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Radiomics based on dual-energy
CT virtual monoenergetic images
to identify symptomatic carotid
plaques: a multicenter study

Weiming Hu'%7, Guihan Lin%7, Weiyue Chen?, Jianhua Wu'?, Ting Zhao'2, Lei Xu3*,
Xusheng Qian®, Lin Shen', Zhihan Yan3*, Minjiang Chen?, Shuiwei Xia?, Chenying Lu?,
JingYang®, Min Xu!, Weigian Chen'? & Jiansong Ji***

This study aims to create a radiomics nomogram using dual-energy computed tomography (DECT)
virtual monoenergetic images (VMI) to accurately identify symptomatic carotid plaques. Between
January 2018 and May 2023, data from 416 patients were collected from two centers for retrospective
analysis. Center 1 provided data for the training (n=213) and internal validation (n=93) sets, and
center 2 supplied the external validation set (n1=110). Plaques imaged at 40 keV, 70 keV, and 100 keV
were outlined, and the selected radiomics features were used to establish the radiomics model. The
classifier with the highest area under the curve (AUC) in the training set generated the radiomics
score (Rad-Score). Logistic regression was used to identify risk factors and establish a clinical model. A
radiomics nomogram integrating the Rad-score and clinical risk factors was constructed. The predictive
performance was evaluated using receiver operating characteristic (ROC) analysis and decision curve
analysis (DCA). Plaque ulceration and plaque burden are independent risk factors for symptomatic
carotid plaques. The 40 + 70 keV radiomics model achieved excellent diagnostic performance, with an
average AUC of 0.805 across all validation sets. Furthermore, the radiomics nomogram, integrating
the Rad-score with clinical predictors, demonstrated robust diagnostic accuracy, with AUCs of 0.909,
0.850, and 0.804 in the training, internal validation, and external validation sets, respectively. DCA
results suggested that the nomogram was clinically valuable. Our study developed and validated a
DECT VMI-based radiomics nomogram for early identification of symptomatic carotid plaques, which
can be used to assist clinical diagnosis and treatment decisions. The study introduces an innovative
radiomics nomogram utilizing DECT VMI to discern symptomatic carotid plaques with high precision.

Keywords Dual-energy computed tomography, Symptomatic carotid plaque, Virtual monoenergetic images,
Radiomics

Stroke is the third most prevalent cause of mortality and disability globally, with approximately seven million
deaths attributed annually, a number that continues to escalate':2. Approximately 20% of ischemic strokes are
attributed to carotid atherosclerosis®. Symptomatic plaques are those that have caused symptoms such as transient
ischemic attacks (TIA) or strokes and are closely linked to ischemic stroke risk>*. Accurate early detection of
these plaques is crucial for guiding timely interventions like medication, lifestyle changes, or surgery, which can
prevent strokes and enhance patient outcomes and quality of life.

Computed tomography angiography (CTA) has the advantages of high spatial resolution and multi-plane
reconstruction and is currently the main method for evaluating carotid atherosclerotic disease. Studies have
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confirmed that CTA-identifiable plaque characteristics such as ulceration, thickness, and remodeling index are
closely related to ischemic stroke risk>. Nevertheless, conventional evaluation methods depend on the expertise
and experience of diagnosticians and need more specific objective quantitative indications. In recent years, dual-
energy computed tomography (DECT) has become increasingly vital in evaluating carotid artery disease. DECT,
utilizing different X-ray voltages, enhances imaging resolution beyond traditional CT; this enables accurate
identification of susceptible calcified and lipid plaques, which is crucial for evaluating carotid stenosis>®~.
Wang et al. created a machine learning algorithm that merged DECT quantitative characteristics and clinical
risk variables to detect symptomatic carotid plaques. They discovered that fat fraction and normalized iodine
density were highly effective in predicting stroke events. Although the imaging capabilities of DECT have
improved significantly, quantitative parameters still need to be measured manually. Therefore, automated and
comprehensive methods must be developed to analyze complex imaging data of carotid artery plaques.

Radiomics utilizes advanced algorithms to transform detailed quantitative attributes from medical imaging
into a high-dimensional, analyzable dataset. This process enhances clinical decision-making by delivering
thorough, precise, and dependable data. Zheng et al. constructed a radiomics-based machine learning model
using conventional CTA to identify patients with symptomatic carotid plaques. The outcomes demonstrated
that the radiomics model much outperformed conventional evaluation techniques'. Recent research has begun
to investigate the significant role of DECT-based radiomics in tumor detection, classification of diseased tissue
subtypes, disease prognosis, and clinical decision-making!'"'2. Despite the successful use of DECT radiomics in
oncology, its potential application in arterial plaque assessment remains largely unexplored.

