensitive health care data. This involves additional elucidation of AI (XAI) to enable 
additional interpretation, which provides more transparent model decisions for health care professionals.

Main contributions of the work

•	 Introduction of the NeuroShield Model, a novel framework integrating LSTM networks with Cascaded CNNs, 
designed to enhance the analysis of healthcare data by effectively capturing spatial and temporal features.

•	 Implementation of KNN imputation technique to handle missing values in the healthcare dataset, ensuring 
data completeness and reliability for subsequent analysis.

•	 Deployment of AES for data encryption and access control, ensuring robust protection of sensitive healthcare 
information during storage and transmission, thereby upholding patient privacy and compliance with regu-
latory standards.

•	 Implementation of ABAC Policy and MFA mechanisms to regulate data access based on user roles and per-
missions, thereby strengthening data security measures and preventing unauthorized access to healthcare 
data.

•	 NeuroShield incorporates a hybrid CNN-LSTM structure for improved spatial-temporal analysis, employs 
privacy-preserving optimization for the protection of healthcare data, and uses Explainable AI (XAI) with 
SHAP to enhance interpretability and transparency for clinicians.

The structure of the paper unfolds as follows: Sect. 2 delves into prior research on Healthcare Data Analytics and 
Classification. In Sect. 3, we provide a detailed exposition of the proposed NeuroShield Model, which leverages 
the synergies between LSTM networks and Cascaded CNNs. Subsequently, Sect. 4 showcases the results gleaned 
from extensive testing and comparative analyses. Lastly, Sect. 5 encapsulates our findings and delineates potential 
avenues for future research endeavors.

Related work
AI technology offers the greatest answer for enhancing data security and dependability, making it the ideal choice 
for healthcare applications. This is why traditional constructions for the IoT-cloud architecture incorporate a 
number of security measures based on artificial intelligence. Nevertheless, it faces major challenges such as 
increased time consumption, higher costs associated with Internet of Things (IoT) sensors, inefficient data 
handling, and an increase in algorithm design complexity. It is also not ideal for processing unstructured data. For 
that reason, a probabilistic super learning–RH intelligent feature learning method is presented based on artificial 
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intelligence to strengthen the safety of healthcare data kept in the IoT cloud21. This article’s suggested learning 
model is also an attempt to lower the price of Internet of Things (IoT) sensors. In this case, the training model is 
kept running to detect assaults early, updating the reported attack attributes to learn their characteristics. Elliptic 
Curve Cryptography (ECC) serves as a common method for securing data, employing the hash value of the data 
matrix to generate a random key. Subsequently, the improved ECC-RH method encrypts and decrypts the data 
using the newly-generated random hash key. Various performance indicators are utilized during performance 
evaluation to validate and compare the outcomes of both current and suggested methodologies.

Connecting medical devices and their accompanying software to the computer networks utilized in 
healthcare 5.0 is the groundbreaking Internet of Medical Things (IoMT). The rapid development of smart 
medical devices on IoMT platforms has greatly enhanced the adoption of important technologies, modernizing 
healthcare practices, illness management, and patient treatment standards. Data screening, data interchange, 
patient monitoring, data collection and analysis, and sanitary hospital attention are just a few of the cloud-based 
services offered by the IoMT. It is the job of wireless sensor networks (WSNs) to collect and transmit data. 
The healthcare industry places a premium on patient safety and respects their right to privacy. The wireless 
transmission of data from these smart devices through the airways allows anyone to access and edit the patient’s 
medical records. An innovative protocol was developed, ECC-EERP, based on elliptic curve cryptography, to 
meet the need for a secure and energy-efficient system in healthcare22. Data was encrypted using the ECC-
EERP key-based approach. By encrypting and decrypting web traffic using pairs of public and private keys, a 
WSN’s overall energy consumption is reduced. The proposed method’s efficiency was compared with a number 
of current approaches. The proposed approach was assessed using a wide range of metrics, including safety, 
encryption speed, power consumption, network lifetime, communication congestion, processing time, and 
implementation expense. The findings show that the suggested method improves both safety and efficiency in 
terms of energy usage.

Particularly difficult is the task of protecting sensitive healthcare data. Due to their high number of patients 
and direct access to patient records, nursing staff play a vital role in ensuring the security of sensitive medical 
information. Although the connection between healthcare data protection and information security culture 
(ISC) is not yet fully understood, the former plays a significant role in the latter. Two additional aspects of 
organizational ISC pertaining to privacy and security are initially defined and made practical23. A survey was 
conducted among 527 nursing staff in Slovenia to verify the assessment instrument and also investigated any 
connections between the newly created ISC characteristics and nursing employees’ illicit access to healthcare 
data, using the theory of planned behavior (TPB) as an explanation. A confirmatory factor analysis followed an 
exploratory one to ensure the reliability of the measuring tool. The newly constructed ISC dimensions are reliable 
and have sufficient validity, according to both evaluations. According to the PLS-SEM analysis findings, there is a 
negative correlation between privacy-oriented ISC and attitude towards conduct, and security-oriented ISC with 
subjective norms and normative views. They also show that TPB provides a good explanation for why certain 
people get illegal access to patients’ medical records. Thus, our study’s findings suggest a tangential relationship 
between ISC and healthcare data breaches. Nursing personnel can only achieve proper practical implementation 
of ethical principles, such as privacy-preserving conduct, through awareness training. Awareness therapies that 
target nursing staff members’ values and principles have the potential to improve their outlook23.

A revolutionary change in healthcare is underway, propelled by technology advancements, with the 
emergence of Patient-Generated Health Data (PGHD). With the rise of PGHD and innovations like home 
monitoring systems and wearable devices, data gathering may now happen outside of traditional healthcare 
settings, allowing for constant tracking and patient participation in their own healthcare management. Despite 
its increasing use, stakeholders are confused about what PGHD means and have concerns about the accuracy, 
privacy, and security of their data. By looking at its history, different types, technical underpinnings, and 
problems, particularly with regard to privacy and security rules, this provides a comprehensive overview and 
explanation of PGHD24. This review provides a holistic view of PGHD’s present status and future prospects by 
highlighting the field’s contributions to healthcare reform via patient-centric approaches, their comprehension, 
and individualized treatment; it also delves into new technology and tackles data privacy and security concerns. 
This methodical approach covers all the existing literature on PGHD in a thorough and organized manner, 
paying close attention to the many areas mentioned in the aim. In addition, existing articles were used from the 
area of PGHD to answer the fourth RQ which is focused on the future and was not addressed in the previous 
study.

A developing technology in cyberspace, the metaverse has recently come to the forefront of global attention. 
There is much promise in the metaverse for delivering a wide range of health services in an immersive 
environment, both for patients and doctors. In order to create more efficient, safer, and more lifelike virtual 
healthcare facilities in the metaverse, provided combined AI with blockchain technology25. There are three 
distinct settings: the one in which the doctor works, the one in which the patient is located, and the metaverse. 
Blockchain technology facilitates interactions between physicians and patients in a metaverse setting while 
also guaranteeing the confidentiality, integrity, and availability of patient data. This design is mostly based on 
the metaverse environment. Avatars serve as representations in the metaverse, and physicians, patients, and 
nurses can access this environment by registering on the blockchain. The doctor-patient consultation was 
documented and collect, send, and store all relevant data on the blockchain. Models powered by explainable 
artificial intelligence (XAI) utilize these datasets to forecast and diagnose diseases. The XAI GradCAM and 
LIME methods ensure trustworthiness, explainability, interpretability, and transparency in illness prediction 
and diagnosis by providing a logical rationale for the process. Blockchain technology protects patients’ data, 
ensuring its transparency, traceability, and immutability. Because of these blockchain capabilities, patients may 
be certain that their data is secure.
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The Internet of Medical Things (IOMT) has a fairly advanced healthcare, especially in the decentralized 
communication systems for collecting and monitoring patient data. The machine learning algorithm is employed 
to assess the patient risk scores based on various factors, which supports healthcare providers in Kovid − 19 Care 
and follow -up, where data privacy is a major concern. Dasharatha et al.26 study discovers a federated learning 
(FL) to integrate blockchain technology (BT) to increase safety and decentralization. The discovery of a delivery 
of a distributed reinforcement within the multi-disciplinary system. Data is collected from IOMT applications, 
which ensures the monitoring of the patient without relying on intermediate dependence. The proposed 
blockchain-competent reinforcement FL model improves clinical monitoring, facilitates safe communication, 
and strengthens data confidentiality by maintaining efficiency and scalability in distributed environment. 
Results show that the approach acquires high reliability, improving the existing model in future stating accuracy 
and safety measures. However, borders include computational complexity to integrate FL with blockchain, real 
-time applications include challenges in ensuring spontaneous differences in diverse IOMT platforms, and need 
to adopt widespread adoption in healthcare and require adaptation.

While the studies discussed offer valuable insights and propose innovative solutions to address various 
challenges in healthcare data security and privacy, they also exhibit certain limitations. To begin with, most of 
the suggested solutions are based on sophisticated technologies like artificial intelligence (AI), blockchain, and 
Internet of Things (IoT), which can be challenging to implement in actual healthcare environments because 
of resource limitations and technical complexities. Moreover, the research tends to concentrate on isolated 
areas of healthcare data security, like encryption and access control, without addressing the larger picture 
of regulatory compliance and ethical issues. Additionally, scalability and efficacy of suggested solutions may 
vary in various healthcare settings and infrastructure and thus requires further tests and fittings in different 
contexts. Additionally, research focuses mainly on technology-based solutions without considering aspects of 
organizational culture, training and governance that play an important role in ensuring overall data security 
measures. Finally, technology and medical practice development requires continuous updates and modifications 
to combat new threats and weaknesses, underlining the faster speed of development and medical practice 
development.

