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Closed circuit artificial intelligence
model named morgaf for
childhood onset systemic lupus
erythematosus diagnosis
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Systemic Lupus Erythematosus (SLE) is a chronic, autoimmune disease characterized by multiple
organ involvement and autoantibodies, and its diagnosis is not easy in clinical practice. Pediatric SLE
(pSLE) is diagnosed using the SLICC 2012 criteria for adult SLE patients. Our study aims to develop a
closed computer-based Al model to assist clinicians in diagnosis. Fifty pSLE patients followed up in
Hacettepe University Pediatric Rheumatology Outpatient Clinics, and 50 healthy individuals similar

to them in terms of age and gender were included in the study. Data sets, including clinical and
laboratory findings of the individuals at the time of diagnosis, were given as input to the Al model.
Python@ software language and Tensorflow® Al library were preferred for model development. The
concept of neural networks (NN) is increasingly common in Al studies. Morgaf (the name of the Al
model) used the recurrent neural network (RNN) model, which remembers previous inputs during
training, leading to lower error rates. Patient data was digitized and used to train the model, which
consists of 1024 neurons. The model’s error rate decreased from 0.5 to 0.028 during training, leading
to successful predictions compared to expert interpretations. Thirty case data (data utterly foreign to
the model) were given to Morgaf and simultaneously to expert pediatric rheumatologists, and their
interpretations were compared. Prediction success was evaluated by performing regression analyses
between both groups. Morgaf accepted 70% and above as a definitive diagnosis of pSLE, averaging
93% (78-98%). It defined 10% and below for a completely healthy case; the average was 1% (0-3%). To
recognize diseases requiring follow-up, he set himself a range of 10-70% and estimated the mean to be
33% (15-47%). There was no difference between Morgaf’s estimates and actual diagnoses (p=0.297).
Morgaf was 100% successful in recognizing lupus disease. This rate was the same as the diagnostic
understanding of clinicians. Morgaf (93.3%) gave more precise recommendations for non-lupus cases
than clinicians (70%) (p = 0.034). Regression analysis showed that Morgaf (y =0.9264xi) was more
successful in non-selective prediction than clinicians (y = 0.7322xi). Our study is the first in the literature
to develop and test an Al model as a diagnostic tool for pSLE. In this cohort, Al model was at least as
successful as pediatric rheumatologists in differentiating pSLE patients from healthy controls and non-
pSLE patients. With this study, we have shown that Morgaf may help clinicians with diagnostic and
differential diagnoses.
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Systemic Lupus Erythematosus (SLE) is a systemic rheumatic disease with multiorgan involvement that takes
a long time to diagnose and, therefore, causes delays in treatment"2. The diagnostic process of pediatric SLE
(pSLE) and all childhood rheumatologic diseases may take time due to the need for more objective findings
and clinician dependence!*. In recent years, Artificial Intelligence (AI)—based systems have been developed to
support clinicians in many areas*. One of the most important reasons for this is the low number of pediatric
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rheumatologists (PRs) compared to the population®®. On the other hand, clinics that treat urinary tract
infections and skin diseases, which are common in the pediatric age group, can often be confused with pSLE®.

Another problem is that patients cannot be followed up in the triage system due to a lack of records. Even
if patients reach PRs, the diagnostic process may take months because there are no specific diagnostic criteria
for childhood SLE patients’. When all these problems are evaluated, the pSLE diagnosis process should be
digitalized, and a model free of existing issues should be developed®!?. We aim to establish an Al-supported
model that helps PRs and physicians in all fields diagnose pSLE.

Materials and methods

Study group and design

Fifty pSLE patients followed up in Hacettepe University Pediatric Rheumatology Outpatient Clinics, and 50
healthy individuals similar to them in terms of age, gender, and sociocultural characteristics were included in
the study. Clinical data of the patients were obtained from the hospital automation system. The healthy control
group was selected from the patients’ peers (usually schoolmates or peers living in the same neighborhood).
Since the clinical and laboratory data of lupus patients were evaluated at the time of diagnosis, blood samples
were not taken from the patients and were not examined. The information of the individuals participating in the
study was recorded in an offline computer-based data set. Access to the dataset was restricted except for those
conducting the survey.