The presented prediction model, constructed based on different energy level VMI radiomics analyses, is
expected to significantly improve diagnostic efficiency and become an innovative and accurate assessment
tool. Therefore, this study aimed to develop and validate a radiomics nomogram with DECT VMI to detect
symptomatic carotid plaques.

Methods

Patient selection

This study conformed to the ethical standards established by institutional and national medical ethics
committees, as well as the principles outlined in the 1964 Declaration of Helsinki and analogous guidelines.
Approval for this observational study was granted by the Medical Ethics Committees of the Fifth (center 1) and
Second (center 2) Affiliated Hospitals of Wenzhou Medical University (no. 2023-796). Due to its retrospective
design, the requirement for informed consent was waived by the medical ethics committees. Data were collected
from patients diagnosed with and treated for extracranial carotid artery disease at center 1 from January 2018
to May 2023 and center 2 from January 2020 to May 2023. The study included clinical and radiographic data
from patients diagnosed with atherosclerosis. The inclusion criteria were as follows: (1) age>18 years; (2)
carotid artery stenosis exceeding 30% as assessed by the North American Symptomatic Carotid Endarterectomy
Trial (NASCET)'3; (3) DECT CTA examination of the head and neck. Exclusion criteria were: (1) intracranial
posterior circulation symptoms; (2) carotid artery stenosis due to radiotherapy, vasculitis, or other causes; (3)
cardioembolic stroke; (4) history of carotid endarterectomy or stent implantation; (5) CTA indicates abnormal
intracranial arterial lesions; (6) Presence of ulceration on the surface of the ascending aorta and/or significant
aortic arch plaques that substantially affect the branches of the aortic arch; (7) poor image quality. Data from
center 1 included 306 patients, divided into a training set of 213 and a validation set of 93, maintaining a 7:3
ratio. The data from center 2, comprising 110 patients, served as an independent external validation set. Figure 1
illustrates the patient recruitment flowchart.

Classification of cerebrovascular symptoms

Patients were classified into two groups based on their clinical presentations: symptomatic and asymptomatic.
This classification depended on whether they had experienced an acute ischemic stroke (AIS) or a TIA in the
anterior circulation area within the 2 weeks prior to undergoing the CTA examination. AIS is characterized by
neurological impairment lasting over 24 h or by the identification of an acute cerebral infarction via imaging.
TIA is described as a brief episode of neurological dysfunction due to diminished blood flow to specific brain or
retinal regions, typically resolving within 24 h'4. Study participants were each analyzed for a single carotid artery.
For symptomatic patients, the carotid artery consistent with the symptoms was included. For asymptomatic
patients, if both carotid arteries were eligible, the one with more severe stenosis was included.

Clinical data

Patient data that met the inclusion criteria were analyzed, including basic demographic information such as age,
gender, and body mass index (BMI). Laboratory assessments comprised measurements of white blood cell count
(WBC), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and blood glucose (BG). Documented vascular risk factors encompassed
previous diagnoses of coronary artery disease (CAD), hyperlipidemia, diabetes, smoking behaviors, and
hypertension.

Examination methods

Both centers utilized Somatom Force CT scanners (Siemens Healthineers, Germany) for head and neck CTA
examinations. The contrast was achieved using Iopromide, with a concentration of 370 mg I/mL and a 30-40 mL
volume, injected into the antecubital vein at 4-5 mL/s. DECT scanning parameters included a tube voltage of 150
kVp for tube A and 80 kVp for tube B, with automatic tube current modulation enabled. The rotation duration
was set at 0.28 s, and the reconstruction layer thickness and spacing were 0.5 mm, with a pitch of 0.7. After
transferring the data to the Siemens workstation (Syngo.via, version VB20A), three sets of VMI were generated
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Patients over 18 with carotid artery stenosis >30%(NASCET) underwent
dual-energy CTA scans of the head and neck.

