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Systemic Lupus Erythematosus (SLE) is a chronic, autoimmune disease characterized by multiple 
organ involvement and autoantibodies, and its diagnosis is not easy in clinical practice. Pediatric SLE 
(pSLE) is diagnosed using the SLICC 2012 criteria for adult SLE patients. Our study aims to develop a 
closed computer-based AI model to assist clinicians in diagnosis. Fifty pSLE patients followed up in 
Hacettepe University Pediatric Rheumatology Outpatient Clinics, and 50 healthy individuals similar 
to them in terms of age and gender were included in the study. Data sets, including clinical and 
laboratory findings of the individuals at the time of diagnosis, were given as input to the AI model. 
Python® software language and Tensorflow® AI library were preferred for model development. The 
concept of neural networks (NN) is increasingly common in AI studies. Morgaf (the name of the AI 
model) used the recurrent neural network (RNN) model, which remembers previous inputs during 
training, leading to lower error rates. Patient data was digitized and used to train the model, which 
consists of 1024 neurons. The model’s error rate decreased from 0.5 to 0.028 during training, leading 
to successful predictions compared to expert interpretations. Thirty case data (data utterly foreign to 
the model) were given to Morgaf and simultaneously to expert pediatric rheumatologists, and their 
interpretations were compared. Prediction success was evaluated by performing regression analyses 
between both groups. Morgaf accepted 70% and above as a definitive diagnosis of pSLE, averaging 
93% (78–98%). It defined 10% and below for a completely healthy case; the average was 1% (0–3%). To 
recognize diseases requiring follow-up, he set himself a range of 10–70% and estimated the mean to be 
33% (15–47%). There was no difference between Morgaf’s estimates and actual diagnoses (p = 0.297). 
Morgaf was 100% successful in recognizing lupus disease. This rate was the same as the diagnostic 
understanding of clinicians. Morgaf (93.3%) gave more precise recommendations for non-lupus cases 
than clinicians (70%) (p = 0.034). Regression analysis showed that Morgaf (y = 0.9264xi) was more 
successful in non-selective prediction than clinicians (y = 0.7322xi). Our study is the first in the literature 
to develop and test an AI model as a diagnostic tool for pSLE. In this cohort, AI model was at least as 
successful as pediatric rheumatologists in differentiating pSLE patients from healthy controls and non-
pSLE patients. With this study, we have shown that Morgaf may help clinicians with diagnostic and 
differential diagnoses.
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Systemic Lupus Erythematosus (SLE) is a systemic rheumatic disease with multiorgan involvement that takes 
a long time to diagnose and, therefore, causes delays in treatment1,2. The diagnostic process of pediatric SLE 
(pSLE) and all childhood rheumatologic diseases may take time due to the need for more objective findings 
and clinician dependence1,3. In recent years, Artificial Intelligence (AI)—based systems have been developed to 
support clinicians in many areas4,5. One of the most important reasons for this is the low number of pediatric 
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rheumatologists (PRs) compared to the population6–8. On the other hand, clinics that treat urinary tract 
infections and skin diseases, which are common in the pediatric age group, can often be confused with pSLE6.

Another problem is that patients cannot be followed up in the triage system due to a lack of records. Even 
if patients reach PRs, the diagnostic process may take months because there are no specific diagnostic criteria 
for childhood SLE patients9. When all these problems are evaluated, the pSLE diagnosis process should be 
digitalized, and a model free of existing issues should be developed4,10. We aim to establish an AI-supported 
model that helps PRs and physicians in all fields diagnose pSLE.

Materials and methods
Study group and design
Fifty pSLE patients followed up in Hacettepe University Pediatric Rheumatology Outpatient Clinics, and 50 
healthy individuals similar to them in terms of age, gender, and sociocultural characteristics were included in 
the study. Clinical data of the patients were obtained from the hospital automation system. The healthy control 
group was selected from the patients’ peers (usually schoolmates or peers living in the same neighborhood). 
Since the clinical and laboratory data of lupus patients were evaluated at the time of diagnosis, blood samples 
were not taken from the patients and were not examined. The information of the individuals participating in the 
study was recorded in an offline computer-based data set. Access to the dataset was restricted except for those 
conducting the survey.