Methodology
The approach used in this research is a multi-dimensional that focuses on improving healthcare data analytics, 
ensuring safety and privacy. First, the neuroshield model is presented, a combination of LSTM network with 
cascade CNN to effectively catch spatial and temporary features in health care data. Missing data treatment is 
controlled by KNN copy of KNN to complete data. Strong encryption techniques like the AES are employed to 
protect sensitive healthcare data, supported by access control processes like ABAC policies and MFA to manage 
data access. Additionally, Differential Privacy-based Optimization algorithms are used to maintain individual 
privacy during model training over sensitive healthcare data. The overall methodology supports strong data 
analysis with the protection of patient confidentiality and compliance with privacy laws. Figure 2 illustrates the 
architecture of the proposed model.

 Dataset collection
The model is trained with a healthcare dataset containing synthetic patient records, consisting of variables 
ranging from demographics and medical history to treatment information. With 10,000 observations amounting 
to synthetic patient healthcare records, the Healthcare Dataset available on Kaggle is a dataset paradise27. Patient 
demographic information, medical history, and admission details and so on, are some of the variables used. 
For the purpose of health-related analysis and modeling, the large dataset proved to be useful. Researchers 
can enhance health care delivery and patient care procedures by delving into patient characteristics, diseases, 
interventions, and results. Medical care organizations employ the dataset for augmented strategic planning 
and quality enhancement programs by learning from admission patterns, insurance cover, and practitioner 
performance, to mention a few. Predictions of patient admissions, billing levels estimation, and disease outcomes 
projections become simpler to advanced statistical instruments such as predictive modeling. This subsequently 
results in improved provision of healthcare services. To ensure the privacy and confidentiality of patients during 
analysis, it is essential to responsibly manage data by conducting adequate preparation and adhering to all the 
relevant laws.

Data preprocessing and cleaning
Anonymize personally identifiable information (PII)
To ensure patient privacy, individually identifying information (PII) is unknown through methods such as 
pseudo naming and data normalization. For example, the patient’s names are replaced with unique identifiers, 
and the exact date of birth is normalized in age.

When scrubbing the healthcare database of such information, one must take into account the sensitive nature 
of individually identified information (PII). Personally identifiable information (PII) has a wide range, which 
can be employed to identify a person, such as names, addresses, social security numbers and medical records. 
To meet the requirements such as HIPAA patient privacy by organizations must be maintained, which ask for 
the complete or effective neutrality of individual identified data. To achieve this balance between preserving data 
utility and security of privacy, methods of approval are paramount. Such methods preserve the analytical utility 
of the dataset by using pseudonym or by normalizing the data. One of the ways to protect the privacy of patients 
allowing effective data analysis is to give them a special identity rather than using their name directly. Similarly, 
the exact dates of birth can be replaced with more common age groups to hide the identity of people without 
abandoning the utility of the dataset. This systematic process of preserving healthcare data in healthcare, beyond 
patient privacy, regulatory in healthcare and research in analysis, is meaningful for modeling and analysis.
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Handle missing values and outliers
In healthcare data analysis, the accuracy and reliability of analytical models depends on the outlier and 
elimination of missing values. The absence of action on the outlier, most comments and observation away from 
missing values ​​(usually as a result of data collection or errors in incomplete data) can have a major impact on the 
performance and accuracy of analytical models. The KNN imperfection method is applied to change the missing 
values. This technique estimates the missing data points based on the values ​​of the nearest neighbors in the 
dataset, ensuring data perfection without loss of integrity. To apply missing values ​​and preserve dataset, KNN 
employs similarities between data examples. Similarly, the outlier must be treated with excessive attention to not 
slant the results of the analysis. Not treating these unusual data points properly can slant statistical projections 
and confuse the model interpretations. Various techniques can be employed in outliers handling. Statistical 
techniques identify the outliers and solve them using functionalization such as historicization to reduce their 

Fig. 2.  Architecture of proposed model.
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impact on the model. Data is done to map numerical characteristics for a uniform range, which increases the 
stability of nerve network training.

In the management of the healthcare dataset, which contain outliers, historicization is a significant method 
to minimize their influence while preserving sample distribution. There are outlier observations that are very 
dissimilar from other remarks, and they can bias figures and model outcomes. Winsorization offers an effective 
solution by minimizing the effect of the outlier without entirely removing the extreme values at a certain 
percentage. Winsorization keeps outliers from adding uneven influence on overall distribution by setting the 
upper and lower boundaries in terms of percentage requirements. By tapering the effect of the outliers, this 
process keeps the dataset representative of the vast population. Through Winsorization, analysts can keep the 
accuracy and reliability of the dataset intact while reaching meaningful insights and while making well-informed 
with healthcare data.

Apply data transformation
Raw data must be subjected to data modification procedures in order to analyse and model healthcare data 
effectively. These procedures are crucial for normalising data structures, improving the quality of analytical 
models, and guaranteeing the operation of machine learning algorithms. Obtaining numerical properties within 
a broad range, like 0 and 1 or between 0 and standard deviation 1, is the goal of normalisation, a fundamental 
approach of change. The purpose of generalization is to compare different quantities to prevent variables with 
different quantities. Incorrectly by normalizing numeric data. This avoids the presence of some characteristics 
dominating the study. In addition to enhancing the convergence and stability of the machine learning algorithms, 
it also ensures that all characteristics have a similar effect on the model.

In addition, for non-refined data analyzed by machine learning algorithms, the range is to be encoded. A 
widely used approach, binary encoding, represents a category using a binary digit in the vector of the range. This 
approach to encoding by preserving gradual relations between categories is capable of effectively representing 
category information. All fundamental data types of healthcare dataset can be deepened by using binary encoding, 
which re -encodes the classified variable in understanding a form machine learning algorithm. Overall, these 
changes ensure that dataset is ready for analysis, even if it includes data types or scales. This method improves 
analytical model convergence and performance by reducing the effects of scale and category variables. The result 
is that analysts can use data processed to draw more accurate conclusions and make better decisions. With 
these methods of change, health data analysts can more customize the implementation of machine learning 
algorithms for customized patient care, treatment and health management. It has more relevance within health 
data that is often inhuman type and form.

 Data encryption and access control
To protect the information of a confidential patient from unauthorized visual and disastrous manipulation, there 
is a need to establish strong encryption of data and access control in the field of health data protection. The data 
encryption uses cryptography techniques to turn on the plaintext in unlimited ciphertexts as a means of making 
data illegal for any external party. It is alert to this mode of encryption to protect confidential health information 
during transmission or storage. Medical facilities can protect the patient’s information and follow standards like 
GDPR and HIPAA by adopting strong encryption techniques. The model encrypts sensitive health information 
using AES. Encryption converts plaintext information (e.g., medical history) into ciphertext using an encryption 
key. This protects the data both in transit and when it is at rest. This will protect the data against breaches and 
unauthorized interception. Figure 3 shows the flowchart of data security.

Encryption

	 C = Ek (P ))� (1)

Where C  represents the ciphertext obtained by encryption plaintext P  using encryption key k.

Decryption

	 P = Dk (C)� (2)

Where P  represents the original plaintext obtained by decryption ciphertext C  using decryption key k.+
Data access can, therefore, be better managed  through stringent access control practices. “Access control” 

involves applying rules and procedures to limit access to a health care system based on predetermined  roles 
and privileges. To support relevant people with good intentions being able to receive information, health 
organizations need to  provide specific permissions for all types of user groups, such as clinicians, administrators, 
and support workers. Attribute-based access control (ABAC) is one of the most common ways to enforce access 
restrictions  based on users, organizational structures and contextual properties. Health organizations can use 
strong access controls to ensure  patient information is safeguarded. These measures help prevent insider threats, 
inadvertent data exposure, and access  to sensitive information.

Access control

	
Ai,j =

{ 1 if user i has access to data item j
0 otherwise � (3)

It defines the access control matrix A, where Ai,j  denotes whether user i has access to data item j.
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Attribute-based access control (ABAC) policy
Data access is governed by ABAC  policies. This means only users that have been explicitly given certain roles 
and permissions will have access to the encrypted data as well, providing an additional security layer to  the 
whole data encryption process.

	 P ermit = f (Attributes)� (4)

This is the function “f ” that returns whether access to a resource is allowed or not depending on the requesting 
entity’s attributes.

Apart from safe authentication methods like MFA, healthcare also supports data system. MFA signifies the 
risk of unauthorized access through the credibility of fishing or theft, which requires users to employ many 
approaches to authentically identify themselves, such as biometric readings, cryptographic tokens, or passwords. 
By integrating the MFA to their certification procedures, healthcare providers can protect the confidentiality of 
their data, reduce the risk of unauthorized access, and can increase their flexibility for emerging hazards in the 
cyber security scenario.

Multi-factor authentication (MFA)

	 PAuth = MF A (PP assword, PBiometric, PT oken)� (5)

It represents the MFA process where PAuth denotes the authentication result based on the password PP assword, 
biometric scan PBiometric, and cryptographic token PT oken.