Center 1 Center 2
(Jan 2018 - May 2023, n = 532) (Jan 2020 - May 2023, n = 185)

(1) intracranial posterior circulation
symptoms;

Excluded (n=226) (2) carotid artery stenosis caused by Excluded (n= 75)
(1) n=34 radiotherapy, vasculitis and other causes; (Iyn=12
@) n=13 (3) cardioembolic stroke; 2)n=2
(3) n=47 (4) previous carotid endarterectomy and (3)n=14
) n= 67 stent implantation history; ) n=16
(5) n=33 (5) CTA indicates abnormal intracranial (5)n=19
(6)n=11 arterial lesions; (6) n=7
(7)n=21 (6) Presence of ulceration on the surface of (7)n=5

the ascending aorta and/or significant
aortic arch plaques that substantially affect
the branches of the aortic arch;
(7) poor image quality.
Center 1 Center 2
( n = 306) (n=110)
Training Cohort Internal Validation External Validation Cohort
(n=213) Cohort (n =93) (n=110)

Fig. 1. Flow diagram of the study population. NASCET North American Symptomatic Carotid
Endarterectomy Trial.

at 40, 70, and 100 keV energy levels using the “Mono +” program. Measure the Fat Fraction of the plaque using
the “Liver VNC” program. Details of the Fat Fraction measurement method can be found in Appendix E1.

CTA characteristics

Two radiologists with more than 5 years of experience in vascular imaging diagnosis recorded the conventional
CTA characteristics of carotid artery plaques. Consultations were undertaken in circumstances where opinions
differed to reach a consensus. The patient groups were hidden from both evaluators. Mild stenosis <30%;
moderate stenosis, between 30% and 69%; and severe stenosis 70-99%. Patients with mild stenosis were excluded
from the study. The maximum thickness in the CTA’ axial images was identified as the total plaque thickness.
The maximum longitudinal extension of the plaque was called the plaque length. The presence of the contrast
agent, more than 1.0 mm outside the artery lumen, indicated the presence of a plaque ulceration. A remodeling
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index was employed to quantify positive remodeling. This index is calculated as the ratio of the vessel area
at the site of maximal stenosis to an unaffected segment distally, with values exceeding 1 indicating positive
remodeling. At the point of maximum stenosis, the plaque burden was determined using the formula ((1 -
lumen area/vessel area) x 100)"°.

Plaque segmentation and feature extraction

Two independent radiologists used the Radcloud platform to mark the plaque outline layer-by-layer on each
40, 70, and 100 keV image to generate a volume of interest (VOI). After two weeks, 50 patients were randomly
selected from center 1 and drawn independently by two radiologists to evaluate consistency between different
observers. A total of 1688 radiomic characteristics were extracted from each VOI, including shape, first-order,
texture features, and higher-order features derived specifically from wavelet transformations of the original
images. Detailed descriptions of extracted features can be found in Appendix E2. The inter- and intraclass
correlation coefficient (ICCs) were employed to assess the stability of the radiomic traits derived from the VOI.
We considered the features with ICC value exceeded 0.8 as those with high stability and retained them for
subsequent studies.

Feature selection and model construction

The univariate feature selection, variance analysis, and least absolute shrinkage and selection operator (LASSO)
regression were used to identify high-dimensional features. Whereas univariate feature selection targets
characteristics with a significance level of P <0.05, variance analysis includes features if they exceed a threshold of
0.8. LASSO regression is utilized to derive the optimal set of features by screening for the best hyperparameters.
Prior to model construction, z-score standardization was applied to the features to eliminate scale differences
between them. Leveraging these characteristics, the support vector machine (SVM) algorithm was employed
to create three distinct energy models (40 keV, 70 keV, and 100 keV) alongside four combined energy models
(40+70 keV, 40+ 100 keV, 70+ 100 keV, and 40+ 70+ 100 keV) (Figs. S1 and S2). The model that exhibited the
highest mean area under the curve (AUC) in the validation sets was designated the best-performing model.
Results were then translated into a radiomics score (Rad-score). A radiomics nomogram was developed using
a comprehensive method incorporating clinical risk variables with the Rad-score to enhance the prediction
model’s interpretability and accuracy. Figure 2 illustrates the radiomics procedure.

Statistical analysis

Statistical analyses were conducted using R (version 4.1.2, https://www.r-project.org/) and SPSS (version 26.0;
IBM, Armonk, New York). The Shapiro-Wilk test was applied to evaluate the distribution of measurement data.
For comparing groups with normally distributed data, as indicated by mean + standard deviation, independent
t-tests were employed. Conversely, the Mann-Whitney U test was utilized for groups with non-normally
distributed data, which were described using medians and interquartile ranges. Categorical data, presented as
frequencies, were analyzed using the chi-squared test. ROC curves were generated using the “pROC” package,
and the Delong test was adopted to assess differences in the AUCs among various models. The “rms” package
facilitated the creation of nomograms and calibration curves, while decision curve analysis (DCA) was
performed with the “rmda” package. A significance threshold of P<0.05 was established to identify statistically
significant differences.