The study used fully anonymized pSLE patient data previously used by the Department of Pediatric
Rheumatology of Hacettepe University Faculty of Medicine and had official approval from the relevant
department. Written and verbal consent was obtained from all patients for these previously used data
for different studies. For this purpose, patients were invited to Hacettepe University Faculty of Medicine,
Department of Pediatric Rheumatology, for one-on-one information, and their signatures were obtained on
the 'informed consent form’ after verbal and written information was given. For participants who did not come
to the department in person, the relevant consent files were sent to their e-mails after verbal information and
approval by telephone, and their data were used if the signed files were scanned and delivered to us. All study
methods were carried out following the relevant guidelines and regulations. In addition, an approval from the
Ethics Committee of Hacettepe University Health Sciences Ethics Committee dated 09.24.2024 and numbered
E-24742385-000-00003782004 was obtained.

The study design was planned to be double-blind. Thirty mixed-diagnosis cases (data entirely foreign for the
model and the clinician) were submitted to the AI model, a concurrent expert pediatric rheumatologist (PR)
and their interpretations were compared. The PR whose responses were compared with the AT model was utterly
unfamiliar with the study and the data presented. Of these data, 15 were pSLE cases, 10 were healthy controls,
and three were followed-up individuals with only anti-nuclear antibody (ANA) and anti-double stranded DNA
(anti-ds-DNA) positivity and no other clinic. One was a newly diagnosed, untreated individual with acne rosacea
who developed a skin infection due to secondary Staphylococcus epidermidis. Another patient had a urinary
tract infection due to an adenovirus infection.

Al-based closed model

The reason for choosing the AI Closed Model is the law on 'Protection of Personal Data’ in force in Turkey'!.
According to this law, data processing and evaluation cannot be shared with third parties, institutions, and
organizations'%. Online Al-based applications or correspondence sites cannot be used to process sensitive data
such as patient information. Therefore, although the model created has autonomous features, it can never be
processed in online systems. Python software and Tensorflow were preferred for model development due to
their ease of use in medicine and healthcare today'*!*. We also chose these resources for developing the model
because they have been used in medicine and many other data-processing fields for years with almost negligible
error rates. The model was named ‘Morgaf’ by Dr. Emil Aliyev, M.D., M.S. (hereafter, the AI model will be
referred to as Morgaf). With this name, an application has been made to the Turkish Patent and Trademark
Office, and the patenting process is ongoing'>.

The concept of a ‘Neural Network’ (NN) is becoming increasingly widespread in Al studies'*. NNs consist of
neurons and are structures that calculate and produce output with a predetermined mathematical function. In
the development of Morgaf, the 'Recurrent Neural Network’ (RNN) model was preferred (Fig. 1)*°.

The most important difference between the RNN and other networks is that while training the model and
processing the inputs at Th, it also remembers the inputs at Tn-1 (Fig. 2) (Tn is any time unit).

This feature makes the error rates on the network much lower than other models. The laboratory and clinical
results of the patients were digitized as 1 (abnormal), 0 (normal range), and — 1 (abnormal). Data sets containing
clinical and laboratory findings of individuals at the time of diagnosis were given as input to Morgaf. Morgaf is
designed as an RNN model that constructs an NN with 1024 neurons (Fig. 1). The model needs many inputs to
‘learn’ the data. A total of 100 data sets is generally insufficient to build a closed-loop AI model.

For this reason, the 100 data sets were increased 15 times to 1500 with repetitions, 80% of which were
reserved as training data and 20% as validation data. Training data is the data that Morgaf continuously ‘repeats’
during the learning process to ‘train’ itself. Validation data is the data that Morgaf checks itself after momentary
training (Fig. 3).

In the early training phase of Morgaf’s training, the error rate was approximately 0.5. In the later generations
of the model, the error decreased to 0.028. This error rate was deemed sufficient, and Morgaf’s training phase
was terminated. Training continued autonomously in the latent phase. Autonomous training in RNN models
such as Morgaf is essential for continuous self-evaluation and error outputs.

It is essential to interpret the outputs to understand the ‘language’ of Morgaf. According to the output Morgaf
at the end of the training, a diagnosis was predicted to be between 0 and 100%. Accordingly, it was seen that
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Fig. 1. Schematic description of Morgaf’s RNN model. SLE: Systemic Lupus Erythematosus, HC: Healthy
Control, RNN: Recurrent Neuron Network.
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Fig. 2. Graphical description of the data processing interval of Morgaf’s RNN in units of time. Tanh;
hyperbolic tangent function of any unit of the time.
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Fig. 3. Schematization of Morgaf’s process of teaching itself from limited data. pSLE: Pediatric Systemic Lupus
Erythematosus, HCs: Healthy Controls.