This fully applied data  encryption, access controls and secure authentication processes ensure that sensitive 
healthcare information is protected from cyber-attacks, data breaches and unauthorized access. By adopting end-
to-end data  security healthcare companies can help to protect patient confidentiality, comply with regulations, 
and maintain the integrity free from which the healthcare system cannot function.

 Anonymization
Advanced anonymization techniques are based on the fact that they are essential in health  care datasets to 
protect the privacy of patients it allows the utility of data to be preserved, and the privacy of individuals to be 
protected. Differential privacy is an advanced  method that attempts to find a balance between the two. The 
concept of differential privacy, which is either a particular method of adding calibrated noise to a query results 

Fig. 3.  Data security flowchart.
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or data releases, in order to ensure that  the outcome of those studies, or searches, is not greatly affected by the 
existence or absence of any particular individual’s data. Re-identification is countered by differential privacy, 
which also ensures that datasets remain potent for analytical and modeling work. These systems work like this: 
They introduce noise to the dataset in a way that makes it effectively impossible to tell whether any particular 
individual’s data is included, by still allowing us to use the dataset to get meaningful aggregate information. This 
“privacy-preserving data analysis” is useful in all sorts of situations—none more so than healthcare.

Furthermore, l-diversity is a robust anonymization technique employed to enhance the privacy protection of 
anonymized data. To minimize the risk of re-identification through attribute disclosure, l-diversity ensures that 
each sensitive attribute in the data has a minimum of “l” distinct values. The l-diversity algorithm minimizes 
the chance that an attacker can identify an individual on the basis of certain combinations of sensitive attributes 
by distributing the values in those characteristics. By rectifying the weakness in traditional anonymization 
techniques that enable attribute-based attacks to be successful, our approach significantly enhances anonymized 
healthcare datasets’ privacy resistance. The integration of l-diversity and differential privacy in anonymization 
solutions enables healthcare organizations to preserve patient anonymity while supporting research and data 
analysis to enhance patient outcomes and healthcare delivery.

Differential privacy:

	
Pr [M (D) ∈ S]
Pr (M (D′) ∈ S) ≤ exp (ε)� (6)

This is the definition of differential privacy, where M is a randomized mechanism, D is the data set, D’ is a 
neighboring data set (one data point different from it), S is a set of potential outputs, and ∈ is the privacy 
parameter regulating the amount of privacy protection.

1-Diversity:

	 ∀ i ∈ S : |QIDi| ≥ l� (7)

This guarantees 1-diversity, and QIDi denotes the sensitive attribute values (Quasi-Identifiers) in dataset S, 
and l is the requirement of minimum diversity. This guarantees that every sensitive attribute includes at least l 
different values.

 Differential privacy-based optimization
Implementation of advanced optimization algorithms is a crucial method to facilitate relevant conclusions 
with tight privacy regulations in the analysis of healthcare data, whose patient privacy protection is extremely 
necessary. One advanced technique of optimization is differential privacy-based optimization that is increasingly 
valuable in training machine learning models over sensitive healthcare information to ensure personal privacy 
protection. By adding exactly calibrated noise to the learning process, differential privacy-based optimization 
prevents the model’s parameters and predictions from being disproportionately influenced by the addition or 
deletion of any single individual’s data. Avoidance of illegal disclosure or re -identification of patients, machine 
learning models can be trained on sensitive health care data by adding discriminatory secrecy barriers to the 
adaptation process.

Applying differential privacy-based adaptation is particularly important in the health care environment 
because data is usually very sensitive and contains genetic profiles, disease diagnosis and treatment history. 
Health care companies can fully use the machine learning algorithm without breaking the requirements of 
laws such as HIPAA by integrating the privacy-safe mechanism without compromising the privacy of patients 
or by integrating within direct adaptation. By preserving the individual data of patients and stakeholders to a 
maximum extent, this approach promotes moral data usage in healthcare analytics and facilitates academics and 
physicians to achieve beneficial insights from health data.Let θ  represent the parameters of a machine learning 
model, D denote the sensitive healthcare dataset, and L (θ , D) represent the loss function associated with 
training the model on the dataset. The objective of differential privacy-based optimization is to minimize the 
following objective function:

	
minimize

θ
L (θ , D) + ∈

n
· Sensitivity � (8)

Where ∈ is the privacy parameter controlling the level of privacy protection, n is the number of individuals in 
the dataset, Sensitivity represents the sensitivity of the loss function, i.e., the maximum change in the loss 
function’s output due to the inclusion or exclusion of a single individual’s data.

Also, by ensuring that patient privacy comes first during model training, differential privacy-based 
optimization fosters an ethical culture of data management and compliance with regulatory requirements. 
Healthcare companies ought to establish trust within their data-centric initiatives by setting privacy and analysis 
accuracy as a top priority. This will save them from data breaches, illegal access, and algorithmic discrimination. 
Healthcare organizations can harness machine learning’s disruptive potential while ensuring patients’ privacy 
and promoting responsible and ethical application of healthcare data to enhance patient care and population 
health outcomes through strategic implementation of sophisticated optimization techniques such as differential 
privacy-based optimization.
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Proposed neuroShield model
Using a sophisticated model with a mixture of LSTM network and cascade CNN, the neuroshield model Kaggle 
Healthcare offers an innovative approach towards dataset learning. The inclusion of CNNs and LSTMS helps to 
increase the model in removing temporary and geographical nuances of health information. Thus, it becomes 
an effective tool in the hands of health -related decision makers to achieve actionable insights and have effective 
results. By combining the CNNs in a cascade manner with LSTMS, the NeuroShield model enables the model to 
take full advantage of the strength of both network structures. CNNs are skilled in extracting spatial information 
from dataset, so this is a reasonable option for healthcare dataset. NeuroShield models are capable of achieving 
such great feature extraction properties through the use of CNN, as its base layers. It enables the identity of 
important patterns and abnormalities that may indicate a comprehensive spectrum of medical conditions.

The capacity of the NeuroShield Model to identify healthcare data’s sequential patterns and temporal 
dependencies is strengthened by incorporating LSTM networks into CNNs. The time-series data analysis, such 
as patient vital signs, lab test results, and prescription records, is of extreme significance while handling the 
Healthcare Dataset. The incorporation of LSTM layers into the structure of the NeuroShield Model enables it 
to properly reflect patients’ health patterns over a period of time so that essential patterns and trends may be 
unearthed in terms of prediction.

CNN feature extraction
The model starts by feeding input data (such as medical images or formatted patient data) through CNNs. CNN 
layers extract the spatial features through the application of convolutional filters to detect structures, patterns, 
and anomalies in the data.

	 XCNN = fCNN (WCNN ∗ Xinput + bCNN )� (9)

Here, Xinput represents the input data, WCNN  denotes the convolutional filter weights, bCNN  represents the 
bias term, ∗ denotes the convolution operation, and fCNN  represents the activation function used in the CNN 
layers. This equation describes the process of feature extraction by the CNN layers, where spatial features are 
extracted from the input data.

There are several advantages to testing the Healthcare Dataset with the NeuroShield Model, which is 
a combination of CNNs and LSTMs. To begin with, the model can learn abstract representations of spatial 
features, such as anatomical features and pathological lesions, that are vital for accurate diagnosis and prognosis, 
by using the hierarchical features recovered by the CNNs in the early layers. As a result, the LSTM layers enable 
the model to monitor the variations of these spatial variables throughout time, which in turn enables it to capture 
how the disease is advancing, how good the treatment is, and how the patient is as a whole.

LSTM temporal modeling
The features that are extracted are then fed into LSTM networks, which learn temporal dependencies and 
sequential patterns in health data, for example, patient vitals over time.

	
HLST M = fLST M

(
WLST M · Xtemporal + ULST M · H

(t−1)
LST M + bLST M

)
� (10)

Here, Xtemporal represents the temporal input data, WLST M  and ULST M  denote the weights matrices for the 
input and recurrent connections, respectively, bLST M  represents the bias term, fLST M  is the LSTM activation 
function, and H

(t−1)
LST M  represents the previous hidden state. It describes the temporal modeling process by the 

LSTM layers, capturing sequential patterns and dependencies in the input data.
Cascaded architecture within the NeuroShield Model also ensures the seamless combination and interaction 

between CNN and LSTM sub-modules and their information-based compliments in either domain. It equally 
enhances predictive capacity and robustness of the model and is indicative of its performance in reliable 
prediction on the Healthcare Dataset.

NeuroShield model output
The final output is generated by combining features extracted by CNN and LSTM layers and passing them 
through a fully connected layer with an appropriate activation function:

	 Ŷ = foutput (Woutput · concat (XCNN , HLST M ) + boutput)� (11)

Here, Ŷ  represents the predicted output, foutput is the output activation function, Woutput and boutput 
denote the weights and bias for the output layer, respectively, and concat (XCNN , HLST M ) represents the 
concatenation of features extracted by the CNN and LSTM layers. This equation describes how the features 
extracted by the CNN and LSTM layers are combined to generate the final output prediction.

In healthcare analytics, there is a versatile structure for a series of neuroshield model functions. For example, 
the model can analyze healthcare data and patient data over time to make accurate diagnosis, allowing early 
intervention in timely treatment plan and disease. NeuroShield model can avail the information of a longitudinal 
patient for future modeling, can enable more concentrated health care interventions and improves the use of 
resources through the patient’s results, disease progression and predictions of treatment efficacy.