Results

Patient characteristics and clinical model construction

Statistical analyses revealed significant differences between the symptomatic and asymptomatic groups in the
training set for variables including plaque ulceration, length, Lumen stenosis, severe stenosis, plaque burden,
and Fat Fraction (all P<0.05). Similarly, the internal validation set displayed significant variations in plaque
ulceration, thickness, length, plaque burden, and Fat Fraction (all P<0.05). In the external validation set,
significant differences were also revealed in plaque ulceration, thickness, plaque burden, and Fat Fraction (all
P<0.05) (Table 1). Univariate and multivariate logistic regression analyses identified three independent risk
factors for symptomatic carotid plaque: plaque ulceration (odds ratio [OR]=12.307 [95% CI 4.060, 37.303],
P<0.001), plaque burden (OR=1.057 [95% CI 1.020, 1.094], P=0.002), and Fat Fraction (OR=1.205 [95%
CI 1.061, 1.369], P=0.004) (Table S1). Based on these findings, a clinical model incorporating these factors
yielded AUC values of 0.794, 0.757, and 0.743 across the training, internal validation, and external validation
sets, respectively, as confirmed by ROC analysis (Table 3).

Feature selection and model construction

Each VOI shows a high degree of consistency in all the 1688 features extracted (all ICCs>0.8). After feature
selection, 13, 12, 10, 18, 14, 13, and 21 features were obtained from the three single (40 keV, 70 keV, and 100 ke V)
and four combined (40 + 70 keV, 40 + 100 keV, 70 + 100 keV, and 40 + 70 keV + 100 keV) VMI models, respectively
(Table S2, Fig. S3). Figure 3 displays a heatmap of the correlation coefficients between the features. SVM was
used to establish corresponding models for 40 keV, 70 keV, 100 keV, 40 + 70 keV, 40+ 100 keV, 70+ 100 keV, and
40+ 70 keV +100 keV. The ROC curves constructed to evaluate the predictive capability of the models indicated
that the AUC values ranged from 0.732 to 0.873 in the training set, 0.673 to 0.824 in the internal validation set,
and 0.680 to 0.785 in the external validation set. Among the validation sets, the energy levels of 40 +70 keV
demonstrated the best diagnostic performance, with a mean AUC value of 0.805 (Table 2, Fig. S4).
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Fig. 2. The radiomics workflow. DECT dual-energy computed tomography, VOI volume of interest, LASSO
the Least Absolute Shrinkage and Selection Operator, SVM support vector machine, ROC receiver operating
characteristic curve.

Construction of radiomics nomogram

The radiomics nomogram was constructed based on plaque ulceration (OR=14.497 [95% CI 4.111, 51.125];
P<0.001), plaque burden (OR=1.030 [95% CI 1.004, 1.056]; P<0.05), Fat Fraction (OR=1.188 [95% CI 1.030,
1.371], P<0.05), and Rad-score (OR=359.488 [95% CI 58.550, 2207.199]; P<0.001) (Fig. 4, Table S3). The
plaque signature and Rad-score can be calculated in clinical practice based on the evaluated characteristics. The
probability of the predictive variable was used to construct a fraction that represents the first scale point at the
top of the radiomics nomogram. After adding up the related prediction probabilities, the radiomics nomogram
indicated the plaque risk at the bottom.

Evaluation of radiomics nomogram

The calibration curve (Fig. S5a—c) shows that the estimated probabilities from the radiomics nomogram closely
fit the actual data. In the training set, the AUGC, sensitivity, specificity, and accuracy of the radiomics nomogram
were 0.909, 80.30%, 89.50%, and 86.87%, respectively, as indicated by the ROC results. Corresponding values
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Training set (n=213) Internal validation set (n=93) External validation set (n=110)
Symptomatic Asymptomatic Symp tic Asymp tic Symp tic Asymp tic

