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North-South cooperation in green innovation activities is an essential avenue for promoting 
global climate governance. This study examines the impact of technological overlap on the scale 
of international cooperation in environmental technologies (ETs) between Chinese and foreign 
geographical units. The results show that technological overlap significantly increases the scale of 
international cooperation in ETs. The main international cooperation partners are located in the G7 
countries, with the United States being the most significant partner. Technological overlap has not 
only promoted China to send many patent inventors to other countries but also encouraged China to 
introduce more foreign inventors. Further research reveals a significant interaction effect between 
the scale of existing inventor cooperation, local technological advantages, and technological overlap, 
which expands the scale of international cooperation. This paper calls for strengthened ET cooperation 
between developed and developing countries to address climate change.
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This study attempts to integrates tools from documentation and information science into geographic innovation 
research1,2 by utilizing published patent documents and adopting the perspective of citation coupling3. From the 
vantage point of patent documents, it quantitatively assesses the concept of knowledge relatedness4 within the 
framework of innovation geography. Traditional research has mainly focused on exogenous factors influencing 
the cross-border innovation team construction, such as spatial distance5, labor returns6–8, and investment 
factors9. In contrast, this study delves into the endogenous factors driving cross-border innovation cooperation, 
aiming to uncover the micro-foundations of how innovation actors in emerging countries, propelled by their 
own innovation successes, navigate the global innovation network to find and collaborate with appropriate 
overseas partners. Furthermore, the study provides an in-depth exploration of Marshallian externalities, often 
referred to as the “black box“10. Given China’s notable achievements in innovation within the environmental 
technologies (ETs), this study particularly examines the status of Chinese innovation actors’ engagement in 
cross-border innovation cooperation in ETs.

The concept of technological overlap refers to the extent to which two inventors share knowledge at a 
particular time, focusing on exploring the knowledge linkage between innovation subjects from the perspective 
of commonality11. Relevant studies have indicated that the higher the overlap degree of internalized codified 
knowledge among innovation subjects, the more similar the technical expertise between the subjects11–13. 
This familiarity with related technologies and knowledge help to mitigate friction and information asymmetry 
before and after transactions. While existing research has mainly focused on micro-innovation entities such 
as enterprises, the spillover effect of knowledge means that its influence may extend beyond the organization. 
Extending this indicator to geographical space may be feasible, given the high spatial concentration of innovation 
activities14. In this context, codified knowledge of geographical units is critical in allocating innovation resources, 
and bilateral or multilateral knowledge linkage becomes a driving force for the spatial flow of innovative talents.

As the world is becoming increasingly aware of the detrimental impact of climate change and the edge of 
climate disasters, there is a growing consensus among the international community to prioritize green and 
low-carbon transformation. Studies have shown that environmental technology (ET) innovation plays a crucial 
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role in global climate governance15–18, and it is the most significant factor affecting long-term governance 
costs19. However, most existing literature has focused on ET innovation in developed countries or North-South 
technology transfer17,20,21, and there has been less attention given to the factors that promote ET innovation in 
developing countries22. Developing countries are often in a position of higher energy consumption due to the 
long-established international industrial chain. Therefore, cooperation and support from developed countries 
are crucial for these countries to achieve green and low-carbon transformation. It is only through collaborative 
dialogues and utilizing each country’s contributions and comparative advantages that effective synergy can be 
achieved to address climate change23.

Apart from directly importing equipment that materializes knowledge and introducing advanced technology 
to acquire knowledge, cross-border inventions through international cooperation are also crucial for developing 
countries to gain knowledge from developed countries24,25. The global innovation network, led by European 
Union and North American multinational corporations, has formed the characteristics of “Local Hotspot, Global 
Networks“26, guiding the flow of global innovation resources. Therefore, relying on this network to allocate 
overseas innovation resources is a practical and long-term choice for developing countries. It is also an important 
channel for them to generate influential ideas and long-term benefits for inventors in the future27. Under the 
pressure of the international community to reduce emissions and achieve green economic growth, developing 
countries are now more willing to acquire knowledge through joint research and cooperation to achieve green 
economic growth. This is because knowledge can be spread faster in this way. However, the microscopic basis 
of international cooperation for developing countries in ETs still needs more exploration. Previous studies 
have shown that co-invention through utilizing external knowledge is determined by two factors: the partners’ 
familiarity with each other’s technical expertise (Technological Overlap) and their experience in previous 
technological collaborations22,28–30.

Given that China is both a critical emerging node in the global innovation network and a significant carbon 
emitter, this study explores the relationship between technological overlap and the scale of international 
cooperation in ETs. By using patent data, we develop an indicator to measure the bilateral knowledge linkage 
between China and global innovation hotspots. Humans are the vital vessels through which knowledge is 
transmitted, and the diversification of individual skills has crafted a highly organic and meticulously integrated 
structure of human capital that fuels innovative activities. Innovative talents, endowed with exceptional skills 
in specific fields and armed with the latest cutting-edge knowledge, converge at particular spatial nodes, where 
they vigorously drive the progression of innovative endeavors. Given the pivotal role that innovation plays in 
stimulating economic growth, coupled with the striking agglomeration of high-skilled labor in certain spatial 
areas, the mobility of high-skilled labor (especially innovative talents) has emerged as a central focus. The 
extensive and far-reaching impacts of high-skilled labor mobility have become prominent topics of discussion 
and key areas of research across multiple fields of economics in recent years8.From the perspective of spatial 
agglomeration characteristics, the matching effect of technological overlap on cross-border innovation teams 
is in line with the sorting effect31, leading to the spatial agglomeration of high-skilled labor associated with 
innovation in the “new” new economic geography. Therefore, we utilize the sorting effect and the synergistic 
effects between the sorting effect, agglomeration effect, and selection effect within the framework of the ‘New’ 
new economic geography theory to address four key research questions. Firstly, can the technological overlap 
between China and other innovation hotspots facilitate ET cooperation with foreign regions? Secondly, is there a 
significant difference in the impact of technological overlap on the scale of international cooperation in different 
regions? Thirdly, Beijing, Shanghai, and Shenzhen are China’s three active innovation regions. What are the 
differences in the impact of technological overlap on international cooperation among these regions? Finally, we 
explore the effects of other innovation activities in the “regional hotspots” on linking technological knowledge 
and allocating cross-border innovative talents.