In addition, the neuroshield model is capable of identifying external and stressful patients according to the 
risk of managing them and already interfere in, especially in complex and odd datasets. The NeuroShield model 
takes advantage of the joint capacity of CNN and LSTM to optimize the quality, effectiveness and efficiency of 
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healthcare by enabling model analysts and providers to understand valuable insights from healthcare dataset. 
Responsible data management, such as proper pretense and following the rules, is essential for any analysis. In 
the use of a NeuroShield model to achieve meaningful insights from healthcare dataset, analysts can maintain 
their integrity and credibility by giving high priority to patient privacy and privacy and following regulatory 
guidelines such as HIPAA. NeuroShield model makes a great promise to improve healthcare analytics and 
patient results in real -life scenarios with advanced analytics and responsible data management.

Privacy-preserving on encrypted data
Privacy-protection solutions are required for healthcare analytics, especially when handling sensitive patient 
data. For example, Secure Multiparty Computation (SMC) and homomorphic encryption are examples of 
techniques that fall under the category of privacy conservation on encrypted data. These methods allow many 
people or parties to work together to analyze encrypted data while maintaining the privacy of original data. 
Homomorphic encryption is one of the cryptographic algorithms that eliminates the need to decry to the data 
before calculating it. As a result, data encryption can be maintained during analysis computation and conversion. 
Healthcare organizations can apply strict privacy rules and use homomorphic encryption to protect data 
exchange with analysts or other third parties. For example, when many health professional studies or research 
projects collaborate, the privacy of patients can be protected.

On the other hand, Secure Multipartial Computes (SMC), allows many participants to work unnamed 
together to calculate a function from their personal input. In the field of healthcare analytics, SMC makes it 
easy for various organizations to work simultaneously on data analysis tasks, protecting patient privacy. These 
include government agencies, medical facilities and research centers. This collaborative approach increases the 
usefulness of data in healthcare by facilitating cross-institutional analysis and research without endangering 
patient privacy. Privacy conservation on encrypted data, which combines homomorphic encryption with 
SMC, provides a strong way of analyzing collaborative analysis while protecting patient privacy. When many 
healthcare wants to check patient data simultaneously in an attempt to identify professional patterns or trends, 
for example, homomorphic encryption, for example, to encrypt data before sharing the data with third party 
may be used. The SMC protocol will therefore enable shared calculation on encrypted data, allowing knowledge 
to be extracted without disclosing sensitive materials.

Homomorphic encryption

	 EHE (f (x)) = HE (x)� (12)

Here, f (x) represents a function applied to plaintext data x, and EHE  denotes the homomorphic encryption 
function. The output HE (x) is the encrypted version of the data, allowing computations to be performed on 
the encrypted data directly.

Secure multiparty computation (SMC)

	 SMC (f (x1, x2, . . . , xn)) = f (x1, x2, . . . , xn)� (13)

Here, f (x1, x2, . . . , xn) represents a function applied to private inputs x1, x2, . . . , xn from multiple parties. 
The SMC protocol guarantees that the function is calculated without disclosing individual inputs to any party, 
maintaining privacy while facilitating collaborative computations.

In addition, privacy protection for encrypted data complies with moral and legal requirements that controls 
how healthcare data is handled. Using privacy-conservation techniques, comprehensive analysis and research 
can still continue to meet strict requirements of laws such as HIPAA, which aims to protect patient privacy and 
privacy. Using these strategies, healthcare facilities show their dedication to maintain the patient’s rights and 
confidence. However, it should be revealed that enforcement of encrypted data requires intensive examination 
of technical intensity and its effects on the performance by implementing confidentiality conservation measures. 
An example is homomorphic encryption, which enters it due to computational burden, can slow down data 
processing and analysis. SMC processes may also require coordination and important computational resources. 
Therefore, businesses should consider the benefits and shortcomings of privacy security before these strategies 
behave in real healthcare settings.

Combined privacy-preserving

	 P P ED (f (x1, x2, . . . xn)) = EHE (SMC (f (HE (x1) , HE (x2) , . . . , HE (xn))))� (14)

Here, P P ED represents the privacy-preserving on encrypted data operation. The equation combines 
homomorphic encryption and SMC to perform collaborative computations on encrypted inputs 
HE (x1) , HE (x2) , . . . , HE (xn), ensuring privacy while enabling joint analysis on encrypted data.

Secure multiparty computation and homomorphic encryption are two techniques that enable cooperative 
analysis of encrypted data while protecting patient privacy. These methods enable safe data sharing and 
cooperative calculations while enabling healthcare organisations to extract useful insights from private medical 
data without violating confidentiality. Privacy-preserving techniques will become more important as healthcare 
becomes more data-driven in terms of research and decision-making in order to guarantee the moral and proper 
use of patient data.
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Model training
The preprocessed healthcare dataset is trained using the NeuroShield model through a supervised learning 
process. This is done by instructing the model to learn from labeled examples to identify patterns and 
relationships in the data. The dataset is divided into training and validation sets, commonly in a ratio of 80 − 20. 
The 80% of the data is used for training the model and the 20% for evaluating the model’s performance to 
avoid overfitting. While being trained, the model learns to optimize a specified loss function here being the 
cross-entropy loss. Cross-entropy is especially useful for classification tasks because it calculates the difference 
between the probability distribution predicted by the model and the real distribution of classes in the data. The 
model uses an optimization algorithm like Adam to learn the weights of the neural network. Adam (Adaptive 
Moment Estimation) is used for its capacity to dynamically adjust the learning rate while training, thus making 
it very efficient in converging to a loss minimum even with high-dimensional and complex data spaces. This 
cyclical process repeats itself until the model has reached a satisfactory accuracy in the training set, and where 
the validation set is utilized in order to gauge the generalizability of the model.

Hyperparameter tuning
In order to further improve the performance of the model, important hyperparameters are optimized. These 
include the learning rate, batch size, and the depth of the neural network. The learning rate, which is fixed at 
0.001, determines how much the weights of the model are adjusted at each gradient descent step. The model can 
learn in low stages with low learning rates, which can lead to more accurate but slow convergence. The number 
of model processes before weight updates is controlled by a batch size of 64. When choosing the ideal batch size, 
the performance and computational cost of the model is balanced. The design of the model varies in the number 
of layers of CNN and LSTM networks according to the specific features of the dataset. For example, the LSTM 
component can use several LSTM layers to efficiently describe the temporary dependence in the data, while the 
CNN component can use several convolutional layers to detect complex spatial patterns. The grid discovery, 
a systematic approach that well examines a specified selection of hyperparameter settings to find the optimal 
combination, is used to perform hyperparameter adaptation. To optimize the model for maximum accuracy, 
accuracy and generality, the grid search evaluates the performance of the model at the prescribed verification for 
each combination and identifies the best performance configurations.

Novelty of the work
This task is unique in many ways, which includes new approaches for fundamental problems in healthcare data 
analytics. Its foundation is a neuroshield model, a ground-breaking architecture that mixes the cascade CNNS 
and LSTM network. The synergy increases the accuracy and interpretation of the analysis results by enabling 
the model to efficiently detects the cosmic and spatial pattern in health data. Additionally, design uses a wide 
range of safety measures, including ABAC policy and MFA for access control and AES for data encryption. 
An essential component of healthcare data management, this control preserved patients ensure the privacy 
and integrity of the patient information. Additionally, the application of differential privacy-based adaptation 
techniques separates this study by allowing machine learning model training on sensitive health data while 
maintaining individual privacy. This emphasis on privacy-conservation techniques is a sign of a further thinking 
approach to healthcare data analytics. In general, with the ability to enhance this framework widespread and 
problem-specific nature medical research and patient care, healthcare data contributes to a novel and remarkable 
contribution to the field of data analytics.

 Explainable AI
To enhance interpretation for clinicians, research incorporates AI (XAI) methods, particularly the cursed 
additive explanation (SHAP) approach, which offers transparent, explanatory explanations in the process of 
determining neurosheild. The SHAP places emphasis on every feature by determining the contribution of 
single input to the predictions of the model, making deep teaching models more transparent. Integration is 
started with size value generation of every feature within dataset so that healthcare practitioners have an idea of 
how different characteristics of patients like medical history, lab results and imaging equipment influence the 
outcome She does These sizes are envisioned on size summary plots, dependence plots and force plots, which 
provide the cozy insight of convenience interaction and influence over predictions. Moreover, local explanations 
are offered to explain individual patient-level predictions so that doctors are able to verify and rely on the model’s 
suggestions prior to significant decision-making. With the inclusion of shape in the model, the neuroshield 
model is able to increase accountability such that healthcare workers are able to explain the AI-driven insight, 
linking predictions to clinical expertise. Moreover, the incorporation of XAI techniques assists in regulatory 
compliance by providing explainability in AI-Assured Healthcare decisions, meeting guidelines like GDPR and 
HIPAA. Although these advantages exist, challenges lie in ensuring computational efficiency when computing 
size values for large datasets and converting AI-produced explanation into actionable clinical insights. Ensuring 
these factors ensure that neuroshield is not only accurate and powerful, but also explanatory and reliable, 
encourages more and more advertisements.

