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FCN attention enhancing asphalt
pavement crack detection through
attention mechanisms and fully
convolutional networks

Huiyuan Zhang, Jiawei Liu™ & Guoping Hu

This paper presents an innovative approach to detecting cracks in asphalt pavement using an FCN-
attention model, which integrates attention mechanisms into a fully convolutional network (FCN) for
enhanced pixel-level segmentation. The model employs a ResNet-50-based encoder and incorporates
channel-wise and spatial attention modules to refine feature extraction and focus on the most relevant
image regions. The results demonstrate that the FCN-attention model outperforms traditional models
such asVGG-16, AlexNet, MobileNet, and GoogleNet across multiple evaluation metrics. Specifically,
the FCN-attention model achieves a global accuracy rate of 90.79%, with a precision of 92.3%, recall
of 89.5%, and an F1-score of 90.9%. Additionally, the model achieves an average intersection-over-
union (loU) ratio of 69.7% and a test duration of 109.1 ms per image. The proposed method also excels
in crack length and width calculation, providing real-world dimensions for the detected cracks. The
model’s effectiveness is further validated through an ablation study, which highlights the significant
impact of the attention mechanism on model performance.

Keywo rds Asphalt pavement, Crack detection, Fully convolutional network (FCN), Attention mechanism,
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Automatic detection of cracks in asphalt pavement is critical for road maintenance and safety, as cracks serve
as key indicators of pavement health. Early detection and timely repair can prevent severe damage, reduce
maintenance costs, and ensure traffic safety!=. The rapid development of deep learning technologies has led
to the prominence of data-driven approaches in this field, significantly enhancing detection efficiency and
accuracy*™’.

Traditional crack monitoring methods rely on manual visual inspections, which are labor-intensive, costly,
and subject to subjective interpretation. In contrast, deep learning techniques, particularly convolutional neural
networks (CNNs), have demonstrated significant advantages in image processing and crack detection®1.
Automated image analysis reduces the manual inspection burden while improving accuracy. For example,
Ji et al.!'! proposed an integrated approach using the DeepLabv3+CNN for crack detection and pixel-level
quantification, while Ground Penetrating Radar (GPR) has shown potential for detecting cracks through
changes in electromagnetic reflections.

The task of automatically detecting cracks from images is crucial for maintaining the safety and durability of
pavements, especially those made from Portland cement concrete (PCC) and asphalt concrete (AC). Advances in
deep learning, such as the U-Hierarchical Dilated Network (U-HDN), have enabled end-to-end crack detection
by incorporating hierarchical feature learning and dilated convolution'®. The high labor and cost demands of
traditional inspection methods have driven the development of automated systems that utilize CNNs to detect
and assess pavement cracks more efficiently'%. However, challenges persist, particularly in addressing complex
noise interference in images. Li et al.'® developed a novel system for recognizing and analyzing cracks, while
Safaei et al.! focused on creating an automated method for detecting and categorizing cracks in both 2-D and
3-D pavement images. These systems also measure crack dimensions based on orientation and curve lengths,
addressing the various types of cracks caused by harsh weather conditions and prolonged vehicle usage.