This paper offers three significant contributions in comparison to the existing literature. Firstly, this study 
aims to present the bilateral knowledge linkage of patented innovation activities by using co-cited patents 
between innovation nodes, distinguishing the common perspectives of unilateral absorptive capacity and 
bilateral technological distance. Empirical evidence is provided on how ET knowledge linkage affect international 
cooperation. Secondly, this study focuses on ET cooperation between China and global innovation hotspots and 
highlights the heterogeneity of technological overlap affecting international cooperation at multiple geographical 
latitudes, unlike current research on ET innovation in developed countries or North-South technology transfer. 
Finally, it provides targeted suggestions for developing countries to participate in international cooperation in 
green innovation activities based on the resource allocation effect of knowledge linkages. This paper recognizes 
the significance of cross-border joint research and development (R&D) cooperation between global innovation 
hotspots and China from the perspective of bilateral or multilateral knowledge linkage and points out the 
strategy of international cooperation in the future.

The rest of this paper is structured as follows: section  “Literature review” is a literature review; 
section “Theoretical model and research hypotheses” is model setting and data processing; section “Data source, 
variable construction, and model setting” is an analysis of empirical results; sections “Results and discussion” 
and “Heterogeneity analysis” are heterogeneity and interaction effects analysis; The final section presents the 
conclusions and policy implications of the study.

Literature review
The impact of Spatial agglomeration sorting effects on high-skilled labor mobility
The Roys model in the field of labor economics emphasizes both the selection effect, wherein high-skilled workers 
are chosen by the market, and the sorting effect, which pertains to how these workers select their employment 
locations. This model provides a solid micro-foundation for understanding the optimal geographic choices 
made by highly skilled labor. Given the well-documented phenomenon of innovative endeavors and highly 
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skilled labor concentrating in a few major cities, Kerr and Kerr highlight the importance of spatial factors in 
elucidating the mobility patterns of such workers8. Behrens et al. further emphasize, from a dynamic perspective, 
that the spatial dynamics governing labor allocation are intricately linked with agglomeration, selection, and 
sorting effects32.

The sorting effect underscores the alignment between labor skill levels and the productivity advantages 
offered by large cities, driven by spatial agglomeration. This alignment manifests in three primary ways. First, 
there is an alignment between labor skills and skill premiums. By capitalizing on the productivity advantages 
created through the selection effect, companies in major cities attract high-skilled workers with higher salaries33. 
Furthermore, the superior infrastructure of large cities, including healthcare and education, offers additional 
non-financial benefits to employees8. Consequently, skill premiums in big cities become a significant draw for 
highly skilled labor. Second, there is an alignment between labor skills and knowledge spillovers. The knowledge 
spillover effect is a pivotal aspect of agglomeration dynamics and plays a crucial role in the location decisions 
of highly skilled workers. Building on the concept of absorptive capacity, Davis and Dingel argue that highly 
skilled labor has an advantage in internalizing knowledge spillovers34. Therefore, to maximize this advantage, 
skilled workers opt for large cities with abundant innovative activities where knowledge spillovers are more 
pronounced; empirical evidence from Davis and Dingel also supports the notion that larger cities host a 
higher concentration of highly skilled workers and skill-intensive production33. Lastly, there is an alignment 
among various labor skills. Departing from the traditional high-low skill dichotomy, Eeckhout et al. suggest 
that skill complementarity helps explain the coexistence of diverse skill levels in big cities35. They further note 
that this complementarity can exist among high-end skills, as seen in learning exchanges and skill knowledge 
complementarity among heterogeneous high-skilled workers (e.g., top-skill complementarity like coaches and 
athletes in professional sports), as well as between high-end and general skills, evident in the complementarity 
of specialized labor division and service functions among diverse workers (e.g., extreme-skill complementarity 
like the synergy between highly skilled workers and domestic service labor).

Davis and Dingel argue that, while assuming labor can freely benefit from knowledge spillovers, Marshallian 
externalities from spatial agglomeration are often overlooked34. Existing empirical studies frequently use wages 
as a proxy for labor skill levels6. However, wages only reflect skill levels and do not disclose the skill composition 
of labor. Due to the scarcity of data on knowledge types or structures, there has been limited empirical 
exploration of how knowledge structures influence the location choices of highly skilled workers. By quantifying 
the knowledge embedded in cities, this paper presents a methodology to describe the skill composition of urban 
labor, thereby contributing empirical insights into how sorting effects drive the geographic choices of highly 
skilled workers. This represents a valuable attempt to unravel the mysteries of externalities, a core issue in urban 
economics.

Measurement of technological overlap and its impact on cross-border innovation 
collaboration
Technological overlap, or knowledge base overlap, refers to the degree of shared knowledge stock between two 
innovating entities at a given time, emphasizing the knowledge linkage between innovators from a commonality 
perspective. Related concepts encompass technological distance, technological similarity, and technological 
relatedness. Research indicates that greater technological overlap leads to more similar professional knowledge 
among innovators, enhancing familiarity with relevant technologies and knowledge. This, in turn, aids in 
reducing various frictions and challenges stemming from information asymmetry both before transactions 
(e.g., searching and matching between transacting parties) and after transactions (e.g., assimilating and applying 
external technologies or knowledge). This concept is frequently discussed in studies of firms acquiring external 
knowledge resources (e.g., technological mergers and acquisitions, R&D partnerships)11,13. Corporate finance 
research suggests that technological overlap also fosters economies of scale in innovative resources following 
M&A transactions12.

Given the insights into knowledge flows provided by patent citation data36 and the improved data accessibility 
due to the digitization of patent information, constructing technological overlap indicators based on shared 
patent citations in patent applications by two innovating entities (e.g., two firms) has become commonplace in 
empirical research12,13.

Regarding the impact of technological overlap on innovation, existing research primarily focuses on its effect 
on innovators’ absorption of external knowledge. Chesbrough notes that R&D and innovation activities of entities 
such as firms are increasingly trending towards openness, but integrating external ideas or knowledge is neither 
automatic nor cost-free37. Both Ahuja & Katila and Bena & Li indicate that the relevance (i.e., technological 
overlap) between acquired external knowledge and the existing knowledge base of the acquiring entity can 
influence its innovative output after acquiring external knowledge resources11,12.