Morgaf determined the output as 70% and above to say definitive diagnosis pSLE, 10% and below to say healthy
individual, and 10-70% in cases that require follow-up and in between (definitive pSLE and not healthy, but
need to be followed up). Thus, the beta version of Morgaf was made ready.

Data redundancy was avoided so that Morgaf could most accurately recognize pSLE. Based on the ‘mental
algorithms’ of clinicians when diagnosing pSLE, Morgaf was taught the clinical and laboratory data that are key
to the diagnosis (Table 1). For example, instead of the amount of protein in the urine, the clinician was taught
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Parameters ‘ Learning criterion ‘ Learning inputs ‘ Outputs ‘ Presence in the patient
Sociodemographic data

Age at diagnosis ‘ Year; numeric value ‘ Numeric ‘ Numeric ‘ Mandatory
Organ involvement at the time of diagnosis

Skin Yes/No Oand1 from 0 to 1 | Not mandatory
Renal Yes/No Oand 1 from 0 to 1 | Not mandatory
Bone Marrow Yes/No Oand 1 from 0 to 1 | Not mandatory
Central Nervous System Yes/No Oand 1 from 0 to 1 | Not mandatory
Joint(s) Yes/No Oand 1 from 0 to 1 | Not mandatory
Liver Yes/No Oand 1 from 0 to 1 | Not mandatory
Presence of painless aphthae Yes/No Oand1 from 0 to 1 | Not mandatory
Presence of serositis Yes/No Oand 1 from 0 to 1 | Not mandatory
Eye Yes/No Oand 1 from 0 to 1 | Not mandatory
Intestinal Yes/No Oand1 from 0 to 1 | Not mandatory
Systolic blood pressure (mm Hg) | 80-110 is normal. Other parameters are abnormal -1,0and 1 from 0 to 1 | Not mandatory
Diastolic blood pressure (mm Hg) | 60-80 is normal. Other parameters are abnormal —-1,0and 1 from 0 to 1 | Not mandatory
Laboratory results at the time of diagnosis

Hemoglobin (gr/dL) Typical range: 13-17. Other parameters are abnormal -1,0and 1 from 0 to 1 | Mandatory
Leukocyte (/mm?®) Typical range: 5000-13,200. Other parameters are abnormal -1,0and 1 from 0 to 1 | Mandatory
Lymphocyte value (/mm?) Typical range: 2000-6000. Other parameters are abnormal -1,0and 1 from 0 to 1 | Mandatory
Neutrophil value (/mm?) Typical range: 2000-8300. Other parameters are abnormal -1,0and 1 from 0 to 1 | Mandatory
Platelet value (/mm?®) Typical range: 190,000-400,000. Other parameters are abnormal | -1, 0 and 1 from 0 to 1 | Mandatory
CRP value (mg/dL) Typical range: 0-0,5. Other parameters are abnormal Oand 1 from 0to 1 | Not mandatory
ESR value (mm/h) Typical range: 0-20. Other parameters are abnormal Oand1 from 0 to 1 | Not mandatory
Urine density Typical range: 1003-1020. Other parameters are abnormal -1,0and 1 from 0 to 1 | Not mandatory
Presence of hematuria in urine Yes/No Oand 1 from 0 to 1 | Not mandatory
Presence of ketones in urine Yes/No Oand1 from 0 to 1 | Not mandatory
Presence of pyuria in urine Yes/No Oand 1 from 0 to 1 | Not mandatory
Presence of proteinuria in urine Yes/No Oand 1 from 0 to 1 | Not mandatory
BUN (mg/dL) Typical range: 5-18. Other parameters are abnormal —1,0and 1 from 0 to 1 | Not mandatory
Creatinine (mg/dL) Typical range: 0,5-1,2. Other parameters are abnormal -1,0and 1 from 0 to 1 | Not mandatory
Complement C3 (mg/dL) Typical range: 88-230. Other parameters are abnormal —-1,0and 1 from 0 to 1 | Mandatory
Complement C4 (mg/dL) Typical range: 13-73. Other parameters are abnormal -1,0and 1 from 0 to 1 | Mandatory
ANA If titer is < 1/40: negative, > 1/40 is positive Oand1 from 0 to 1 | Mandatory
Anti-ds-DNA (IU/mL) Typical range: 0-5. Other parameters are abnormal Oand1 from 0 to 1 | Mandatory
B2GPA IgG (U/mL) Typical expect result is zero. Other parameters are abnormal Oand 1 from 0 to 1 | Not mandatory
B2GPA IgM (U/mL) Typical expect result is zero. Other parameters are abnormal Oand1 Oand 1 Not mandatory
ACLA IgG (U/mL) Typical expect result is zero. Other parameters are abnormal Oand1 Oand1 Not mandatory
ACLA IgM (U/mL) Typical expect result is zero. Other parameters are abnormal Oand1 Oand 1 Not mandatory