Characteristics (n=61) (n=152) P (n=27) (n=66) P (n=43) (n=67) P

Age, years* 73.13+9.12 71.99+8.55 0.404 | 72.70+8.47 70.60+8.25 0280 |72.86+838 71.09+9.13 0.308
Gender, Male (%) 47(77.0) 107(70.3) 0327 | 19(70.3) 42(63.6) 0535 | 34(79.1) 55(82.1) 0.694
BMI, kg/m?* 22.81+3.87 23.27+3.30 0411 |[2243+325 23.39+2.58 0.132 | 23.67+3.99 24.33+3.50 0.364
Smoking (%) 19(31.1) 30(19.7) 0.074 | 8(29.6) 12(18.2) 0223 | 6(14.0) 11(16.4) 0.727
Diabetes (%) 17(27.9) 37(24.3) 0593 | 6(22.2) 11(16.7) 0529 | 17(39.5) 27(40.3) 0.936
Hypertension (%) 42(68.9) 100(65.8) 0.668 | 18(66.7) 43(65.2) 0.889 |[31(72.1) 50(74.6) 0.769
Hyperlipidemia (%) 4(6.6) 7(4.6) 0561 | 4(14.8) 4(6.1) 0.172 | 5(11.6) 11(16.4) 0.487
CAD (%) 5(8.2) 14(9.2) 0.814 | 5(18.5) 8(12.1) 0419 | 2(47) 14(20.9) 0.018
WBC, 10%/L 6.20 (5.05,8.60) 6.55 (5.30,7.90) 0.968 | 6.55 (5.50,7.70) 6.80 (5.80,8.00) | 0.512 |6.43(5.61,7.95) | 6.75(5.72,7.81) | 0.849
TC, mmol/L* 3.94 (3.39,4.74) 426 (3.51,4.91) 0205 | 4.32 (3.56,4.68) 453(3.90,547) | 0.111 |[3.73(3.21,503) | 4.11(3.24,5.06) | 0.472
TG, mmol/L* 1.12 (0.86,1.72) 1.26 (0.88,1.88) 0350 | 1.22(0.99,2.03) 1.52(1.08,2.31) | 0.166 |1.33(0.82,1.73) | 1.23(0.89,1.89) | 0.579
HDL-C, mmol/L* 1.03 (0.82,1.21) 1.02 (0.88,1.23) 0416 | 0.89 (0.77,1.11) 1.03(0.88,1.21) | 0.083 | 1.00(0.84,1.24) | 1.02 (0.78,1.40) | 0.857
LDL-C, mmol/L* 1.89 (1.64,2.80) 224 (1.71,2.79) 0220 | 2.33(1.74,2.80) 220 (1.80,3.13) | 0.469 |226(1.76,3.39) | 2.54(1.753.33) | 0.752
BG, mmol/L* 5.8 (4.77,6.98) 5.53 (5.03,6.40) 0.822 | 556 (4.97,6.57) 5.74(5.03,6.95) | 0.559 |6.84(5.29,9.70) | 6.40(5.39,7.67) | 0.622
Plaque ulceration (%) | 20(32.8) 6(3.9) <0.001 | 8(29.6) 2(3.0) <0.001 | 10(23.3) 3(4.5) 0.003
xfr’liplaque thickness, | 53(333,5.57) 3.98 (3.12,4.96) 0.058 | 4.15(3.72,5.33) 3.61(3.164.88) | 0.008 |522(4.17,634) | 4.44(3.73,5.42) | 0.023
Max plaque length, mm* | 16.00 (10.50,21.50) | 12.00 (7.50,17.00) | 0.001 | 16.00 (10.50,25.00) | 12.00 (7.00,17.50) | 0.034 | 12.60 (9.80,20.30) gfi?go,zaso) 0.157
Lumen stenosis (%)* 57.35 (44.09,69.76) | 50.88 (36.20,59.52) | 0.036 | 53.01 (43.52,62.39) ?26%981,5 6.58) 0.184 ?;1;327,70.90) ?;f:s, 6085 | 0961
Severe stenosis (%) 15(24.6) 11(7.2) <0.001 | 4(14.8) 6(9.1) 0419 | 11(25.6) 16(23.9) 0.840
Plaque burden* 67.67+17.22 56.31+18.00 <0.001 | 66.19+21.77 56.71+18.89 0.038 | 68.65+13.35 62.67+10.89 | 0.012
PR (%) 58(95.1) 134(88.2) 0.125 | 24(88.9) 57(86.3) 0.742 | 43(100.0) 64(95.5) 0.159
Fat Fraction (%)* 15.17+2.26 14.01+3.14 0003 |[1512+2.13 13.85+1.88 0.006 |1543+1.88 14.5242.32 0.035