Overall, research suggests that technological overlap influences innovative activities through multiple 
mechanisms. First, it helps mitigate frictions caused by information asymmetry. For instance, Graebner et al.38 
argue that technological overlap enhances firms’ absorptive capacity and lowers barriers to assimilating external 
knowledge resources. Second, it contributes to achieving economies of scale and scope in innovative resources. 
Since technological overlap represents the common ground in the existing knowledge bases of transacting 
parties, Henderson and Cockburn suggest that M&A transactions can help avoid redundant innovative 
resources or enable broader utilization of these knowledge assets39. Third, it facilitates specialized labor division 
in innovation. Redundant innovative resources from overlapping resources among participants also prompt 
innovation alliances to reconfigure these resources, allowing participants to allocate more resources to technical 
areas where they excel, thereby enhancing specialization40.

Existing literature primarily constructs the technological overlap indicator at the micro-level of innovating 
entities (e.g., firms). However, the spillover effects from knowledge’s natural externalities suggest that the 
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influence of firms’ knowledge may extend beyond their internal operations, especially for codified knowledge 
like patents. Thus, extending this indicator to geographical space could be a promising approach, aligning with 
the highly clustered nature of innovative activities. Furthermore, the knowledge linkage between two innovating 
entities, encapsulated by technological overlap, aligns well with the “like attracts like” principle of the spatial 
agglomeration sorting effect. Given that inventors are key knowledge carriers, constructing technological overlap 
indicators between geographical units and examining their impact on international innovation collaboration can 
provide valuable insights into how technological overlap affects innovative activities from a spatial perspective.

In summary, there is currently limited research exploring the micro-foundations of emerging country 
innovators’ engagement in international R&D collaboration within smaller geographical areas such as provinces 
or states, based on the highly clustered nature of innovative activities. As emerging countries increasingly 
participate in the global innovation network, reshaping the global science and technology innovation landscape, 
investigating how technological overlap enables Chinese innovators to achieve targeted international scientific 
and technological collaboration in ETs holds significant practical importance.

Theoretical model and research hypotheses
This paper analyzes the impact of technological overlap on patent R&D collaboration through a simple 
theoretical model. Suppose inventor i (i = 1,2) can independently develop a patent with value πi with probability 
Pi. If both parties collaborate, the probability of successful patent development is P, and the value is π. However, 
R&D collaboration is not cost-free; inventors must incur a search cost Ci

se to find collaboration partners and 
an absorption cost Ci

ab during the collaborative R&D process to effectively utilize the partner’s knowledge. 
Further, it is assumed that Ci

se and Ci
ab are functions of technological overlap, with d(Ci

se)/d(Overlap) < 0 
d(Ci

ab)/d(Overlap) < 0, because technological overlap, determined by shared knowledge, helps mitigate various 
frictions caused by information asymmetry in the collaboration process, thereby reducing these two costs. 
Additionally, it is assumed that the value distribution of the collaborative patent will be P1

* and P2
*. Therefore, 

the payment matrix corresponding to this game is shown in Table 1, with the mixed-strategy Nash equilibrium 
being ρ (ρ*

1, ρ*
2), where ρ*

1 = C2
se/(P1

*π –C2
ab– P2π2) and ρ*

2 = C1
se/( P2

*π –C1
ab– P1π1).

In this game, when inventor 1’s willingness to collaborate, ρ1, satisfies ρ1 > ρ*
1, inventor 2’s expected benefit 

from collaborative R&D exceeds that from independent R&D. Similarly, when inventor 2’s willingness to 
collaborate, ρ2, satisfies ρ2 > ρ*

2, inventor 1’s expected benefit from collaboration exceeds that from independent 
R&D. Therefore, collaboration is the optimal choice for both parties only when ρ1 and ρ2 simultaneously 
satisfy ρ1 > ρ*

1 and ρ2 > ρ*
2. Assuming that inventors’ exogenous willingness to collaborate, ρi, follows a uniform 

distribution on [0, 1] and is mutually independent, the probability of both parties choosing to collaborate, Pcoop, 
and Pcoop = (1–ρ*

1)(1–ρ*
2). By leveraging symmetry, it is easily derived that d(Pcoop)/d(Ci

se) < 0 and d(Pcoop)/
d(Ci

ab) < 0 (i = 1,2), further leading to d(Pcoop)/ d(Overlap) > 0. In other words, as technological overlap increases, 
so does the probability of inventors’ R&D collaboration. Based on the sorting effect, within the framework of the 
‘New’ new economic geography theory, the following hypothesis is proposed:

Hypothesis 1: Technological overlap can facilitate cross-border R&D collaboration between patent inventors 
(Sorting Effect).

When further discussing this game model within the context of exogenous spatial agglomeration, this paper 
considers two spatial factors that influence inventors’ decisions in R&D collaboration games. First, geographical 
proximity enhances the convenience of information dissemination; existing R&D collaboration relationships 
among other local inventors generate spillover effects, helping to reduce the search costs, Ci

se, for local inventors 
seeking partners. Second, local technological advantages in specific fields or industries deepen the thickness of 
relevant professional knowledge, and spatial proximity increases the availability of relevant knowledge spillovers 
for local inventors, helping to reduce the absorption costs, Ci

ab, they face in internalizing external knowledge 
during R&D collaboration. Based on the synergistic effects between the sorting effect, agglomeration effect 
within the framework of the ‘New’ new economic geography theory, the following hypothesis is proposed:

Hypothesis 2a: The scale of existing local inventor collaborations interacts with technological overlap to 
promote R&D collaboration between patent inventors (the synergistic effects between sorting effect and 
agglomeration effect).

Hypothesis 2b: The scale of local technological advantages interacts with technological overlap to promote 
R&D collaboration between patent inventors (the synergistic effects between sorting effect and selection effect).