Table 1. pSLE patient data used in the development and training of Morgaf and its digitalization. CRP,
C-reactive Protein; ESR, Erythrocyte Sedimentation Rate; BUN, Blood Urine Nitrogen; ANA, Anti-nuclear
antibody; Anti-ds-DNA, anti-double stranded DNA; B2GPA, Beta-2-glycoportein Antibody, ACLA, Anti-
Cardiolipin Antibody.

whether it was present or absent, and instead of the titer of ANA. The clinician was taught whether it was positive
or negative. As a matter of fact, in practice, clinicians continue their diagnostic algorithms by considering an
ANA value above 1/40 as positive!”. This is one of the most critical steps model builders take when developing
an Al model. Because it is not the number of data given for a single patient, making it possible to reach the target
with fewer data is the key to the model’s success. In this context, the most important clinical and laboratory data
of pSLE patients at diagnosis were used to create the model (Table 1).

In addition to Morgaf and PR having a 100% case recognition rate, their median responses for each case
ranged from 0 to 100%. For example, when predicting a patient with SLE, Morgaf said 83.21% for this patient.
Since it was in the range of 70-100%, he correctly recognized the SLE patient. Since the clinician was answering
whether the patient had SLE or not, we expected the clinician to express a percentage value for each case, so
unlike Morgaf, his answers ranged from 0 to 100%. However, because it correctly predicted all SLE patients, the
accuracy percentage was 100%. Another critical step is quantifying these data in a way Morgaf can learn. The
inputs were then presented to Morgaf.
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Data content Developed limits for interpretation (%) | Outputs (%) (min-max (%)) | Accurate prediction ability (%)
Definitive diagnosis pSLE >70 93 (78-98) 100
Healthy person <10 1(0-3) 100
Disease requiring follow-up (non-pSLE) | 10-70 33 (15-47) 100

Table 2. Case recognition boundaries and results of the Model’s training. pSLE, Pediatric Systemic Lupus

Erythematosus.
Case groups | Morgaf’s response success (%) | Clinician response success (%) | p value
pSLE 100 100 0.297
non-pSLE 93 70 0.034
HCs 100 100 0.422

Table 3. Comparison of Morgaf and clinician responses. pSLE, Pediatric Systemic Lupus Erythematosus; HCs,
Healthy Controls.

Statistical analysis

The study data were computerized and analyzed using the Statistical Package for Social Sciences for Windows
version 22.0 (SPSS Inc, Chicago, IL)!8. Visual (histograms and probability plots) and analytical methods
(Kolmogorov-Smirnov/Shapiro-Wilk Test) showed that the variables measured in the study did not fit a normal
distribution. Mann-Whitney U test was used to compare the variables between two independent groups.
The statistical significance level was accepted as p <0.05. Levene’s correlation analysis tested for homogeneity
of variances and non-normally distributed variables, and variables with a correlation coefficient<0.1 were
considered uncorrelated. Prediction success was evaluated by performing regression analyses between both
groups.

Results
Morgaf accepted 70% and above as a definitive diagnosis of pSLE, and the mean percentage of diagnosis was
93% (78-98%). Morgaf received 10% and below to call it a completely healthy case; the average was 1% (0-3%).
Morgaf assigned himself a range of 10-70% to recognize diseases requiring follow-up; the average was 33% (15-
47%). Morgaf correctly recognized all cases of pSLE, healthy individuals, and definite non-pSLE cases (Table 2).
There was no difference between Morgaf’s estimates and actual diagnoses (p=0.297). It was 100% successful
in recognizing lupus disease. This rate was the same as the diagnostic success rate of clinicians. Morgaf (93.3%)
gave more precise recommendations for non-lupus cases than clinicians (70%) (p=0.034) (Table 3).
Covariance analysis was performed to test the homogeneity of the variables (p=0.792). Linear regression
analysis was performed for both homogeneously distributed groups and tested with Levene (p=0.147).
Regression analysis showed that Morgaf (y=0.926x,) was more successful in predicting findings than clinicians
(y=0.7322x,).