The study used fully anonymized pSLE patient data previously used by the Department of Pediatric 
Rheumatology of Hacettepe University Faculty of Medicine and had official approval from the relevant 
department. Written and verbal consent was obtained from all patients for these previously used data 
for different studies. For this purpose, patients were invited to Hacettepe University Faculty of Medicine, 
Department of Pediatric Rheumatology, for one-on-one information, and their signatures were obtained on 
the 'informed consent form’ after verbal and written information was given. For participants who did not come 
to the department in person, the relevant consent files were sent to their e-mails after verbal information and 
approval by telephone, and their data were used if the signed files were scanned and delivered to us. All study 
methods were carried out following the relevant guidelines and regulations. In addition, an approval from the 
Ethics Committee of Hacettepe University Health Sciences Ethics Committee dated 09.24.2024 and numbered 
E-24742385-000-00003782004 was obtained.

The study design was planned to be double-blind. Thirty mixed-diagnosis cases (data entirely foreign for the 
model and the clinician) were submitted to the AI model, a concurrent expert pediatric rheumatologist (PR) 
and their interpretations were compared. The PR whose responses were compared with the AI model was utterly 
unfamiliar with the study and the data presented. Of these data, 15 were pSLE cases, 10 were healthy controls, 
and three were followed-up individuals with only anti-nuclear antibody (ANA) and anti-double stranded DNA 
(anti-ds-DNA) positivity and no other clinic. One was a newly diagnosed, untreated individual with acne rosacea 
who developed a skin infection due to secondary Staphylococcus epidermidis. Another patient had a urinary 
tract infection due to an adenovirus infection.

AI-based closed model
The reason for choosing the AI Closed Model is the law on 'Protection of Personal Data’ in force in Turkey11. 
According to this law, data processing and evaluation cannot be shared with third parties, institutions, and 
organizations12. Online AI-based applications or correspondence sites cannot be used to process sensitive data 
such as patient information. Therefore, although the model created has autonomous features, it can never be 
processed in online systems. Python software and Tensorflow were preferred for model development due to 
their ease of use in medicine and healthcare today13,14. We also chose these resources for developing the model 
because they have been used in medicine and many other data-processing fields for years with almost negligible 
error rates. The model was named ‘Morgaf ’ by Dr. Emil Aliyev, M.D., M.S. (hereafter, the AI model will be 
referred to as Morgaf). With this name, an application has been made to the Turkish Patent and Trademark 
Office, and the patenting process is ongoing15.

The concept of a ‘Neural Network’ (NN) is becoming increasingly widespread in AI studies14. NNs consist of 
neurons and are structures that calculate and produce output with a predetermined mathematical function. In 
the development of Morgaf, the 'Recurrent Neural Network’ (RNN) model was preferred (Fig. 1)16.

The most important difference between the RNN and other networks is that while training the model and 
processing the inputs at Tn, it also remembers the inputs at Tn-1 (Fig. 2) (Tn is any time unit).

This feature makes the error rates on the network much lower than other models. The laboratory and clinical 
results of the patients were digitized as 1 (abnormal), 0 (normal range), and − 1 (abnormal). Data sets containing 
clinical and laboratory findings of individuals at the time of diagnosis were given as input to Morgaf. Morgaf is 
designed as an RNN model that constructs an NN with 1024 neurons (Fig. 1). The model needs many inputs to 
‘learn’ the data. A total of 100 data sets is generally insufficient to build a closed-loop AI model.

For this reason, the 100 data sets were increased 15 times to 1500 with repetitions, 80% of which were 
reserved as training data and 20% as validation data. Training data is the data that Morgaf continuously ‘repeats’ 
during the learning process to ‘train’ itself. Validation data is the data that Morgaf checks itself after momentary 
training (Fig. 3).

In the early training phase of Morgaf ’s training, the error rate was approximately 0.5. In the later generations 
of the model, the error decreased to 0.028. This error rate was deemed sufficient, and Morgaf ’s training phase 
was terminated. Training continued autonomously in the latent phase. Autonomous training in RNN models 
such as Morgaf is essential for continuous self-evaluation and error outputs.