Data source, variable construction, and model setting
Data source
The data utilized in this research is sourced from two patent databases, REGPAT41 and Citations42, which 
have been compiled by the Organization for Economic Cooperation and Development (OECD). The REGPAT 
database includes the geographical location of patent inventors, while the Citations database offers patent 
citation details. This paper focuses on international cooperation in ETs, and it specifically identifies ET patents 

Inventor 2

Cooperative R&D Independent R&D

Inventor 1
Cooperative R&D (P1

*π–C1
se–C1

ab), (P2
*π–C2

se–C2
ab) (P1π1–C1

se), P2π2

Independent R&D P1π1, (P2π2– C2
se) P1π1, P2π2

Table 1.  The payment matrix for the cooperative game among inventors.
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that involve both Chinese and foreign inventors, using the patent International Patent Classification (IPC) and 
technical field comparison table issued by the World Intellectual Property Office (See ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​w​i​p​​o​.​i​​n​t​/​i​​p​s​t​
a​​t​​s​​/​e​n​/​d​​​o​c​s​​/​i​​p​c​_​t​e​​c​h​n​o​​l​o​g​y​.​x​l​s​x).

Variable selection and descriptive statistics
Dependent variable
The dependent variable is the scale of international cooperation (InvCoijt), measured by the cooperation times of 
18,166 Chinese and foreign geographical unit pairs of bilateral patent inventors in ETs between 1998 and 2017. 
The REGPAT database provides the geographical information of patent inventors, enabling us to identify the 
ET patents that feature both Chinese and overseas inventors. We then calculate the cooperation times of these 
18,166 pairs, which serves as an indicator of the scale of international cooperation between Chinese and foreign 
geographical units (Kogler et al. examined international collaboration among inventors in European countries 
through the co-occurrence of inventors43).

Independent variable
The independent variable is the degree of technological overlap (Overlapijt). To construct Overlapijt, the first step 
involves selecting NUTS2-level geographical units (31 provinces in mainland China and 586 provinces or states 
in foreign countries, hereinafter referred to as province) based on the inventor’s geographical information of the 
Patent Cooperation Treaty (PCT) patents disclosed in the REGPAT database between 1998 and 2017. This results 
in 18,166 pairs of Chinese and foreign geographical units. The second step sums up the backward citation patents 
of patent inventors participating during the period t as the knowledge source database of the geographical units 
(for data smoothing, we used a period of three years to construct each indicator in the benchmark regression 
and performed a rolling calculation), with the province being the unit. The final step extracts the same patents 
in the knowledge source databases of the two geographical units of the Chinese and foreign provincial pairs 
and calculates the total amount, which is used as the technological overlap indicator of the Chinese and foreign 
geographical unit pairs. It is worth mentioning that only non-cooperative ET patents, meaning those not jointly 
including Chinese and overseas inventors, are used to alleviate endogenous bias caused by reverse causality in 
subsequent regression analysis (as shown in Fig. 1).

Control variables
We utilize conventional variables that may impact international cooperation as control variables: the previous 
period’s scale of bilateral inventor cooperation (InvCoijt−3) in the previous observation period (lag by one standard 
observation period consider as three years), to control for the impact of tacit knowledge linkages between the 
two regions, which are derived from their past cooperation experiences; the current period’s scale of inventors 
in Chinese provinces (Invnumit), and the current period’s scale of inventors in foreign provinces (Invnumjt), to 
control for the impact of regional innovation activity intensity. InvCoijt−3 is calculated by the number of inventors 
taking part in joint patent cooperation between Chinese and foreign provinces. Invnumit is calculated by the 
number of inventors taking part in the joint patent cooperation in Chinese provinces. Invnumjt is calculated by 
the number of inventors taking part in the joint patent cooperation in foreign provinces. These control variables 
are used to control for the impact of agglomeration effects on the scale of cross-border innovation cooperation14.

Descriptive statistics
As G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) have 
expressed their commitment to promoting green innovation and sharing climate technologies with developing 
countries, we divide the cooperation objects into the G7 countries and non-G7 countries. Table  2 presents 
descriptive statistics which reveal that China participates mainly in international cooperation with G7 countries. 
The scale of international cooperation is on average 16 times larger than that with non-G7 countries. Furthermore, 
China’s PCT cooperation in ETs with BRICS countries is minimal, averaging only 0.0005. In contrast, China’s 
PCT cooperation in this field with Japan and South Korea is notably high, averaging 0.0787, which is second only 
to its cooperation level with the United States at 0.0851. Additionally, the technological overlap between China 
and G7 countries is close to 0.03 patents, while with non-G7 countries it is only 0.0036. The average values for 
this indicator are 0.0443 for the United States and 0.0485 for Japan, respectively, indicating a significant overlap 
in the background knowledge bases of Chinese inventors in ETs field with their peers in the United States and 
Japan.

Figure 2 illustrates the annual fluctuations in the scale of cross-border innovation cooperation in the ETs 
between mainland China’s inventors and foreign inventors from 2001 to 2017. The dark blue indicates the 
cooperation scale with G7 countries, showing a relatively stable growth trend throughout this period. Notably, 
collaboration saw significant increases during certain years, particularly from 2009 to 2011 and after 2016. In 
contrast, the orange line represents cooperation with non-G7 countries, which also exhibited growth but on 
a smaller scale overall. Throughout the entire period, cooperation with G7 countries consistently dominated, 
highlighting their importance and influence in cross-border innovation cooperation with Chinese mainland 
inventors, especially within the ET field.

Model setting
This paper aims to study the impact of technological overlap on the scale of international cooperation in ETs 
between China and foreign geographical units. To estimate this, a high-dimensional fixed-effects model is 
used. The Hausman test results, based on the regression data, reveal a test statistic chi2(4) value of 18149.76, 
accompanied by an extremely low p-value of 0.0000. This leads us to accept the alternative hypothesis, which 
states that there are significant differences in the coefficients between the fixed effects model and the random 
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effects model. Given these findings from the Hausman test, opting for the fixed effects model appears to be more 
suitable. The benchmark measurement equation is as follows:

	 InvCoijt = α + β1Overlapijt−3 + Xη + F Eit + F Ejt + F Eij + εijt� (1)

Where InvCoijt represents the scale of international cooperation between China’s province i and foreign 
province j in period t. To alleviate endogenous bias, we lag our explanatory variable and some control viables 
by one standard observation period (three years) in our benchmark regression. In the robustness tests, we also 
used different lengths of observation periods to construct those variables and adjusted the lag lengths of the 
corresponding variables according to the lengths of the observation periods. Overlapijt−3 represents the degree 
of technological overlap of Chinese and foreign geographical unit pairs in period t-3. X represents a string of 
control variables. The control variables include the scale of bilateral inventor cooperation in period t-3, which 
is denoted as InvCoijt−3, the scale of inventors in Chinese provinces in period t (Invnumit), and the scale of 
inventors in foreign provinces in period t (Invnumjt).