Table 1. Clinical and CT morphological characteristics of patients in the training and two validation sets.
*Values expressed as mean + standard deviation or median (interquartile range) BMI body mass index, CAD
coronary artery disease, WBC white blood cell, TG triglyceride, TC total cholestero, HDL-C high-density
lipoprotein cholestero, LDL-C low-density lipoprotein cholestero, BG Blood glucose, PR positive remodeling.

in the internal validation set were 0.850, 74.10%, 86.40%, and 82.83%; in the external validation set, they were
0.804, 79.10%, 70.10%, and 73.62%, respectively (Fig. 5a—c; Table 3). The net benefit of the radiomics nomogram
was greater than that of the clinical and radiomics models, as shown by the DCA findings (Fig. 5d-f). The
AUC:s of the clinical and radiomics models were compared with the radiomics nomogram using the DeLong
test. The radiomics nomogram model performed significantly better in the training set than the clinical and
radiomics model (P<0.05). The radiomics nomogram showed a notable improvement over the clinical model in
the internal validation set (P<0.05). However, no statistically significant differences were found in the AUCs of
the three models in the external validation set (P>0.05) (Table S4).

Discussion

Atherosclerotic plaques in the carotid arteries are a significant risk factor for AIS. By developing personalized
treatment plans and early intervention, the risk of cerebrovascular events can be effectively reduced, and
patients’ quality of life and prognosis can be improved. However, current approaches exhibit certain limitations
in identifying symptomatic plaques, including the precise evaluation of plaque composition and determining
plaque vulnerability. This study developed a VMI radiomics fusion model using DECT to facilitate the early
detection of symptomatic carotid plaques. The results show that the model exhibits excellent performance and
good generalization in predicting symptomatic carotid plaque.

CTA is now a standard procedure for assessing carotid artery disease. By transforming large medical imaging
datasets into high-dimensional data and then extracting quantitative parameters for effective data mining and
analysis, radiomics has recently been employed to evaluate lesion images thoroughly and accurately'®. This
technology overcomes the limits of subjective evaluation by utilizing quantitative image analysis techniques
to greatly increase CT exams diagnostic and predictive accuracy'. Predictive analysis of symptomatic
carotid plaques has already been performed using a radiomics model based on traditional CTA. Shi et al.'®
retrospectively analyzed 167 patients with carotid plaques and constructed a radiomics model which performed
slightly better in identifying symptomatic carotid plaques than conventional evaluation (AUC=0.797 vs.
AUC=0.767). However, the performance of such models constructed using conventional carotid artery CTA
is still sub-optimal. Conventional CTA images are susceptible to interference from calcification artifacts in
structures surrounding calcified plaques; plaque composition and stability are difficult to accurately display and
evaluate due to the complexity and overlap of their components. Currently, most of the studies on conventional
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Fig. 3. The thermal diagram of radiomics feature correlation coefficients. Spearman correlation was performed
between the selected features of the 40 keV, 70 keV, 100 keV; 40+ 70 keV, 40 + 100 keV, 70 + 100 keV, and
40+70 keV + 100 keV models. The thermal diagram displays the correlation coefficient between features. The
thermal diagram is used for the prediction of selected characteristics of symptomatic carotid plaque. A positive
correlation is shown by red, and a negative connection is shown by purple. Correlation strength is shown by
color depth.

CTA-based radiomics for identifying symptomatic plaques are single-center and have limited sample sizes,
which limits the generalization and wider applicability of their models. The multi-center nature of this study
significantly enhances the generalizability of the presented radiomics model by improving the diversity and
representativeness of its sample.