It is essential to interpret the outputs to understand the ‘language’ of Morgaf. According to the output Morgaf 
at the end of the training, a diagnosis was predicted to be between 0 and 100%. Accordingly, it was seen that 
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Morgaf determined the output as 70% and above to say definitive diagnosis pSLE, 10% and below to say healthy 
individual, and 10–70% in cases that require follow-up and in between (definitive pSLE and not healthy, but 
need to be followed up). Thus, the beta version of Morgaf was made ready.

Data redundancy was avoided so that Morgaf could most accurately recognize pSLE. Based on the ‘mental 
algorithms’ of clinicians when diagnosing pSLE, Morgaf was taught the clinical and laboratory data that are key 
to the diagnosis (Table 1). For example, instead of the amount of protein in the urine, the clinician was taught 

Fig. 3.  Schematization of Morgaf ’s process of teaching itself from limited data. pSLE: Pediatric Systemic Lupus 
Erythematosus, HCs: Healthy Controls.

 

Fig. 2.  Graphical description of the data processing interval of Morgaf ’s RNN in units of time. Tanh; 
hyperbolic tangent function of any unit of the time.

 

Fig. 1.  Schematic description of Morgaf ’s RNN model. SLE: Systemic Lupus Erythematosus, HC: Healthy 
Control, RNN: Recurrent Neuron Network.
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whether it was present or absent, and instead of the titer of ANA. The clinician was taught whether it was positive 
or negative. As a matter of fact, in practice, clinicians continue their diagnostic algorithms by considering an 
ANA value above 1/40 as positive17. This is one of the most critical steps model builders take when developing 
an AI model. Because it is not the number of data given for a single patient, making it possible to reach the target 
with fewer data is the key to the model’s success. In this context, the most important clinical and laboratory data 
of pSLE patients at diagnosis were used to create the model (Table 1).

In addition to Morgaf and PR having a 100% case recognition rate, their median responses for each case 
ranged from 0 to 100%. For example, when predicting a patient with SLE, Morgaf said 83.21% for this patient. 
Since it was in the range of 70–100%, he correctly recognized the SLE patient. Since the clinician was answering 
whether the patient had SLE or not, we expected the clinician to express a percentage value for each case, so 
unlike Morgaf, his answers ranged from 0 to 100%. However, because it correctly predicted all SLE patients, the 
accuracy percentage was 100%. Another critical step is quantifying these data in a way Morgaf can learn. The 
inputs were then presented to Morgaf.

Parameters Learning criterion Learning inputs Outputs Presence in the patient

Sociodemographic data

 Age at diagnosis Year; numeric value Numeric Numeric Mandatory

Organ involvement at the time of diagnosis

 Skin Yes/No 0 and 1 from 0 to 1 Not mandatory

 Renal Yes/No 0 and 1 from 0 to 1 Not mandatory

 Bone Marrow Yes/No 0 and 1 from 0 to 1 Not mandatory

 Central Nervous System Yes/No 0 and 1 from 0 to 1 Not mandatory

 Joint(s) Yes/No 0 and 1 from 0 to 1 Not mandatory

 Liver Yes/No 0 and 1 from 0 to 1 Not mandatory

 Presence of painless aphthae Yes/No 0 and 1 from 0 to 1 Not mandatory

 Presence of serositis Yes/No 0 and 1 from 0 to 1 Not mandatory

 Eye Yes/No 0 and 1 from 0 to 1 Not mandatory

 Intestinal Yes/No 0 and 1 from 0 to 1 Not mandatory

 Systolic blood pressure (mm Hg) 80–110 is normal. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Not mandatory

 Diastolic blood pressure (mm Hg) 60–80 is normal. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Not mandatory

Laboratory results at the time of diagnosis

 Hemoglobin (gr/dL) Typical range: 13–17. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 Leukocyte (/mm3) Typical range: 5000–13,200. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 Lymphocyte value (/mm3) Typical range: 2000–6000. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 Neutrophil value (/mm3) Typical range: 2000–8300. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 Platelet value (/mm3) Typical range: 190,000–400,000. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 CRP value (mg/dL) Typical range: 0–0,5. Other parameters are abnormal 0 and 1 from 0 to 1 Not mandatory

 ESR value (mm/h) Typical range: 0–20. Other parameters are abnormal 0 and 1 from 0 to 1 Not mandatory

 Urine density Typical range: 1003–1020. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Not mandatory