To control for biases stemming from omitted variables, the estimation equation includes joint fixed effects 
for provinces and years in mainland China (FEit), which account for the impact of policy and economic changes 
within each province in mainland China; joint fixed effects for provinces and years in foreign countries (FEjt), 
which account for the impact of policy and economic changes within each foreign provinces; and fixed effects 
for pairs of Chinese and foreign geographical units (FEij), which address factors like geographical distance, 
linguistic and cultural differences, and enduring political relations between the two regions.

Results and discussion
Benchmark results and explanation
Table  3 displays the benchmark results. Both columns (1) and (2) control for Chinese provinces, foreign 
provinces, and years fixed effects to eliminate any confounding factors with province or time that could affect 

Fig. 1.  Construction of co-cited documents and technological overlap between geological units.
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the estimation of the core explanatory variable coefficient. Column (1) reveals the regression results when 
only introducing the technological overlap (Overlapijt−3) of Chinese and foreign geographical unit pairs. It is 
apparent that technological overlap significantly promotes the scale of international cooperation in ETs. To 
account for factors such as the existing scale of cooperation and the scale of inventors of both parties that could 
affect the scale of international cooperation, column (2) of Table 3 controls for the scale of bilateral inventor 
cooperation in period t–3 (InvCoijt−3), the scale of inventors in Chinese provinces in period t (Invnumit), and the 
scale of inventors in foreign provinces in period t (Invnumjt). The estimated coefficient of Overlapijt−3 remains 
significantly positive at the 1% level. Due to the limited availability of relevant variables affecting innovation 
activities at the geographical unit level, especially foreign provinces or states, column (3) introduces the joint 
fixed effects of provinces and years in mainland China (FEit), the joint fixed effects of provinces and years in 
foreign countries (FEjt), and the fixed effects of Chinese and foreign geographical unit pairs (FEij). It is still 

Fig. 2.  Annual cross-border innovation cooperation in PCT Patents related to ETs between inventors from 
mainland China and international partners.

 

Dependent variable

InvCoijt

Obs Mean Std.Dev Min Max

From All Countries 272,490 0.0151 0.569 0 113

From G7 79,980 0.0449 1.023 0 113

From Non-G7 192,510 0.0028 0.150 0 32

From US 23,715 0.0851 1.207 0 53

From BRICS 66,960 0.0005 0.043 0 5

From JK 7905 0.0787 2.239 0 113

Independent 
variable

Overlapijt−3

Obs Mean Std.Dev Min Max

From All Countries 272,490 0.0115 0.175 0 14

From G7 79,980 0.0305 0.297 0 14

From Non-G7 192,510 0.0036 0.081 0 7

From US 23,715 0.0443 0.358 0 14

From BRICS 66,960 0.0008 0.039 0 5

From JK 7905 0.0485 0.362 0 12

Table 2.  Statistical characteristics of the scale of international Cooperation and technological overlap in ETs 
between China and foreign countries. Data sources: OECD REGPAT database, OECD Citations database. 
Unless otherwise specified, the same is below.
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apparent that technological overlap, which represents bilateral ET knowledge linkage between Chinese and 
foreign geographical units, significantly promotes the scale of international cooperation in ETs.

Overall, the estimated coefficient of the key explanatory variable Overlapijt−3 is robust under different model 
setting environments. We use column (3) of Table 3 as a baseline estimate. This means that the number of co-
cited patents of Chinese and foreign geographical unit pairs in ETs increases by 10, and the scale of international 
cooperation increases by 3.35 person-times. This result suggests that technological overlap can be the foundation 
for China’s participation in international cooperation in ETs, as it incorporates knowledge linkage between two 
innovation subjects. This result supports our Hypothesis 1.

Robustness test
In order to test how the length of the observation period of the backward citation patents of patent inventors 
participating affects the results of the regression analysis, this study varies the observation period to 2, 4, and 5 
years. The independent and dependent variables are adjusted accordingly. The results, displayed in Panel A of 
Table 4, show that the estimated coefficients of technological overlap are consistently positive. Additionally, as 
the length of the observation period increases, the scale of bilateral international cooperation remains relatively 
stable.

To calculate technological overlap again, this study uses a weighted indicator based on the number of citations 
of bilaterally co-cited patents. This accounts for the fact that the number of citations may differ between the two 
provinces, reflecting the extent to which knowledge from these patents is utilized in local innovation activities. 
The result, shown in Panel B of Table 4, indicates that the estimated coefficient of Overlapijt−3 decreases slightly 
but remains significant at 0.202. This result means that if the co-cited patents between Chinese and foreign 
geographical units increase by 10, the scale of bilateral international cooperation in ETs increases by 2.

Overall, the robustness of the results is confirmed by changing the observation period and using a weighted 
technological overlap indicator based on the number of citations.

Variables

Panel A: the length of the 
observation period Panel B: Weighted

 technological overlapTwo years Four years Five years

(1) (2) (3) (4)

Overlapijt−2
0.318***
(2.76)

Overlapijt−3
0.229**
(2.30)

0.202***
(2.61)

Overlapijt−4
0.240**
(2.15)

FEit,FEit,FEij Yes Yes Yes Yes

N_clust 18,166 18,166 18,166 18,166

r2_a 0.220 0.409 0.507 0.314

N 290,656 254,324 236,158 272,490

Table 4.  Robustness test. Note: We adjusted the lag lengths of the explanatory variable and control variables 
according to the lengths of the observation periods in Panel A; the independent variable in Panel B is the 
weighted technological overlap by cited times.