Discussion

Al-based models have been used in many areas of medicine!®. AT models are increasingly invested in medicine
as time goes by?’. Although Al and deep learning models have been developed in medicine, unlike other fields,
these models have not been implemented*. Especially in imaging, tools that evaluate radiological images through
U-net software and help clinicians are familiar?!. Al models that analyze and predict magnetic resonance imaging,
direct radiography, and ultrasound images are standard??-26. However, all of these are applied in clinical practice
in the clinics where the study was conducted, and they are not widely used!®?°. The main obstacle to this is the
legal barriers to sharing data with other clinics and that the data are generally online-based Al models?’. As the
name suggests, online AI models can use all online data?®?. Typically, applications that help diagnose symptom
inputs are based on these models?. However, we know that patients and their complaints are individual. If the
answers are not obtained from reliable sources or cannot be monitored, these applications may be biased and
raise ethical issues such as violating personal data®. Therefore, our model is an offline model. This aligns with
the data protection principle®!. Apart from this, our model does not process data from online databases or online
sources when making comments. The model can only work on the data we provide. That is, it can comment on
the data of pSLE patients.

Apart from Al models that analyze and interpret images, the second most frequently used area is the analysis
of large data sets and models based on prediction development®*?®. This is natural because we know that Al
models require a lot of data in terms of data processing. However, this is a speed-limiting step in areas such
as rheumatology, where the number of patients and data are scarce’>. When we developed Morgaf, we tried to
solve the problem of how to train a model from limited data. We replicated the data by fully randomized and
subsequently validated by the clinician to verify that they were similar to accurate patient data. Of course, this
can be considered a limitation of the model since we created synthetic data. Still, it should be remembered that
data scarcity is a severe problem in most fields of medicine, and it is essential to prevent this. This interpretation
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Fig. 4. Schematic description of Morgaf’s functioning as an AI model.

of Morgaf makes it unique. Of course, we are aware that more real patient data would train the model better.
Therefore, larger data sets and prospectively designed studies are needed.

Another research topic in rheumatology is applications that lead from symptom to diagnosis?*3. Since
these models are also online, they cause severe ethical problems due to violating personal data and biased
interpretation®. Morgaf, the model we developed, is an offline model.

Interestingly, Morgaf, when comparing thirty completely unfamiliar data sets with the clinician’s
interpretations simultaneously, recognized non-pSLE cases (Fig. 1), unlike the clinician, even though we had yet
to teach it to do so. This showed that Morgaf could easily differentiate between other clinics as it had ‘learned’
the data of pSLE and healthy individuals, so much so that it could make better comments than the clinician. It
is possible to ‘teach’ Morgaf visual data, such as pathology preparations of pSLE patients, in the future so that it
can be a more successful model. However, at this stage, we preferred to use a single programming language and
library as it would reduce the model’s chances of success when processing complex data. This can be considered
a limitation of our model in fully recognizing pSLE disease. This model also needs to be tested in multiethnic
cohorts and in other centers.

It is worth noting that Morgaf was well acquainted with childhood-onset SLE patients but not with other
differential diagnoses. Furthermore, the model has not been tested in adult SLE patients. This was important to
create the contrast between intact control and SLE that we needed when training the model. However, providing
specific clinical and laboratory data on autoimmune, hematologic, infectious and many other diseases with
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differential diagnosis of SLE during the training of the model could enable the model to become a robot that
more sharply recognizes SLE in real time. This is an important limitation of our study.

Morgaf is the first AI model in the literature to be developed from limited data and successful in pediatric
rheumatology and pSLE disease. The model is under development and is expected to be successful as a cost-
effective model. If integrated into hospital automation systems (Fig. 4), it is predicted that the model may lead
to earlier diagnosis of pSLE patients, including non-specialty clinicians, significantly reducing hospital costs.

Data availability
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Ltd. Co. The relevant contact details are as follows: Address: Buyukesat Dsrt, Kaptanpasa St., Ap: 11, No: 6, F:
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