Despite these advancements, a gap remains between cutting-edge deep learning technologies and traditional
pixel-level detection algorithms. Huyan et al.!® aimed to bridge this gap by detailing a deep neural network
model designed for pixel-wise detection of pavement cracks, using images collected from various sources.
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To address ongoing challenges, a machine vision-based method utilizing deep convolutional neural network
(DCNN) technology has been proposed, showing effectiveness on publicly accessible benchmark datasets of
concrete cracks®’. Chen et al.?! examined ARF-Crack, a rotation-invariant deep FCN specifically designed for
pixel-level crack detection, tested across multiple benchmark datasets. This system outperforms existing models
like FCN and R-CNN in image processing capabilities while using less memory?2. Additionally, Zhang et al.?®
proposed a method for improved semantic segmentation of high-resolution images, transitioning from CNN to
FCN to enhance segmentation accuracy. The introduction of attention mechanisms has further improved feature
extraction, particularly in complex environments, enabling the FCN to focus on the most relevant image areas
and better generalize to unseen data. The FCN-attention model was chosen for its ability to achieve precise pixel-
level segmentation while maintaining computational efficiency. Fully Convolutional Networks (FCNs) are well-
suited for crack detection as they retain spatial information and generate dense predictions, which are crucial for
accurately segmenting fine crack structures. The integration of attention mechanisms enhances feature extraction,
allowing the model to focus on critical regions while reducing interference from background noise. While
architectures such as Transformers and YOLO-based segmentation models offer strong feature representation
and object detection capabilities, they are less optimized for pixel-wise segmentation tasks, particularly in cases
where fine details and structural continuity are essential. Transformer-based models require significantly higher
computational resources, making them less suitable for real-time applications. YOLO-based models, designed
primarily for object detection, lack the spatial granularity needed for precise crack segmentation. Given these
considerations, the FCN-attention model provides a balanced approach, offering high segmentation accuracy,
computational efficiency, and adaptability to varying pavement conditions®. By distinguishing more accurately
between crack and non-crack areas, this approach reduces false detection rates and enhances detection precision
and robustness. Thus, the proposed fully convolutional network (FCN) model with an attention mechanism
achieves more accurate crack detection across diverse environmental conditions.

Fundamental methods

This study proposes an FCN-attention model that enhances the foundational architecture of Fully Convolutional
Networks (FCNs) by integrating an attention mechanism to improve pixel-level segmentation tasks. The model
employs a ResNet-50-based encoder, structured into four stages, each with residual blocks containing 3 x3
convolutional layers and skip connections. The encoder begins with a 7 x 7 convolutional layer and a max-pooling
layer, with subsequent stages increasing the filter sizes to 512, ultimately producing 256-channel activation maps
at 1/16th of the input resolution.

The attention mechanism is incorporated between the encoder and decoder, combining channel-wise and
spatial attention to refine the extracted features. The channel-wise attention module reduces spatial dimensions
via global average pooling and generates a channel attention map, while the spatial attention module produces a
spatial attention map that highlights key regions within the image.

The decoder restores the spatial resolution through upsampling layers and uses skip connections to merge
low-level spatial details with high-level semantic information. A final 1x 1 convolutional layer with sigmoid
activation generates the pixel-wise binary segmentation map to identify cracks.

By integrating the attention mechanism into the encoder-decoder framework, the model emphasizes the
most informative features, significantly enhancing its ability to accurately detect cracks in asphalt pavement,
thereby improving segmentation accuracy and robustness.

Attention mechanism
The attention mechanism in deep learning enables models to focus on the most relevant parts of the input
during data processing. Originally introduced in 2014 for machine translation, this technique allows a
model to selectively concentrate on important aspects of the input rather than treating the entire sequence
uniformly®. Similar to human visual attention, where we focus on specific words while skimming others, the
attention mechanism directs the model’s resources toward the most useful information for the task at hand. The
mechanism works by generating a context vector at each output timestep, which is a weighted average of the
input sequence states. These weights represent the importance of each input segment in producing the output,
and the alignment between input and output is typically learned jointly during training.

Mathematically, given an input sequence X = (xl, Xy oen xn) and output at time t as Vp the context vector c,is

computed as:
Ct = Zam‘ * hi, (1)

Where h; are hidden states from the encoder and a, ; are attention weights denoting the importance of input
xi in generating y,. The weights a allow gradient-based learning and can amplify or attenuate different parts
adaptively.