 

Variables

InvCoijt

(1) (2) (3)

Overlapijt−3
0.745***
(3.44)

0.431***
(3.30)

0.335***
(3.49)

InvCoijt−3
1.718***
(3.75)

– 0.257
(– 0.57)

Invnumit
– 0.002
(-0.74)

Invnumjt
– 0.002
(– 1.17)

FEt,FEi,FEj Yes Yes

FEit,FEjt,FEij Yes

N_clust 18,166 18,166 18,166

r2_a 0.071 0.110 0.315

N 272,490 272,490 272,490

Table 3.  Effects of technological overlap on the scale of international Cooperation in ETs. Note: All standard 
errors are clustered standard errors at the Chinese and foreign geographical unit pairs level; * p < 0.1, ** 
p < 0.05, *** p < 0.01. Unless otherwise specified, the same is below.
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Heterogeneity analysis
It’s interesting to note that innovative activities tend to be concentrated in certain geographical units due 
to varying abilities to allocate innovation resources. For instance, Switzerland and the United States are net 
importers of high-skilled immigrants, while China and India are net exporters7. Given the goals of energy 
conservation, emissions reduction, and response to climate change, China must allocate innovation resources on 
a global scale to maintain its green innovation strength. As an influential player in the global innovation network, 
which countries’ inventors may China seek to collaborate in ETs by leveraging technological overlap? The top 
100 global innovation agglomerations include Shenzhen-Hong Kong-Guangzhou, Beijing, and Shanghai44. It’s 
worth examining whether there are any differences in the effects of ET cooperation among these three regions 
in China.

Country comparison of international cooperation partners
This study aims to compare China’s partners in international cooperation in ETs based on technological overlap. 
To achieve this, the patents that contain Chinese and foreign inventors are classified by country, and a sample of 
cooperation between China and other countries patent inventors is constructed. The baseline regression method 
is used to estimate the results. Table 5 reports the regression results of technological overlap on the scale of 
international cooperation between Chinese and foreign geographical units. The positive correlation between 
technological overlap and the scale of international cooperation in ETs is more significant in the G7 countries 
sample, as shown in column (1). However, from column (4), it can be seen that the coefficient in the non-G7 
country sample is not significant. By decomposing the G7 countries into the United States and the G7 countries 
excluding the United States, it is found that the regression coefficients of the variable Overlapijt−3 are significantly 
positive, but relatively higher in the United States sample. Furthermore, technological overlap can also increase 
the scale of international cooperation in ETs between China and JK countries (Japan and South Korea), BRICS 
countries (Brazil, Russia, India, China, and South Africa).

Through an analysis of the impact of technology overlap on international cooperation between Chinese 
and foreign geographical units, we have discovered that Chinese inventors tend to collaborate with the United 
States, Japan, and South Korea in ETs. This is due to the fact that the United States has been a global leader in 
R&D investment for ETs, particularly energy conservation and emissions reduction technology, new energy 
technology, carbon capture technology, and carbon dioxide recovery and storage technology. Additionally, China 
and the United States share similar goals in developing green and clean energy and addressing climate change, 
making it a natural foundation for their cooperation in ETs. Moreover, since the first Tripartite Environment 
Ministers Meeting (TEMM) was held in 1999, the tripartite environmental cooperation centered on TEMM has 
fostered multi-level cooperation mechanisms among government departments, scientific research institutes, and 
civil society, thereby promoting collaboration among the three countries in ETs.

Based on the technological overlap, we examine the differences in the scale of international cooperation 
between inventors of the three major innovation clusters in mainland China and those foreign countries. The 
results, shown in columns (7)–(9) of Table 5, reveal that technological overlap has a greater impact on promoting 
the scale of international cooperation between Shanghai and Shenzhen with foreign inventors. However, 
technological overlap did not show a significant impact on advancing the scale of international cooperation 
between Beijing and foreign inventors. This may be attributed to the fact that Beijing boasts a higher density of 
top-tier universities compared to Shanghai and Shenzhen. These universities may have substituted the codified 
knowledge associations, as represented by technological overlaps, with their tacit knowledge flows. Additionally, 
since most China’s high-level universities are publicly funded and policy-supported, Beijing’s innovation activities, 
which rely heavily on these universities, exhibit a more noticeable residual influence from the command-based 
planned economy era. In contrast, Shanghai and Shenzhen, fueled by market dynamics, demonstrate a more 
prominent performance in emerging technology (ET) intellectual property cooperation (Beijing, Shanghai, and 
Shenzhen have distinct innovation advantages due to differing numbers of high-level universities. Beijing, with 
more top institutions, offers stronger theoretical support, while Shanghai and Shenzhen excel in market-driven 
applied innovation45).

Comparison of inventor flow in international cooperation
To examine the differences between China, European Union, and North American in using technological overlap 
to attract overseas innovation resources, this paper classifies all patents containing Chinese and foreign inventors 

G7 U.S.
G7 excluding 
U.S. Non-G7 JK BRICS Beijing Shanghai Shenzhen

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Overlapijt−3
0.394***
(3.48)

0.674***
(3.75)

0.253**
(2.27)

– 0.005
(– 0.10)

0.324***
(2.60)

0.031**
(2.49)

0.075
(1.00)

0.591***
(3.68)

0.042***
(3.25)

r2_a 0.318 0.546 0.169 0.317 0.160 0.381 0.267 0.509 0.314

FEit,FEit,FEij Yes Yes Yes Yes Yes Yes No No No

FEt,FEj No No No No No No Yes Yes Yes

N_clust 5332 1581 3751 12,834 527 4464 586 586 586

N 79,980 23,715 56,265 192,510 7905 66,960 8790 8790 307,650

Table 5.  Country comparison of international cooperation partners.
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based on the country of the patent applicant. We then extract the patents of the inflow of foreign inventors, and 
the outflow of Chinese inventors (The ownership of intellectual property rights typically lies with the patent 
applicant. When a patent has inventors from both China and foreign countries, it is classified as an “inventor-
inflow” patent if at least one applicant is from China, and an “inventor-outflow” patent if one applicant is from 
outside of China. It should be noted that the classification is based on the national attribution of intellectual 
property rights, not the inventor’s nationality. For instance, if a patent has only Chinese applicants, the property 
rights of the innovation belong exclusively to China. On the other hand, if the applicants are from China and 
the United States, then the property rights are jointly owned by both countries. This definition aligns with the 
current ‘not looking for everything, but looking for use’ approach to flexible talent introduction). We construct 
the scale of patent inventor cooperation and estimate it using the benchmark regression setting. Results from 
columns (1) of Table 6, show that the estimated coefficient of technological overlap is significantly positive in all 
countries’ samples, indicating that co-cited patents have significantly promoted the outflow of Chinese patent 
inventors to foreign countries or regions, positively contributing to global ET cooperation and innovation. In 
economic terms, the number of co-cited patents between Chinese and foreign geographical units increase by 10, 
and the number of domestic inventors who flow out of China increase by nearly 1.4.