 Presence of hematuria in urine Yes/No 0 and 1 from 0 to 1 Not mandatory

 Presence of ketones in urine Yes/No 0 and 1 from 0 to 1 Not mandatory

 Presence of pyuria in urine Yes/No 0 and 1 from 0 to 1 Not mandatory

 Presence of proteinuria in urine Yes/No 0 and 1 from 0 to 1 Not mandatory

 BUN (mg/dL) Typical range: 5–18. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Not mandatory

 Creatinine (mg/dL) Typical range: 0,5–1,2. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Not mandatory

 Complement C3 (mg/dL) Typical range: 88–230. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 Complement C4 (mg/dL) Typical range: 13–73. Other parameters are abnormal − 1, 0 and 1 from 0 to 1 Mandatory

 ANA If titer is < 1/40: negative, > 1/40 is positive 0 and 1 from 0 to 1 Mandatory

 Anti-ds-DNA (IU/mL) Typical range: 0–5. Other parameters are abnormal 0 and 1 from 0 to 1 Mandatory

 B2GPA IgG (U/mL) Typical expect result is zero. Other parameters are abnormal 0 and 1 from 0 to 1 Not mandatory

 B2GPA IgM (U/mL) Typical expect result is zero. Other parameters are abnormal 0 and 1 0 and 1 Not mandatory

 ACLA IgG (U/mL) Typical expect result is zero. Other parameters are abnormal 0 and 1 0 and 1 Not mandatory

 ACLA IgM (U/mL) Typical expect result is zero. Other parameters are abnormal 0 and 1 0 and 1 Not mandatory

Table 1.  pSLE patient data used in the development and training of Morgaf and its digitalization. CRP, 
C-reactive Protein; ESR, Erythrocyte Sedimentation Rate; BUN, Blood Urine Nitrogen; ANA, Anti-nuclear 
antibody; Anti-ds-DNA, anti-double stranded DNA; B2GPA, Beta-2-glycoportein Antibody, ACLA, Anti-
Cardiolipin Antibody.
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Statistical analysis
The study data were computerized and analyzed using the Statistical Package for Social Sciences for Windows 
version 22.0 (SPSS Inc, Chicago, IL)18. Visual (histograms and probability plots) and analytical methods 
(Kolmogorov–Smirnov/Shapiro–Wilk Test) showed that the variables measured in the study did not fit a normal 
distribution. Mann–Whitney U test was used to compare the variables between two independent groups. 
The statistical significance level was accepted as p < 0.05. Levene’s correlation analysis tested for homogeneity 
of variances and non-normally distributed variables, and variables with a correlation coefficient < 0.1 were 
considered uncorrelated. Prediction success was evaluated by performing regression analyses between both 
groups.

Results
Morgaf accepted 70% and above as a definitive diagnosis of pSLE, and the mean percentage of diagnosis was 
93% (78–98%). Morgaf received 10% and below to call it a completely healthy case; the average was 1% (0–3%). 
Morgaf assigned himself a range of 10–70% to recognize diseases requiring follow-up; the average was 33% (15–
47%). Morgaf correctly recognized all cases of pSLE, healthy individuals, and definite non-pSLE cases (Table 2).

There was no difference between Morgaf ’s estimates and actual diagnoses (p = 0.297). It was 100% successful 
in recognizing lupus disease. This rate was the same as the diagnostic success rate of clinicians. Morgaf (93.3%) 
gave more precise recommendations for non-lupus cases than clinicians (70%) (p = 0.034) (Table 3).

Covariance analysis was performed to test the homogeneity of the variables (p = 0.792). Linear regression 
analysis was performed for both homogeneously distributed groups and tested with Levene (p = 0.147). 
Regression analysis showed that Morgaf (y = 0.926xi) was more successful in predicting findings than clinicians 
(y = 0.7322xi).