The context vector ¢, condenses relevant information from the entire input sequence into a dynamic
representation. The decoder can then use ¢, to generate y, The model learns what to attend to base on the
decoding objective during end-to-end training. Attention layers can be inserted into models in various ways.
Encoder-decoder models often employ an attention layer between encoding and decoding steps. CNNs and
RNNs can also have internal self-attention to amplify important features. Overall, attention improves model
accuracy by focusing computation on the most informative parts of the data.
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Fully convolutional networks

Fully Convolutional Networks (FCNs)>*! are a specialized type of Convolutional Neural Network (CNN) designed
for semantic segmentation, which involves assigning a class label to each pixel in an image. Unlike traditional
CNNs that combine convolutional layers with fully-connected layers, FCNs consist entirely of convolutional
layers. This architecture allows them to accept inputs of varying sizes and produce correspondingly-sized output
segmentation masks. FCNs achieve this by using pooling layers for downsampling to progressively reduce spatial
dimensions, followed by upsampling layers, such as transpose convolution or dilated convolution, to restore the
original resolution in the output layers. This approach enables precise pixel-level segmentation. Additionally,
FCNs support end-to-end learning, where each pixel is mapped to a feature vector indicating class probabilities.
The learning process is guided by a loss function, such as cross-entropy, which is supervised by pixel-level
ground truth labels. Overall, FCNs excel at tasks requiring detailed and accurate semantic segmentation, as their
architecture effectively captures spatial relationships within the input data. This structure is illustrated in Fig. 1.

FCN with attention mechanisms

The FCN-attention model architecture proposed in this study builds upon the foundation of fully convolutional
networks (FCNs) by incorporating attention mechanisms to enhance performance in pixel-level segmentation
tasks.

The model architecture utilizes a ResNet-50-based encoder, structured into four stages, each comprising
residual blocks with 3 x 3 convolutional layers and skip connections. The encoder begins witha 7 x 7 convolutional
layer containing 64 filters, followed by a max-pooling layer. The subsequent stages progressively increase the filter
sizes to 64, 128, 256, and 512, with the final stage outputting 256-channel activation maps at 1/16th of the input
size. To expand the receptive field without increasing the number of parameters, atrous (dilated) convolution
with a dilation rate of r=2 is applied in the last two stages.

Attention modules are integrated between the encoder and decoder stages, combining channel-wise and
spatial attention mechanisms to refine the features extracted by the encoder. The channel-wise attention module
compresses the spatial dimensions of the feature maps through global average pooling and generates a channel
attention map using a small fully connected network with sigmoid activation. Meanwhile, the spatial attention
module applies convolutional operations to the channel-compressed feature maps to produce a spatial attention
map, which emphasizes significant regions in the spatial domain.

The decoder is designed to gradually increase the spatial resolution of the feature maps through upsampling
layers, restoring them to the original input size. Skip connections are employed to merge low-level spatial
information from earlier encoder layers with high-level semantic information from the decoder. Finally, a 1 x1
convolutional layer with sigmoid activation generates the pixel-wise binary segmentation map, identifying the
presence of cracks.

The attention mechanism is seamlessly integrated within the encoder-decoder framework. The attention-
modulated feature maps are passed to the decoder, ensuring that the most informative features are highlighted.
This integration enhances the model’s capability to focus on relevant image areas, which is critical for accurately
detecting cracks in asphalt pavement. The network architecture is shown in Fig. 2.
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Fig. 1. Network architecture of FCNG.
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Fig. 2. Network architecture of FCNs with attention mechanisms.
Crack calculation method
1. Threshold segmentation of crack pixel-level identification results.
Defect images are processed through a semantic segmentation network, mapped to a range of (0,1) indicating
the probability of a pixel being a crack. To simplify subsequent processing, a threshold of 0.5 is used to binarize
the predicted images.
. 1 PG,j) 205 . .
P ={ o p) 208 el e LW ee 1], @)
Pr represents the model’s prediction for the tth image, and T is the total number of predicted images. Pr; (3, j)
= 1 indicates that the pixel at position (i, j) in the image is predicted to be a crack, whereas Pr;(¢, j) =0 indicates
that the pixel at that position is predicted to be non-crack (background pixel).
2. Crack skeleton extraction and total length calculation.
Skeletonization converts the multi-pixel representation of a crack into a single-pixel-width skeleton to
characterize its topological structure and approximate length. This is a necessary step for calculating crack
length. Common algorithms include the medial axis algorithm, morphological thinning algorithm, 3D medial
surface axis thinning algorithm, and numerical pattern thinning method. After extracting the crack skeleton, the
total crack length can be calculated.