Furthermore, we analyze the outflow samples of Chinese patent inventors and categorize them into G7 and 
non-G7 countries. Our findings reveal that Chinese inventors primarily flow into G7 countries, with the United 
States being the most preferred destination among the seven countries. Moreover, we observe that technological 
overlap plays a significant role in promoting the flow of Chinese inventors to Japan and South Korea, but it has 
no significant impact on the BRICS countries. Overall, the G7 countries, which are the world’s major innovation 
hotspots, are the primary targets of Chinese inventors for ET cooperation, with the United States being China’s 
main partner for international cooperation. This indicates that the two largest economies are committed to 
promoting international cooperation in ETs and guiding the cross-border flow of innovative talents, thus 
demonstrating the joint efforts and responsibilities of developed and developing countries in addressing climate 
change.

The impact of technological overlap on the scale of international cooperation in ETs also exists within China. 
In Columns (8)–(10) of Table 6, we observe that the inflow of foreign inventors to Shenzhen is significantly 
promoted by technological overlap, but it did not have the same effect in Beijing and Shanghai. This suggests that 
Shenzhen is unique in its ability to utilize overseas inventor resources in ETs.

Overall, the results indicate that technological overlap has a positive effect on both the outflow of Chinese 
inventors (Panel A of Table 6) and the inflow of foreign inventors (Panel B of Table 6). This demonstrates that 
China has been successful in sending a large number of patent inventors to other countries, while also attracting 
more foreign inventors. This mutually beneficial relationship creates a win-win situation for all involved.

Interaction effect of spatial agglomeration power on international cooperation
As previously stated, the technological overlap indicator, which is based on co-cited patents, illustrates the 
knowledge linkage between Chinese and foreign geographical units. Its impact on the international cooperation 
of patent inventors aligns with the classification effects of spatial agglomeration. However, the bilateral knowledge 
linkage of geographical units has a wider scope and can be observed in various aspects. This raises the question 
of whether these different knowledge linkages have a superimposed effect.

Behrens et al.32 argued that in the exploration of the spatial agglomeration allocation of economic resources 
discussed in ‘new’ new economic geography, the traditional agglomeration effects are intertwined with selection 
effects and classification effects to form a linkage effect. The agglomeration effect is formed by the externalities 
resulting from the proximity of production factors, while the selection effect is the optimization of local factor 
resources that results from market competition. Therefore, in the process of ET cooperation, what type of linkage 
effect will be formed from these factors and technological overlap? To investigate this, we will use an interactive 
model with the following measurement model:

	 InvCoijt = α + β1Overlapijt−3 + β2Mijt + β3Mijt × Overlapijt−3 + F Eit + F Ejt + F Eij + εijt� (2)

Panel A: outflow of Chinese inventors
Panel B: inflow of foreign 
inventors

All countries G7 U.S. G7 excluding U.S. Non-G7 JK BRICS Beijing Shanghai Shenzhen

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Overlapijt−3
0.142***
(2.80)

0.167***
(2.80)

0.325***
(2.80)

0.079**
(2.02)

– 0.006
(– 0.17)

0.088**
(1.99)

0.003
(0.12)

– 0.025
(– 0.47)

0.001
(0.11)

0.025***
(3.46)

r2_a 0.433 0.450 0.530 0.244 0.219 0.195 0.442 0.199 0.173 0.363

FEit,FEit,FEij Yes Yes Yes Yes Yes Yes Yes No No No

FEt,FEj No No No No No No No Yes Yes Yes

N_clust 18,166 5332 1581 3751 12,834 527 4464 586 586 586

N 272,490 79,980 23,715 56,265 192,510 7905 66,960 8790 8790 307,650

Table 6.  Comparison of inventor flow in international cooperation.
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Among them, the interactive item of the adjustment variables M ijt and Overlapijt−3 is newly introduced to 
study the interaction effect of technological overlap and other influencing factors on the scale of international 
cooperation between Chinese and foreign geographical units.

Interaction effect of the scale of existing inventor cooperation and technological overlap
The cooperation between bilateral patent inventors has created a historical legacy that goes beyond their mutual 
understanding and connection. It also includes the dissemination of relevant information, such as personal 
and location data, which spreads through their social network. This spillover effect is amplified by the scale 
of existing inventor cooperation and their spatial proximity, which helps overcome geographical barriers that 
can hinder bilateral inventors from finding innovative partners. When inventors look for collaborators with 
the help of knowledge linkage formed by technological overlap, the agglomeration effect formed by network 
communication strengthens the influence of the classification effect, which positively forms a linkage effect.

To prove this mechanism, this paper introduces the interactive item Overlapijt−3×InvCoijt−3, which shows the 
interaction effect of agglomeration and classification effects in cross-border inventor flow. As shown in column 
(1) of Table 7, in all countries’ samples, the estimated coefficient of the interactive item Overlapijt−3×InvCoijt−3 is 
significantly positive, which means that the scale of existing inventor cooperation and technological overlap have 
formed a positive relationship in the process of promoting the bilateral flow of patent inventors. The interaction 
effect only exists in G7 countries, with a focus on international cooperation between China and the United 
States. However, it significantly impacts ET cooperation between China and BRICS countries, with no significant 
impact on the ET cooperation between China, Japan, and South Korea. This result supports our Hypothesis 2a.

Interaction effect of local technological advantages and technological overlap
The local technological advantages reflect the uniqueness of a particular geographical space in terms of innovation 
environment, resource availability, and allocation efficiency. These factors can be considered as a region’s spatial 
assets46. Local technological advantages can also play a significant role in reducing the information asymmetry 
that often occurs in innovation activities, thus becoming a critical factor in attracting highly-skilled workers.