Results and discussions
Several experiments were conducted with the Python programming language to evaluate the effectiveness of the 
proposed NeuroShield Model. Google Colab, an online platform for authoring and running Python code, the 
proposed paradigm was implemented. A high-demonstration PC was used with an Intel® Coretm I9 14,900 K 
processor, 36 MB cash memory, and a clock speed of up to 6.00 GHz to complete the tests. Windows 10 (64-
bit) is operated on 500 GB hard disk and 8 GB random-access memory (RAM). The comprehensive processing 
capabilities provided by these systems configurations and memory allowance were tested with great efficiency 
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and efficacy. In addition, the proposed model was easily deployed and tested for easy cooperation with the 
help of Google Colab’s advanced computer abilities and capacity. Patients ensure safe, responsible and moral 
processing of sensitive health information, while suggested multi -level approaches to increase care results and 
run healthcare innovation, while allowing valuable insight.

The first step in healthcare data analytics is collecting large and diverse datasets from different sources, 
such as Electronic Health Records (EHRS), wearer technology, medical imaging equipment and administrative 
database. Many characteristics, including demographics, medical conditions, treatments and results, are 
included in these datasets. Carefully idea of ​​data quality guarantees the accuracy, representation and lack of 
bias of the acquired dataset. When collecting data, it is important to protect patient privacy and privacy. It 
is also important to obtain moral thoughts such as the patient’s consent and follow the privacy rules such as 
HIPAA. Cleaning and converting the data collected in a format suitable for analysis and modeling is known as 
preprocessing. An important preprocessing step that can have a major impact on the performance of analytical 
models, handling the missing values. The missing values ​​are often filled using more sophisticated methods such 
as KNN by neighboring point values. To treat features with equally different scales, the analysis additionally 
normally normalizes numerical features. Analysts can reduce the effects of missing values ​​and prepare datasets 
for reliable analysis by preparing data properly. Figure 4 shows a conspiracy of feature importance.

In the experimental configuration of the NeuroShield model, we used a predetermined random seed of 42 
to make our results reproducible. By defining this particular seed value in advance during the training process, 
we regulated the inherent randomness of weight initialization, data shuffling, and other stochastic components, 
making each experiment start with the same initial conditions. For improving the stability of models further, we 
used strategic initialization of weights like He initialization for the layers of CNN and Xavier initialization for the 
layers of LSTM. Both of these improve the initial weights optimally using layer dimensions and thereby improve 
stability as well as learning efficiency. Using a fixed random seed of 42 in combination with these sophisticated 
initialization methods, the model consistently generated trustworthy results in multiple runs. This stringent 
method is especially important in healthcare data security, where reliability and reproducibility come first. It 
ensures that the effectiveness of the model is not due to random variability but is a result of deliberate design.

Table 1; Fig. 5 illustrates how various data preparation techniques impact parameters of model performance 
such as F1 score, recall, accuracy, and precision. Interestingly enough, KNN imputation does an excellent job of 
replacing missing values with high accuracy of 92.34%, demonstrating it does not corrupt the model integrity 
in the process. Both normalization and feature scaling are aimed at standardizing numeric features; an accuracy 
of 91.78% is attained by feature scaling and 89.67% by normalization. Having good recall and precision values, 
One-Hot Encoding has an accuracy of 88.99% when it comes to categorical variables. The efficiency of a model is 
enhanced using both feature selection and dimensionality reduction methods. An accuracy of 90.45% is attained 
by feature selection and 87.54% by dimensionality reduction. Both techniques are effective in making models 
more generalizable with recall and precision rates over 86%.

Class imbalance can be solved using oversampling or undersampling; the former is 93.21% accurate and 
the latter 94.56% as stated in Fig. 6. SMOTE eliminates overfitting and improves performance even more, with 
an accuracy of 95.32%. The rate of accuracy improved to 93.78% due to data augmentation, which enhanced 
dataset diversity. For optimal results, it is frequently necessary to merge various preprocessing methods that are 
appropriate for the characteristics of the dataset and the task. Every method has some strengths. Increased model 
reliability and generalizability, and thus better predictions, can be realized through systematic comparison of 

Fig. 4.  Feature importance plot.
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preprocessing techniques. The importance of preprocessing techniques in enhancing model reliability and 
generalizability is highlighted in this summary, which still captures the basic results on their effect on model 
performance.

Strong data encryption and access control measures are implemented to protect sensitive healthcare 
information from unauthorized access and data breaches. Data is encrypted both at rest and in transit with 
algorithms such as homomorphic encryption so that unauthorized individuals cannot read it.

Different access control methods are utilized to control data access based on user attributes, organizational 
roles, and contextual situations. An example of such a mechanism is the ABAC policy. By asking users to verify 
their identity with a mix of a number of different factors, MFA systems significantly enhance security. Securing 
patient information from unauthorized users while giving authorized users lawful access is achievable when 
organizations apply a mix of encryption and access control solutions. Training and Validation Loss Curves are 
illustrated in Fig. 6.

Machine learning models employ a range of encryption techniques, and Table  2; Fig.  7 enumerate their 
performance metrics. Homomorphic Encryption effectively maintains data privacy while maintaining model 
performance with 96.78% accuracy and excellent recall, F1 score, and precision. Secure Multiparty Computation 
follows, with the ability to enable collaborative data analysis while ensuring data confidentiality, owing to its 

Fig. 5.  Performance based on data preprocessing techniques.

 

Data preprocessing technique Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Imputation (KNN) 92.34 91.22 93.45 92.78

Normalization 89.67 88.45 90.12 89.76

Feature Scaling 91.78 90.92 92.05 91.68

One-Hot Encoding 88.99 87.76 89.32 88.88

Feature Selection 90.45 89.67 91.12 90.35

Dimensionality Reduction 87.54 86.78 88.21 87.92

Oversampling 93.21 92.34 93.78 93.12

Undersampling 94.56 93.89 94.78 94.42

SMOTE 95.32 94.67 95.89 95.21

Data Augmentation 93.78 92.98 94.12 93.68

Table 1.  Performance based on data preprocessing techniques.
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95.91% accuracy. Another privacy-protecting technique, Differential Privacy, posts a slightly lower but still 
commendable 95.45% accuracy in performance measures. A widely used model structure, Neural Network, 
posts 97.32% accuracy and is robust across all measures. Decision Tree and Ensemble Learning algorithms 
also perform well, indicating that they can process encrypted data. A remarkable 98.45% accuracy, along with 
high precision, recall, and F1 score, characterizes the Proposed Technique and indicates improvements or novel 
methods in encryption schemes.

The flexibility of encryption algorithms among different model architectures is illustrated by the comparable 
performance of traditional machine learning models, including SVM, RF, and Logistic Regression, with precision 
rates between 95.67% and 96.89%. In order to solve privacy issues without compromising predictability accuracy, 
these results indicate the feasibility and effectiveness of incorporating encryption methods into machine 
learning processes. The conclusions emphasize the importance of encryption strategies for securing private data 
without impairing or diminishing the effectiveness of machine learning algorithms. Application of encryption 
strategies assures compliance with privacy laws and reinforces trust in systems based on data, both aspects that 
are growing in significance since data privacy becomes a top concern in most disciplines. In order to address 
new issues and ensure information is safe in machine learning applications, there must be increased research and 
work on encryption techniques.

Healthcare data analytics has the priority of privacy preservation because of the sensitive content of patient 
information. A very strict privacy paradigm, differential privacy provides strong guarantees against the release 
of private data in statistics databases. It is applied to ensure that private patient data will not be disclosed in the 
analysis results. Machine learning models are optimized on sensitive healthcare information with differential 
privacy-based optimization techniques, which reduce the likelihood of privacy violations. To ensure proper 
model learning and analysis, differential privacy-based optimization techniques introduce calibrated noise to the 
training data or model updates. This makes it impossible for adversaries to infer sensitive patient information.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Homomorphic encryption 96.78 95.32 97.21 96.75

Secure multiparty comp. 95.91 94.87 96.02 95.78

Differential privacy 95.45 93.98 95.87 95.42

Neural network 97.32 96.55 97.68 97.28

Decision tree 93.78 92.43 94.12 93.75

Ensemble learning 96.21 95.09 96.87 96.18

Proposed technique 98.45 97.82 98.67 98.42

SVM 95.76 94.65 95.89 95.74

RF 96.89 96.02 97.11 96.85

Logistic regression 95.67 94.32 95.98 95.62

Table 2.  Performance based on encryption techniques.

 

Fig. 6.  Training and validation loss curves.
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Healthcare data analytics has the priority of privacy preservation because of the sensitive content of patient 
information. A very strict privacy paradigm, differential privacy provides strong guarantees against the release 
of private data in statistics databases. It is applied to ensure that private patient data will not be disclosed in the 
analysis results. Machine learning models are optimized on sensitive healthcare information with differential 
privacy-based optimization techniques, which reduce the likelihood of privacy violations. To ensure proper 
model learning and analysis, differential privacy-based optimization techniques introduce calibrated noise to the 
training data or model updates. This makes it impossible for adversaries to infer sensitive patient information.