Le= / Gla,y)dl =y | Glr,y)dt 3
where de represents the length element of the crack skeleton. The skeleton length can be approximated by the
length of the skeleton pixels, so the total crack length is roughly equivalent to the sum of the skeleton pixels’
lengths. Assuming the skeleton image of the tth image is Skt. Since the skeleton image is also a binary image of
{0,1}, the crack length of the tth image can be calculated using the following formula:

L= 303 () W
=1 j=1
where £ represents the length or width of a pixel in the image.
3. Calculation of average crack width.
The average width of the crack can be calculated as follows:
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where W ; represents the average crack width in the tth image.

4. Mapping to real-world space.

The crack parameters obtained in steps (1) to (3) are in pixel units, but engineers are more concerned with the

actual physical dimensions of the cracks to assess the structural condition. Based on the total length £, ¢ and
average width Whc, ¢, the real-world crack dimensions can be calculated as follows:

[/pc,t = 1/) X E'c,t7 (6)

~ A c,t -Ac t
Wpe, t = Z29L = o x 22t 7
pc Lpo Y Lo (7)

Model establishment and training

Data sources and data processing

The dataset utilized in this study comprises high-resolution images of asphalt pavement cracks. Specifically, it
includes 913 images captured using a Sony ILCE-7R camera equipped with a Sony FE 24-70 mm F4 full-frame
lens. The images were taken at a resolution of 7360 x 4144 pixels, ensuring that fine details of the cracks were
preserved. Given the large dimensions of the images, each image was cropped to a standardized size of 416 x416
pixels to create uniform feature maps suitable for training.

The dataset was divided into training and test sets, with 70% of the images (639 images) allocated to the
training set and the remaining 30% (274 images) reserved for testing. This split ensures a robust evaluation of
the model’s performance on unseen data.

To enhance the model’s robustness and prevent overfitting, several data augmentation techniques were
applied to the training set. These included horizontal and vertical flipping, translation by shifting the images
vertically by 1/4 of their length, and adjustments in color and contrast. The color and contrast transformations
were particularly important given the variability in lighting conditions and road textures in the images. The
augmentation process expanded the diversity of the training data, enabling the model to generalize better across
different scenarios.

Blurry, incomplete, or poorly lit images were excluded from the dataset to maintain high-quality input data.
After applying these preprocessing steps, the dataset provided a comprehensive foundation for training the deep
learning models, as illustrated in Fig. 3.

Given the small sample size of the dataset, using these images alone for training would not be sufficient to
evaluate the quality of a neural network model. To address this, several data augmentation techniques were
applied to increase the dataset size and enhance the robustness of the model.

1. Image flipping transformations: Image flipping was performed in two directions: horizontal and vertical.
Horizontal flips were applied around the y-axis, and vertical flips around the x-axis. Diagonal flips were not
used because they can result in incomplete image displays and loss of information. To ensure a one-to-one
correspondence between the road crack images and their semantic label images, both horizontal and vertical
flips were applied simultaneously to the original and label images. Figure 4 shows the results of these trans-
formations.

2. Image translation transformation: Image translation involves shifting all pixels in an image horizontally or
vertically by a specified amount, followed by cropping and stitching. This process was performed vertically,
moving the image position by 1/4 of its length. Like image flipping, translation was applied equally to the
original and label images to maintain consistency during model training. Figure 5 illustrates the results of the
translation transformation.