Discussion
AI-based models have been used in many areas of medicine19. AI models are increasingly invested in medicine 
as time goes by20. Although AI and deep learning models have been developed in medicine, unlike other fields, 
these models have not been implemented4. Especially in imaging, tools that evaluate radiological images through 
U-net software and help clinicians are familiar21. AI models that analyze and predict magnetic resonance imaging, 
direct radiography, and ultrasound images are standard22–26. However, all of these are applied in clinical practice 
in the clinics where the study was conducted, and they are not widely used19,26. The main obstacle to this is the 
legal barriers to sharing data with other clinics and that the data are generally online-based AI models27. As the 
name suggests, online AI models can use all online data28,29. Typically, applications that help diagnose symptom 
inputs are based on these models29. However, we know that patients and their complaints are individual. If the 
answers are not obtained from reliable sources or cannot be monitored, these applications may be biased and 
raise ethical issues such as violating personal data30. Therefore, our model is an offline model. This aligns with 
the data protection principle31. Apart from this, our model does not process data from online databases or online 
sources when making comments. The model can only work on the data we provide. That is, it can comment on 
the data of pSLE patients.

Apart from AI models that analyze and interpret images, the second most frequently used area is the analysis 
of large data sets and models based on prediction development24,26. This is natural because we know that AI 
models require a lot of data in terms of data processing. However, this is a speed-limiting step in areas such 
as rheumatology, where the number of patients and data are scarce32. When we developed Morgaf, we tried to 
solve the problem of how to train a model from limited data. We replicated the data by fully randomized and 
subsequently validated by the clinician to verify that they were similar to accurate patient data. Of course, this 
can be considered a limitation of the model since we created synthetic data. Still, it should be remembered that 
data scarcity is a severe problem in most fields of medicine, and it is essential to prevent this. This interpretation 

Case groups Morgaf ’s response success (%) Clinician response success (%) p value

pSLE 100 100 0.297

non-pSLE 93 70 0.034

HCs 100 100 0.422

Table 3.  Comparison of Morgaf and clinician responses. pSLE, Pediatric Systemic Lupus Erythematosus; HCs, 
Healthy Controls.

 

Data content Developed limits for interpretation (%) Outputs (%) (min–max (%)) Accurate prediction ability (%)

Definitive diagnosis pSLE  ≥ 70 93 (78–98) 100

Healthy person  ≤ 10 1 (0–3) 100

Disease requiring follow-up (non-pSLE) 10–70 33 (15–47) 100

Table 2.  Case recognition boundaries and results of the Model’s training. pSLE, Pediatric Systemic Lupus 
Erythematosus.
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of Morgaf makes it unique. Of course, we are aware that more real patient data would train the model better. 
Therefore, larger data sets and prospectively designed studies are needed.

Another research topic in rheumatology is applications that lead from symptom to diagnosis29,33. Since 
these models are also online, they cause severe ethical problems due to violating personal data and biased 
interpretation30. Morgaf, the model we developed, is an offline model.

Interestingly, Morgaf, when comparing thirty completely unfamiliar data sets with the clinician’s 
interpretations simultaneously, recognized non-pSLE cases (Fig. 1), unlike the clinician, even though we had yet 
to teach it to do so. This showed that Morgaf could easily differentiate between other clinics as it had ‘learned’ 
the data of pSLE and healthy individuals, so much so that it could make better comments than the clinician. It 
is possible to ‘teach’ Morgaf visual data, such as pathology preparations of pSLE patients, in the future so that it 
can be a more successful model. However, at this stage, we preferred to use a single programming language and 
library as it would reduce the model’s chances of success when processing complex data. This can be considered 
a limitation of our model in fully recognizing pSLE disease. This model also needs to be tested in multiethnic 
cohorts and in other centers.

It is worth noting that Morgaf was well acquainted with childhood-onset SLE patients but not with other 
differential diagnoses. Furthermore, the model has not been tested in adult SLE patients. This was important to 
create the contrast between intact control and SLE that we needed when training the model. However, providing 
specific clinical and laboratory data on autoimmune, hematologic, infectious and many other diseases with 

Fig. 4.  Schematic description of Morgaf ’s functioning as an AI model.
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differential diagnosis of SLE during the training of the model could enable the model to become a robot that 
more sharply recognizes SLE in real time. This is an important limitation of our study.

Morgaf is the first AI model in the literature to be developed from limited data and successful in pediatric 
rheumatology and pSLE disease. The model is under development and is expected to be successful as a cost-
effective model. If integrated into hospital automation systems (Fig. 4), it is predicted that the model may lead 
to earlier diagnosis of pSLE patients, including non-specialty clinicians, significantly reducing hospital costs.

Data availability
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