DECT generates multi-parameter information through linear combination and material separation
technology to achieve quantitative evaluation of plaques, thus improving the accuracy of risk assessment®. It can
enhance the attenuation of iodine at lower energy levels, replicate the image effects generated by monoenergetic
X-rays, construct VMI images, and improve image contrast'>’. The study’s findings demonstrate the efficacy
of DECT VMI in locating symptomatic plaques. ROC analysis of the training, internal validation, and external
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Training set Internal validation set External validation set Validation set
Model AUC (95% CI) ACC | AUC (95% CI) ACC | AUC (95% CI) ACC | Average AUC | AverageACC
40 keV 0.822 (0.764-0.871) | 75.12 | 0.749 (0.648-0.833) | 70.97 | 0.735 (0.642-0.814) | 70.91 | 0.742 70.94
70 keV 0.806 (0.747-0.857) | 82.63 | 0.726 (0.624-0.814) | 79.57 | 0.715 (0.621-0.797) | 67.28 | 0.721 73.43
100 keV 0.732 (0.667-0.790) | 69.95 | 0.673 (0.568-0.767) | 66.67 | 0.680 (0.584-0.766) | 67.28 | 0.677 66.98
40+70 keV 0.873 (0.820-0.914) | 80.28 | 0.824 (0.731-0.895) | 79.57 | 0.785 (0.696-0.858) | 79.09 | 0.805 79.33
40+100 keV 0.840 (0.784-0.887) | 76.53 | 0.675 (0.570-0.769) | 67.75 | 0.748 (0.656-0.826) | 69.09 | 0.712 68.42
70+100 keV 0.829 (0.772-0.877) | 84.97 | 0.793 (0.696-0.870) | 76.35 | 0.762 (0.671-0.838) | 76.36 | 0.778 76.36
40+70+100 keV | 0.833 (0.776-0.880) | 74.65 | 0.781 (0.683-0.860) | 76.34 | 0.768 (0.678-0.844) | 77.23 | 0.775 76.79

Table 2. Diagnostic performance of various machine learning-based radiomics models. AUC area under the
curve, CI confidence interval, ACC accuracy.

validation sets indicated that the DECT VMI model surpassed the radiomics models based on conventional
DECT CTA images and traditional CTA assessment in prediction performance. The 40 keV low-energy VMI
model outperformed the other models, achieving AUC values of 0.822, 0.749, and 0.735 in the training, internal
validation, and external validation sets, respectively. The exceptional performance of this energy level is largely
due to its proximity to the K edge of iodine (33 keV), which significantly enhances the contrast of blood
vessels and improves the visibility of anatomical structures and plaques. Furthermore, the greatest attenuation
difference between tissues occurs at low energy levels, which is advantageous for lesion detection?!. Li et al. used
DECT VMI at various energy levels to examine plaque pathology in patients having carotid endarterectomy;
they discovered that DECT VMI at 40 keV had the highest accuracy in determining carotid plaque susceptibility,
reaching 90.4%%2. This study shows low-energy VMI can enhance diagnostic outcomes and maximize image
quality. Conversely, the 100 keV high-energy VMI performance was the lowest of all the models. Although it
has been demonstrated that high-energy VMI reduces foreign metal artifacts, contrast agent inflow, and beam
hardening artifacts caused by plaque calcification in carotid artery imaging, poor overall performance occurs
as the energy level increases due to a decrease in tissue contrast and iodine attenuation value®**?*. Combining
VMI at various energy levels increases the efficiency of the radiomics model in identifying symptomatic plaques,
enriches the input characteristics, and provides consistent, high-quality data for radiomics analysis'®. The
40+70 keV radiomics model demonstrated superior performance in this research, with AUC values of 0.873,
0.824, and 0.785 in the training, internal validation, and external validation sets, respectively.

According to the American Society of Neuroradiology and the European Society of Cardiology, the risk
of stroke is significantly influenced by the composition and degree of stenosis of carotid artery plaques®*2°.
This study found significant differences in Fat Fraction, plaque burden and ulceration between symptomatic
and asymptomatic patient groups. With respect to training, internal validation, and external validation sets, a
clinical model that was built using these plaque features performed moderately (AUC: 0.794, 0.757, and 0.743,
respectively). This result suggests that conventional plaque characterization is insufficient for reliably identifying
symptomatic carotid plaques in clinical practice. In this study, we used DECT parameters to measure plaque
Fat Fraction and found higher levels in the symptomatic group. This may relate to lipid core formation and
enhanced inflammation, consistent with findings by Wang et al.’, suggesting fat content as a key indicator of
plaque stability. Plaque burden, a critical measure of stenosis and vascular remodeling, surpasses the importance
of stenosis evaluation alone?®. Symptomatic patients exhibited greater plaque burden, correlating with ischemic
stroke presence and severity, consistent with previous research?”?%. A significant plaque burden can lead
to a hypoperfusion state, which is closely linked to a heightened risk of ischemic stroke. Plaque ulceration,
indicating plaque vulnerability, increases stroke risk even in cases of mild stenosis and may result in neurological
symptoms?*3°. Ulceration is more often observed in symptomatic patients, reflecting its function as an indicator
of plaque rupture and a predictor of stroke risk®*2. According to a meta-analysis, ulceration doubles the risk of
ischemic stroke, most likely as a result of thrombus development at the ulcer site and hemodynamic alterations™.