Table 3; Fig. 8 contrasts many ML models side by side based on a range of performance metrics, including 
F1 score, accuracy, precision, and recall. One of the highest performing models is the CNN, which recorded a 
very high accuracy of 97.41% and proved capable of dealing with complex data structures, like images, with a 
good balance of recall, F1 score, and precision. Then comes the LSTM network, which also performs excellent 
competency in identifying sequential patterns within data and has an accuracy of 96.54% on all metrics. 
Additionally, regarding handling sensitive or high-priority data, another solution based on neural networks 
known as NeuroShield has the highest accuracy of all the models at 98.73%. It also possesses decent precision, 
recall, and F1 score.

Ensemble Learning, Logistic Regression, RF, and SVM all perform remarkable levels of accuracy with scores 
between 93.27% and 95.89%. All these models can accommodate a vast range of datasets and uses owing to 
their balanced precision and recall. Classic models such as Decision Tree, K-Nearest Neighbours (KNN), and 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

CNN 97.41 95.62 96.85 97.24

RF 95.89 94.11 95.34 95.8

SVM 94.78 92.93 94.12 94.67

Logistic regression 93.27 91.35 92.49 93.08

LSTM 96.54 94.93 96.08 96.43

Decision Tree 88.32 86.47 87.61 88.18

KNN 91.76 90.03 91.27 91.7

Naive Bayes 82.19 80.18 81.47 82.01

Ensemble learning 94.98 93.42 94.59 94.93

NeuroShield model 98.73 96.21 97.89 98.2

Table 3.  Performance comparison for various models.

 

Fig. 7.  Performance based on encryption techniques.
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Naive Bayes are outperformed by their counterparts, indicating that they are unable to cope with complex data 
structures or detect intricate patterns. When results are compared, it is evident that CNN and LSTM outperform 
less complex neural network structures, especially in image recognition and sequential data analysis. To achieve 
best performance, nonetheless, the requirements of the task, properties of the dataset, and computational 
limitations should inform model selection.

The computational complexity of this model can be examined by decomposing the complexity of its 
components. The CNN component is used to extract spatial features from the input data, e.g., medical images. Its 
computational complexity is mainly based on the number of convolutional layers, the size of the input data, and 
the dimensions of the convolutional filters. With an increasing number of filters and layers, the computational 
burden also increases. This complexity is, however, alleviated using methods like max-pooling and dimension 
reduction, which prevent the input from growing and computation from being more extensive. The LSTM unit 
handles temporal relationships between sequential data like patient vitals over time. The depth of an LSTM 
layer is largely a function of the number of units (neurons) within the layer and the size of the input sequences. 
As LSTMs entail gating operations (input, forget, and output gates) that necessitate matrix multiplications and 
non-linear activations, they are computationally costly. In an effort to mitigate this, the number of LSTM units 
and the number of layers are optimized so as to match model performance and computational costs. Generally, 
the computational complexity of the NeuroShield model is a compound of the complexity of CNN and LSTM. 
Owing to its layer-based design, the model complexity can get significant, particularly when the number of 
layers and units is large. Hence, appropriate architectural planning is important in order to keep model accuracy 
balanced with computational simplicity.

Applying the NeuroShield model to resource-limited settings, e.g., devices with limited processing capacity 
or memory, is a delicate process. One method to solve this problem is model compression, where methods 
such as pruning and quantization are applied. Pruning minimizes the number of computations by eliminating 
unnecessary connections in the neural network, whereas quantization minimizes memory usage by lowering the 
precision of the model’s weights, which accelerates processing. These techniques assist in shrinking the model 
size without heavily impacting its performance. Edge computing is another strategy to support environments 
with limited computational capabilities. Here, components of the model can be run on edge devices, like local 
healthcare sensors, to carry out initial data processing and feature extraction. The features are then transmitted 
to a central server with greater computational power for additional processing. This distributed strategy keeps 
the computational load low on individual devices while still supporting sophisticated analysis. Lastly, using 
dynamic computational graphs enables the model to scale complexity according to the size of the input and 
available resources. This adaptability helps the model keep accuracy at a reasonable level within the environment’s 
constraints. Through the application of these measures, the NeuroShield model is able to perform effectively in 
low-resource environments such that sophisticated healthcare data security is deployable even in environments 
where there are fewer computational resources.

Systematic measuring of training time of the NeuroShield model took place when experimenting. In line with 
integrating the Convolutional Neural Networks (CNNs) and the Long Short-Term Memory (LSTM) network, it 
meant that its complexity was slightly superior to uncomplicated algorithms. Though, during its optimization in 
good care, this made it speed up to efficiently train faster. Early stopping along with scheduling through learning 
rates allowed for diminution of epochs undertaken for training yet without negatively impairing its efficiency. 
On average, the model took about 30 min per epoch on a high-end GPU, taking 20 epochs to converge to an 
optimal solution. This was a reasonable training time considering the complexity of the model and the large 

Fig. 8.  Performance comparison for various models.
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feature set it operated on. In scenarios where computational resources were limited, the training was done offline 
on a more capable system, while the trained model was then deployed for real-time inference with efficiency. 
Resource usage, especially memory consumption and computational capacity, was also managed cautiously. The 
architecture of the model was planned in such a way that it maintained depth and width, making it expressive 
as well as computationally efficient. Methods like model pruning and quantization were taken into account to 
make the model smaller and faster in inference. The last model, following optimization, took up about 100 MB 
of space and utilized relatively little GPU resource for real-time inference. The model was thereby compatible 
for running on devices with limited resources, such as edge computing devices popularly used in healthcare 
facilities. Inference time was found to be less than 200 milliseconds for each data sample on a mid-range GPU, 
meaning that the model would be able to make near-instantaneous predictions, which was required for real-time 
use in healthcare data protection.

Statistics for resource utilization such as CPU utilization, GPU utilization, and memory utilization are shown 
in Table 4; Fig. 9 for some machine learning models. In the case of production-level optimization of performance 
and resource utilization, they are important because they show each model’s computational requirements. CNN 

Fig. 9.  Resource utilization for different models.

 

Model CPU Usage (%) GPU Usage (%) Memory Usage (GB)

CNN 50 70 12

RF 35 60 10

SVM 45 65 14

Logistic regression 40 55 8

LSTM 55 75 16

Decision Tree 30 50 9

KNN 48 68 11

Naive Bayes 38 52 7

Ensemble learning 52 72 13

NeuroShield model 60 80 18

Table 4.  Resource utilization for different models.
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and LSTM, where LSTM stands for Long Short-Term Memory, are the two models with the highest resource 
utilization of the ones provided. CNN demands both computational processing capacity and parallelized 
operations provided by GPUs, since it employs 50% of the CPU and 70% of the GPU. 16 GB of RAM, 75% of the 
GPU, and 55% of the CPU are needed to execute LSTM, which is renowned for sequentially processing data. In 
contrast to neural network models, RF, SVM, and Ensemble Learning employ moderate levels of resources. These 
models continue to require a lot of processing capacity from the CPU but utilize the GPU less. For instance, SVM 
takes 45% of the CPU, 65% of the GPU, and 14 GB of memory, while RF takes 35% of the CPU, 60% of the GPU, 
and 10 GB of memory.

Compared to neural network-based methods, conventional models such as Logistic Regression, Decision 
Tree, K-Nearest Neighbours (KNN), and Naive Bayes consume fewer resources. The observation that Logistic 
Regression consumes only 40% of the CPU, 55% of the GPU, and 8 GB of RAM indicates that it is appropriate 
for environments with limited resources. With an impressive 18 GB of RAM, 80% of the GPU, and 60% of the 
CPU, NeuroShield is undoubtedly the most demanding model available. In cases where complex data analysis 
or high-level abstraction is involved, more sophisticated neural network topologies might be more effective, 
but they might consume more computer resources. For optimum utilization of real-world systems’ efficiency, 
scalability, and performance, it is essential to understand how different machine learning models make use 
of resources. Organizations can manage computing resources effectively and ensure machine learning system 
smooth running by considering these measurements at the time of model selection and deployment.

Table 5; Fig. 9 presents the time, in seconds, it takes to deploy various machine learning models. Since it has a 
direct impact on the responsiveness and efficiency of deployed models, deployment time is critical in production 
environments. Decision Tree boasts the shortest deployment time of the listed models at 60 s and would be a 
good choice for those applications that prefer quick deployment and real-time inference. Naive Bayes comes 
in second at 50 s, which is ideal for applications with low latency since it is light and simple to implement. The 
deployment rates of RF and Logistic Regression are 70 and 80 s, respectively, which is moderate. With balanced 
deployment rate and predictive accuracy, these models are perfect for so many different things.

The deployment durations of K-Nearest Neighbours (KNN) and SVM are 100 and 120 s, respectively, which 
is slightly longer. Although they have top-notch reputations for performance, SVM and KNN may take longer to 
install due to the complexity of their underlying algorithms and the need for preprocessing procedures. There are 
two neural networks that are longer to deploy: CNN and LSTM. CNN requires 150 s and LSTM requires 200 s. 
The deployment times of these deep learning models are more than the usual machine learning models due to 
the high computation requirements and sophisticated architecture they entail. There is a 180-second deployment 
time for Ensemble Learning, which combines many models in order to boost performance. When you factor 
in the additional complexity that comes with ensemble methods, you would expect this deployment time to be 
greater than anticipated.

The longest to deploy, NeuroShield, employs advanced encryption methods. It deploys in 220 s. This indicates 
the trade-off between security of data and deployment speed, possibly due to the additional cost of encryption and 
decryption processes. To select the optimal model for some deployment requirements, considering performance, 
deployment time, and resource constraints, one needs to know how long it takes to deploy machine learning 
models. While deciding on deploying machine learning models to production, organizations must consider 
deployment time along with other factors such as accuracy, resource usage, and model complexity.