From the perspective of ‘new’ new economic geography, the region’s technological advantage is the 
comprehensive performance of local innovation resources after optimal allocation through market competition. 
Therefore, it serves as a proxy variable for the selection effect. The question remains whether the selection effect, 
represented by local technological advantages, and the classification effect, represented by technological overlap, 
will form an interaction effect. To measure local technological advantages, this paper uses the cumulative 
ranking of inventors participating in ET patents based on geographical units. If a region’s cumulative number of 
inventors participating in ET patents ranks among the top 20% in the world during the same period, the sub-
administrative geographic units Techadvit (inside China) and Techadvjt (outside China) are assigned a value of 1; 
otherwise, they are assigned a value of 0. The paper then introduces the interactive item Overlapijt−3×Techadvit 
and Overlapijt−3×Techadvjt in the baseline regression equation.

In Table  8, it is evident that the interaction effect of local technological advantages and technological 
overlap between Chinese and foreign geographical units has a significant impact on the scale of international 
cooperation in all countries’ samples. Further analysis reveals that this effect is particularly pronounced in China’s 

All countries G7 U.S. G7 excluding U.S. Non-G7 JK BRICS

(1) (2) (3) (4) (5) (6) (7)

Overlapijt−3
×Techadvit

0.381***
(2.81)

0.451***
(2.92)

0.671***
(3.91)

0.256
(1.64)

– 0.110
(– 1.38)

0.237
(0.89)

0.022
(1.62)

Overlapijt−3
×Techadvjt

0.396***
(2.87)

0.417***
(3.15)

0.603***
(3.02)

0.227**
(2.05)

0.225
(0.93)

0.092
(0.28)

0.041**
(2.33)

r2_a 0.318 0.321 0.550 0.170 0.320 0.160 0.382

FEit,FEjt,FEij Yes Yes Yes Yes Yes Yes Yes

N_clust 18,166 5332 1581 3751 12,834 527 4464

N 272,490 79,980 23,715 56,265 192,510 7905 66,960

Table 8.  Interaction effect of local technological advantages and technological overlap.

 

All countries G7 U.S. G7 excluding U.S. Non-G7 JK BRICS

(1) (2) (3) (4) (5) (6) (7)

Overlapijt−3
×InvCoijt−3

0.290***
(3.76)

0.314***
(4.08)

0.268***
(5.13)

0.266
(1.02)

– 0.133
(– 0.84)

0.009
(0.07)

0.291**
(2.20)

r2_a 0.323 0.326 0.555 0.172 0.319 0.160 0.402

FEit,FEit,FEij Yes Yes Yes Yes Yes Yes Yes

N_clust 18,166 5332 1581 3751 12,834 527 4464

N 272,490 79,980 23,715 56,265 192,510 7905 66,960

Table 7.  Interaction effect of the scale of existing inventor cooperation and technological overlap.
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collaboration with G7 countries, with a focus on international cooperation between China and the United States. 
Moreover, the technological advantages of geographical units outside China play a crucial role in the selection 
of international cooperation partners by Chinese patent inventors. As a result, developing countries can leverage 
the strengths of overseas nations in clean energy and technology to enhance their ET innovation and strengthen 
R&D collaboration with developed countries. This approach can enable them to tackle climate change, expand 
cooperation, and address the challenge of climate change. This result supports our Hypothesis 2b.

Conclusion and policy recommendations
International cooperation in green innovation activities is crucial for achieving global coordinated emission 
reduction. In line with the promotion of green economic growth and energy conservation, China must actively 
introduce innovative talents from overseas to stimulate more green innovations than ever before. While the 
literature has explored the impact of international climate agreements on developing and developed countries’ 
cooperation, few studies have delved into the basis of developing countries’ participation in international 
cooperation in ETs. This paper examines the knowledge linkage between “Local Hotspots” as a bridge to 
attract bilateral innovative talents to international cooperation. By using patent data, we concretize the bilateral 
knowledge linkage into the technological overlap indicator of Chinese Province-Foreign Country pairs. Based 
on the ‘new’ new economic geography framework, we use a high-dimensional fixed effect model to focus on 
the impact of technological overlap on the scale of international cooperation between Chinese and foreign 
geographical units in ETs. Our findings show that technological overlap significantly promotes the scale of 
international cooperation in ETs, with the United States being the most critical partner. Furthermore, we find 
that the scale of existing inventor cooperation and local technological advantages and technological overlap 
formed a positive interaction effect that increases the scale of international cooperation, especially between 
China and G7 countries.

Our study offers practical implications for promoting in-depth cooperation between Chinese and foreign 
inventors. Firstly, the study finds that the technological overlap reflected in the co-cited patents can be an effective 
basis for allocating innovative foreign talents in ETs while promoting Chinese patent inventors to participate 
in global green technology innovation cooperation. This can lead to mutual benefits between developing and 
developed countries. Secondly, by utilizing information on technological overlap in ETs, targeted cooperation 
in ETs can be promoted between Chinese and G7 countries’ inventors, especially between Chinese and United 
States inventors, to maximize the benefits of international cooperation.

Although this study provides empirical evidence on the impact of technological overlap on Chinese inventors’ 
participation in cross-border innovative cooperation within the ET sector, we acknowledge that our analysis 
has its limitations. One limitation is that we solely rely on PCT patent data in the ET sector provided by the 
OECD to construct our technological overlap indicator. This may result in the technological overlap identified 
in this study not fully capturing the knowledge relatedness between China and other countries in ET sector. 
Another limitation is the lack of detailed information on the cited patents, which hinders our ability to explore 
the influence of the structural characteristics of technological overlap on Chinese inventors’ engagement in 
cross-border innovative cooperation in ETs. Future research could integrate the co-cited patent database with 
other databases, such as the United States Patent and Trademark Office (USPTO), the European Patent Office 
(EPO), the China National Intellectual Property Administration (CNIPA), and the Japan Patent Office (JPO), 
to enhance the detailed information available on co-cited patents. Furthermore, attempting to measure codified 
knowledge relatedness through scientific publications holds significant value.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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