In order to address the above challenges, many studies have begun to explore radiomics nomograms that
combine clinical and radiomics features to improve the model’s predictive and diagnostic performance™***. This
comprehensive method not only increases the model’s accuracy, but also makes the radiomics nomogram much
easier for clinicians to use and comprehend, which helps medical professionals create more accurate treatment
regimens®. The CTA-based radiomics nomogram developed by Liu et al. demonstrated high diagnostic
accuracy in identifying high-risk carotid plaques®*. To further enhance the accuracy of predicting symptomatic
carotid artery lesions, we developed a radiomics nomogram in this study by integrating conventional clinical
features with DECT VMI radiomics parameters. The model demonstrates strong predictive performance across
the training, internal validation, and external validation sets, achieving AUC values of 0.909, 0.850, and 0.804
respectively. The radiomics nomogram shows great potential in clinical decision support due to its high accuracy
and reliability. It aids in the early identification of high-risk patients and supports the implementation of tailored
interventions to mitigate the risk of stroke.

This study has several limitations. First, its retrospective nature suggests that a prospective study is needed
to assess the model more accurately. Second, the VOI was obtained through manual segmentation and has yet
to be automated. Third, only one commonly used machine learning classifier was employed; the effectiveness
of other classifiers in detecting symptomatic carotid plaques requires further investigation. Additionally, the
study did not account for the potential influence of collateral circulation from the contralateral carotid artery
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Fig. 4. (a) Radiomics nomogram. The radiomics nomogram, combining Fat Fraction, plaque burden, plaque
ulceration, and Rad-score, was constructed in the training set. (b—e) For each below figure, a patient with
symptomatic carotid plaque was selected as an example to illustrate the function of the radiomics nomogram.
(b) Magnetic resonance diffusion-weighted imaging demonstrates a left-sided ischemic stroke in this patient.
(c) Sagittal CTA reconstruction shows an internal carotid artery plaque (long arrow) and plaque ulceration
(short arrow). (d) Axial CTA shows an internal carotid artery plaque near the internal carotid artery lumen
with plaque ulceration (long arrow). (e) Using the “Liver VNC” program, measure the Fat Fraction of the
plaque. Table showing predicted probability for this patient using radiomics nomogram.
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Fig. 5. ROC curves of clinical model, radiomics model, and radiomics nomogram in the training set (a),
internal validation set (b), and external validation set (c). Decision curves of the training set (d), internal
validation set (e), and external validation set (f). The y-axis represents net benefits; the x-axis represents
threshold probability. The yellow, blue, and red lines represent the net advantages of the radiomics model,
clinical model, and radiomics nomogram. The radiomics nomogram outperformed the clinical and radiomics
models in terms of the total net benefit in distinguishing symptomatic carotid plaques. AUC area under the
curve, ROC receiver operating characteristic.

Models AUC (95% CI) SEN (%) | SPE (%) | ACC (%)
Clinical model 0.794 (0.734-0.847) | 77.05 71.05 72.77
Training set Radiomics model 0.873 (0.820-0.914) | 83.61 78.95 80.28
Radiomics nomogram | 0.909 (0.862-0.944) | 80.30 89.50 86.87
Clinical model 0.757 (0.657-0.840) | 51.90 92.40 80.64
Internal validation set | Radiomics model 0.824 (0.731-0.895) | 74.07 81.82 79.57
Radiomics nomogram | 0.850 (0.761-0.915) | 74.10 86.40 82.83
Clinical model 0.743 (0.651-0.822) | 53.50 85.10 72.75
External validation set | Radiomics model 0.785 (0.696-0.858) | 79.07 79.10 79.09
Radiomics nomogram | 0.804 (0.718-0.874) | 79.10 70.10 73.62

Table 3. Diagnostic performance of clinical model, radiomics model and radiomics nomogram. AUC Area
under the curve, CI confidence interval, SEN sensitivity, SPE specificity, ACC accuracy.
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on hemodynamics, which limits the interpretation of results. Future studies should consider using advanced
techniques, such as 4D flow MR, to evaluate bilateral carotid arteries and further validate the findings.

Conclusions

In conclusion, this study utilized DECT VMI at various energy levels to develop a radiomics nomogram for
identifying symptomatic carotid plaques. The model’s outstanding predictive performance was confirmed
through internal and external validation sets. Integrating conventional plaque features could further enhance
recognition performance. In the future, it is expected to become a valuable tool for carotid plaque risk
stratification and early intervention to prevent cerebrovascular events.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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