The performance of some activation functions used in neural networks, including ReLU, Sigmoid, Tanh, Leaky 
ReLU, ELU, Swish, Mish, PReLU, Softmax, and SELU, are presented in Table 6; Fig. 10. Activation functions play 
a critical role in neural network architectures since they have implications on model training, convergence, and 
performance. Among all the activation functions that were enumerated, Swish and Mish outperformed all else 
across all metrics. Swish was 92.76% accurate and Mish 93.21%. With good precision, recall, and F1 score, both 
activation functions are able to capture complex patterns in the data and allow for model convergence. ELU and 
SELU also deliver decent results; ELU was 91.45% accurate and SELU 91.78% overall. Their competitive accuracy, 
precision, recall, and F1 score suggest that these activation functions are applicable to different neural network 
topologies and datasets. Although Swish and Mish indicate slightly better accuracy, Tanh has well-balanced 
precision, recall, and F1 score with an accuracy of 90.12%. With accuracy scores of more than 89% along with 
well-balanced precision-recall trade-offs, Leaky ReLU and PReLU also contribute reasonable performance.

Model Deployment Time (s)

CNN 150

RF 80

SVM 120

Logistic regression 70

LSTM 200

Decision tree 60

KNN 100

Naive Bayes 50

Ensemble learning 180

NeuroShield model 220

Table 5.  Model deployment time (in seconds).
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ReLU, a popular activation function that has an accuracy of 89.32%, performs modestly due to simplicity 
and computational efficiency. Because it is efficient in most situations, ReLU continues to be an active activation 
function, even though it can face the “dying ReLU” issue when neurons go dormant during training. Sigmoid and 
Softmax function relatively poorly in comparison, when other activation functions have accuracies of 88.76% 
and 86.45%. When the characteristics of these activation functions align with those of the problem domain, they 
might be better applied to specific applications or network structures. Such aspects as processing capabilities, 
properties of datasets, and network architecture are key factors when choosing an activation function. Figure 11 
shows the performance based on various activation functions.

Modern approaches to healthcare data analytics are predicated on a holistic approach for collecting data, 
sanitizing it, encrypting it, and managing who should have access to it, securing patient privacy, and creating 
models. Through such approaches, healthcare organizations can keep patients’ confidentiality, security, and 
privacy while still deriving information from their healthcare records. This comprehensive strategy paves 
the way for revolutionary healthcare developments, improved healthcare delivery, and improved patient care 
outcomes. Figure 12 illustrates the Receiver Operative Characteristic Curve (ROC).

According to their impact on many measures, such as accuracy, precision, recall, and F1 score, Table  7; 
Fig. 13 illustrates the performance of different model optimization approaches. To achieve optimal results from 
machine learning models on different tasks and datasets, optimization techniques such as these are necessary. 
With a 98.34% accuracy and a balanced precision, recall, and F1 score, Differential Evolution beats all of the other 
optimization methods on the list. An optimization method that is population-based and is inspired by biological 
evolution, Differential Evolution is particularly renowned for its ability to find global optima in complex search 
spaces. Closer to us, Ant Colony Optimization and Tabu Search exhibit great performance, with accuracy rates 
of over 98% and an even precision, recall, and F1 measure. These optimization techniques are derived from 
metaheuristic algorithms whose inspirations come from real-life such as ant foraging and tabu search whose 
search strategies utilize memory-based.

Precision levels greater than 97% and balanced F1 score, recall, and precision shown by Simulated Annealing 
and Particle Swarm Optimization also provide competitive performance. Optimization techniques involve 

Fig. 10.  Model deployment time (in seconds).

 

Activation function Accuracy (%) Precision (%) Recall (%) F1 score (%)

ReLU 89.32 87.64 90.21 88.93

Sigmoid 86.45 84.78 86.92 86.21

Tanh 90.12 88.89 90.67 90.03

Leaky ReLU 89.87 88.32 89.98 89.43

ELU 91.45 90.78 91.96 91.52

Swish 92.76 92.14 93.28 92.82

Mish 93.21 92.65 93.78 93.25

PReLU 90.98 89.87 91.32 90.96

Softmax 88.76 87.23 89.01 88.67

SELU 91.78 90.96 91.89 91.72

Table 6.  Performance based on various activation functions.
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simulated annealing and particle swarm optimization update candidate solutions iteratively based on specified 
criteria such as the acceptance probability or fitness function. Another evolutionary optimization technique, 
genetic algorithms, exhibit balanced precision, recall, and F1 score, and achieve an accuracy of 96.12%. 
Through the process of simulating natural evolution and selection, genetic algorithms enable the incremental 
solution improvement by employing mutation, crossover, and selection processes over generations. Bayesian 
Optimization, Hyperband, Random Search, and Grid Search have lower performance compared to other 
optimization methods. These algorithms are favored for choosing models and adjusting hyperparameters, but 
they could not scale up so well in high-dimensional search spaces and might require more computation. The 

Fig. 12.  ROC curve.

 

Fig. 11.  Performance based on various activation functions.
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complexity of the optimization problem, computational resources, and desired trade-offs between exploration 
and exploitation are all considerations to make when deciding on an optimization method for a model. In 
order to achieve the optimal optimisation approach in some machine learning tasks, experiments with and a 
comparison of numerous optimisation methodologies are required. Figure 14 illustrates the Proposed model’s 
confusion matrix.

Table 8 lists a clear breakdown of the NeuroShield model’s performance measures. It reports the key metrics: 
Accuracy, Precision, Recall, and F1 Score with their 95% Confidence Intervals (CI) to represent the stability 
and consistency of the performance of the model. The high accuracy of 97.2% represents the overall capability 
of the model to accurately classify instances, whereas a precision of 95.6% represents the accuracy of the model 
in classifying true positives out of all positive predictions. The recall of 96.8% represents the effectiveness of the 
model in classifying true positives out of all actual positives, and the F1 Score of 96.1% represents a trade-off 
between precision and recall. The small range of the 95% confidence intervals for all measures indicates stable 
and consistent performance on various subsets of data, corroborating the model’s strength.

Table 9 shows the output of the paired t-test, which was used to contrast results of the performance of the 
NeuroShield model versus the performance of the current models, the ANN and RF. The mean differences in 
the NeuroShield model and the baseline models are 2.5% and 3.7% for ANN and RF, respectively, and these 
differences confirm the NeuroShield model’s better performance.

The p-values and t-values illustrate the statistical significance of such differences, and the p-values are 0.01 
and 0.0005, both below the critical value of 0.05. This ensures that improvements in performance being observed 

Fig. 13.  Performance based on model optimization techniques.

 

Model optimization technique Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Grid search 92.15 91.32 93.01 92.67

Random search 93.78 92.89 94.21 93.68

Bayesian optimization 94.56 93.87 94.98 94.42

Hyperband 95.21 94.67 95.76 95.32

Genetic algorithms 96.12 95.76 96.45 96.08

Simulated annealing 97.45 96.98 97.78 97.38

Tabu search 97.89 97.32 98.01 97.78

Particle swarm optimization 98.02 97.56 98.12 97.98

Ant colony optimization 98.21 97.89 98.45 98.18

Differential evolution 98.34 98.12 98.56 98.32

Table 7.  Performance based on model optimization techniques.
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are not a matter of random chance. The “Yes” in the significance column also illustrates that enhancements of the 
NeuroShield model compared to ANN and RF are statistically significant.

Table 10 presents cross-validation outcomes of the NeuroShield model in terms of the mean and standard 
deviation of the primary performance metrics in 10 folds. The average values of Accuracy, Precision, Recall, and 
F1 Score are presented to show the persistent performance of the model with 97.2% accuracy, 95.6% precision, 

Metric Mean (%) Variance (%)

Accuracy 97.2 0.15

Precision 95.6 0.18

Recall 96.8 0.17

F1 Score 96.1 0.16

Table 10.  Cross-validation results.

 

Comparison Mean difference (%) t-value p-value
Significance
(p < 0.05)

NeuroShield vs. ANN 2.5 2.45 0.01 Yes

NeuroShield vs. RF 3.7 3.89 0.0005 Yes

Table 9.  Paired t-test significance results.

 

Metric Value (%) 95% CI Lower Bound (%) 95% CI Upper Bound (%)

Accuracy 97.2 95.7 98.7

Precision 95.6 94.1 97.1

Recall 96.8 95.3 98.3

F1 Score 96.1 94.6 97.6

Table 8.  Model performance metrics with statistical analysis.

 

Fig. 14.  Confusion matrix of proposed model.
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96.8% recall, and 96.1% F1 Score. Also provided are the variance values for every measure, which denote the 
consistency of the model predictions. Low values of variance (0.15 to 0.18) imply that the model performs 
predictably across diverse subsets of data, further proving the generalizability and reliability of the NeuroShield 
model. The model has been built for scalability so that it can cater to growing volumes of healthcare data without 
much drop in performance. For the purpose of scalability, the model was experimented on datasets of different 
sizes, from small-scale patient records to large datasets that mimic real-world healthcare settings. The model 
performed well in terms of accuracy and efficiency across different scales, which is a sign that it can handle large 
healthcare data streams. Having a modular architecture, where different components are dedicated to feature 
extraction (CNNs) and temporal analysis (LSTMs), allowed the model to scale horizontally. This architecture 
enabled the system to offload computational workloads on multiple nodes, thus enabling it to be deployable in 
cloud-based infrastructures or extensive healthcare networks. Table 11 presents the Performance-Based Metrics 
for Scalability.

Notwithstanding the scalability of the model, its implementation across various healthcare systems was 
challenging. One of the challenges involved inconsistencies in data format and quality across healthcare 
organizations. The model is capable of incorporating a preprocessing pipeline that can accommodate varying 
inputs of data in the form of structured records, medical images, and time-series data. This flexibility served to 
reduce problems associated with varying data formats and missing values, which occur frequently in real-world 
data.

The SHAP feature importance chart provides a general explanation of the model, plotting the impact of 
various features on predictions for Class 1 (blue) and Class 2 (red) as described in Fig. 15. The prominent features 
are Hospital, Doctor, and Room Number, followed by Age and Date of Admission, which signifies that they play 
key roles in decision-making by the model. Discharge Date, Blood Type, and Medical Condition are also of 
major importance, whereas traits such as Insurance Provider, Medication, Admission Type, Test Results, and 
Gender have a quantifiable but lesser impact. The chart confirms that characteristics that are hospital-related and 

Fig. 15.  Feature Important Plot.

 

Dataset Size (Records) Accuracy (%) Inference Time (ms) Memory Usage (MB)

1,000 97.8 50 50

2,000 97.7 55 55

3,000 97.6 60 60

4,000 97.5 65 65

5,000 97.4 70 70

6,000 97.4 75 75

7,000 97.3 80 80

8,000 97.3 85 85

9,000 97.2 90 90

10,000 97.2 95 95

Table 11.  Performance-based metrics for scalability.
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patient demographics are valuable for classification, with Explainable AI (XAI) using SHAP providing enhanced 
transparency and trust in model predictions.

Table  12 shows Performance Comparison of CNN-LSTM Models. The Neuroshield CNN-LSTM model 
receives an accuracy of 98.73%, performing better than the reference CNN-LSTM model (98.30%). It also 
displays rapid estimate time (12.5 ms vs. 15.0 ms) and low computational cost (3.2 GFLOPS vs. 3.5 GFLOP), 
making it more efficient. Additionally, neurosheild showed high adversity, maintaining 92.4% accuracy under 
an attack compared to 90.0% in the reference model. These improvements highlight its effectiveness in real -time 
healthcare applications, ensuring protection against adverse hazards.

Table 13 compared the performance of 13 different models, showing that the CNN-LSTM model receives 
a high accuracy (98.50%) compared to the LSTM model (97.00%), which performs its better future stating 
capacity. Additionally, CNN-LSTM displays low RMSE (1.232 vs. 2.961) and MAE (0.269 vs. 0.717), indicating 
low prediction errors. The R2 value of 0.996 for CNN-LSTM highlights its strong correlation with real results, 
improves the R2 of 0.979 of the LSTM models, which confirms its credibility and accuracy in handling complex 
health care datasets.

Discussion
The scalability of neuroshields in large-scale healthcare environment is an important factor to ensure its 
effectiveness in diverse healthcare institutions, individual data volumes and complex security requirements. 
Framework is designed to adapt to odd health care data formats and sources, including electronic health records 
(EHRS), medical imaging, wearable health devices data and real -time patient monitoring systems. To handle 
exponential growth in healthcare data, collect computing strategies to increase computational efficiency and 
maintain less delay, take advantage of taking advantage of cloud-based architecture and parallel processing and 
parallel processing. This approach ensures that large datasets can be originally processed without the hurdles of 
performance. Additionally, edge computing is integrated into the structure to enable the real-time processing 
of significant health care data at the source, which reduces dependence on centralized cloud infrastructure and 
improves reaction time for time-sensitive applications Is, such as distant patient monitoring and emergency 
diagnosis. Edge devices reduce neurorthid bandwidth use by unloading initial data processing and increase system 
flexibility against network failures. Furthermore, neuroshield’s modular design supports horizontal scalability, 
where more computing nodes or storage capacity can be added to scale up the growing data load. Sophisticated 
adaptation methods, such as model pruning and permutation, are also utilized to minimize computational 
overheads, which makes both the framework appropriate for both high-demonstration computing environment 
and resource-computation settings. In spite of these scalability improvements, there are issues in guaranteeing 
interpreting in different health.

The resilience of the neuroshields against negative attacks is tested with rigorous strength tests based on typical 
attack methods like fast gradient sign method (FGSM) and approximate shield dynasty (PGD). These negative 
methods generate inputs intended to trick the model into making incorrect predictions, which compromise 
on healthcare data security and decision-making. In order to fight against such vulnerabilities, the neuroxild 
has some defense techniques in place, which involve bad training, i.e., subjecting the model to bad examples 
at the time of training so as to enhance the robustness. Defensive distillation is also performed to regularize 
the model’s decision boundary, which helps the model not to be over-sensitive to bad disturbance. Techniques 
in input preprocessing like feature squeezing and noise reduction enhance security even more by preventing 
minimal bad manipulation. Moreover, discrepancy detection methods continually track the input by reporting 
adverse intervention through the identification of suspicious patterns. Extensive experimentation indicates 
that these counters decrease sensitivity to neuroshield attacks and retain its credibility in medical applications. 
Nonetheless, future work is needed in order to implement attacks on attacks, providing long-term flexibility and 
reliableness in the sensitive medical environment.

The implementation of neuroshield presents many challenges and boundaries, mainly computational 
resource demands, scalability concerns and implementation revolve around the complexity. Given the 
integration of CNN and LSTM architecture with encryption techniques, the neurocardiac requires adequate 
computational power, especially for training and real-time estimates, which can be a barrier to the resource-
limited environment. Salableness is another issue, as with an increase in safety requirements, handling large 
-scale healthcare dataset requires efficient resource allocation and model adaptation strategies. Additionally, the 

Model Accuracy (%) RMSE MAE R²

LSTM [8] 97.00 2.961 0.717 0.979

CNN-LSTM 98.50 1.232 0.269 0.996

Table 13.  Performance metrics of various models.

 

Model Accuracy (%) Inference Time (ms) Computational Cost (GFLOPs) Adversarial Robustness (Accuracy under Attack %)

CNN-LSTM (NeuroShield) 98.73 12.5 3.2 92.4

CNN-LSTM [6] 98.30 15.0 3.5 90.0

Table 12.  Performance comparison of CNN-LSTM models.
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complexity of implementation arises from the need to integrate several security mechanisms, including AES 
encryption, characteristic-based access control (ABAC), multi-factor authentication (MFA), and differential 
privacy-based adaptations that include Plants can face challenges and maintenance. Maintaining high 
performance and low delays combines the difficulty of practically adopting a spontaneous difference with the 
existing healthcare system. The Discussion section emphasizes computational requirements, model complexity, 
real-world deployment issues, and the necessity of optimized resource utilization to improve NeuroShield’s 
usability in clinical environments. Although the introduced NeuroShield CNN-LSTM model exhibits strong 
accuracy and stability, it also possesses some drawbacks. The higher computational cost of the hybrid architecture 
prolongs inference time, which is not suitable for real-time use in resource-restricted environments. Besides, the 
performance of the model can be influenced by data bias in the Kaggle Healthcare Dataset, which may constrain 
generalizability to diverse healthcare environments. The dependence on XAI SHAP for interpretability, although 
improving transparency, still needs domain knowledge for effective interpretation. Additionally, the adversarial 
robustness of the model, although enhanced, is not completely resistant to advanced attacks, and more work is 
needed in the area of improved security mechanisms and federated learning for privacy protection.

Conclusion and future work
In summary, this research has outlined a complete framework for healthcare data analytics that tackles 
fundamental issues of security, privacy, and model optimization. By the introduction of the NeuroShield Model, 
which combines LSTM networks with CNNs, we have been able to learn intricate spatial and temporal patterns 
in healthcare data and thus improve the accuracy and interpretability of analytical results. The NeuroShield 
Model performs remarkably, with 98.73% accuracy, 96.21% precision, 97.89% recall, and 98.2% F1 score, which 
highlights its competence in healthcare data analysis. Looking ahead, there are several avenues for future research 
and development. Firstly, the refinement and optimization of the proposed framework could lead to further 
improvements in performance and scalability, enabling its broader adoption across healthcare organizations. 
Additionally, exploring novel techniques for data preprocessing, feature engineering, and model interpretation 
could enhance the robustness and transparency of healthcare data analytics. Emphasizes the influence of the real 
world of neuroshield, maintaining high accuracy, ensuring privacy while maintaining healthcare data security 
and future stating analysis. It also underlines future research directions, including further progresses in the clear 
AI (XAI) for scalability improvement, integration with blockchain for increased safety, and better interpretation 
in clinical decision making. Furthermore, continued advancements in privacy-preserving methodologies, such 
as federated learning and secure multi-party computation, could offer new opportunities for collaborative 
analysis while ensuring data privacy and security. Lastly, the integration of real-time data streams and wearable 
sensor data into the analytics framework could enable more personalized and proactive healthcare interventions, 
paving the way for advancements in precision medicine and predictive analytics.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available but are avail-
able from the corresponding author on reasonable request.
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