3. Image color and contrast transformations: Due to variations in the time and environment of image collec-
tion, the background colors of the collected images differ, affecting the edge information of the road cracks.
To address this and prevent overfitting, the color and contrast of the images were adjusted. While label im-
ages, which contain only black and white, were not altered, the original images were adjusted for color and
contrast. Two primary methods were employed: contrast adjustment and color adjustment, which involved
modifying the hue, brightness, and saturation. The color interval was adjusted from [0,1] to [0.3, 0.5], as
shown in Fig. 6.

Model establishment and training

Based on the image analysis in section “Data sources and data processing”, we developed an attentional fully
convolutional network (FCN) specifically for pixel-level crack detection in asphalt images. The model employs
an encoder-attention-decoder architecture optimized for end-to-end learning. The encoder, built on a ResNet-50
backbone, captures hierarchical visual features through four stages of residual blocks, each with 3 x 3 convolutions
and skip connections. The initial stage includes a 7x 7 convolution with 64 channels followed by max pooling,
while subsequent stages progressively apply filters of 64, 128, 256, and 512 channels. The final stage generates
256-channel activation maps at 1/16th of the original input size. The model’s process flow is illustrated in Fig. 7.
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Fig. 3. Sample data of cracks in asphalt pavement.

To densify features, atrous convolution with rate r=2 is applied to stages 4 and 5, setting their stride to 1. By
inserting holes in kernels, atrous convolution allows enlarging receptive fields without increasing parameters.
Thus a larger context is integrated while preserving resolution, beneficial for pixel-accurate crack detection. The
encoder passes activation tensors FER?P*W*C to the attention module, which performs squeeze operations across
spatial and channel dimensions. Formally, the channel squeeze Fy (ER! ¥ 1*C has activations:

Fac(2) =Y iy F(i,i,2). ®)
di

Analogously, the spatial squeeze F, €R™W*! sums channel wise. The squeezes capture global distribution
statistics, passed to respective excitation blocks. The excitation units learn additive activations fc, Ss through
bottleneck convolution and sigmoid layers. Elementwise multiplication of ffc and fs with input Fi then
incentivizes informative features while suppressing less useful ones across channels and spatial regions. The final
output Fi is thus an attention-recalibrated encoder representation for decoding.

The decoder upsamples the encoder’s features to the original input resolution using transposed convolutions
and convolutional layers. Skip connections from the encoder are employed to merge low-level details with
high-level semantic information. Batch normalization is used to stabilize the training process. Finally, a 1x1
convolution layer with sigmoid activation is applied to achieve per-pixel binary crack classification. Our model
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(a) Original image (b) Vertical flip (c¢) Horizontal flip

Fig. 4. Image of road cracks and corresponding label after flipping transformation.
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(a) Original image (b) Shifted image (¢) Original image (d) Shifted image

Fig. 5. Image of road cracks and corresponding label after translation transformation.
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Fig. 6. Image of the original road crack with color and contrast transformations.

was implemented using PyTorch 1.7.1 with CUDA 11.3 for acceleration on an NVIDIA RTX 2060 GPU. The
hardware setup includes an Intel i5-12500 CPU and 16GB of RAM running on a 64-bit Windows 11 operating
system. The Adam optimizer, with an initial learning rate of 1e-4, was selected based on preliminary experiments
to balance convergence speed and model stability. Additionally, the Amsgrad variant of the Adam optimizer was
employed to improve convergence properties and mitigate excessive oscillations during training.

The Dice coefficient loss function was chosen for the model, which is particularly effective for segmentation
tasks involving class imbalance. This loss function emphasizes the overlap between the predicted and actual
segmentation masks, ensuring precise delineation of cracks, even when they constitute a minor portion of the
image. The model was trained for a total of 50 epochs, a duration established through cross-validation and an
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Fig. 7. The running process of the model.

early stopping strategy. Early stopping was implemented to monitor the model’s performance on the validation
set and prevent overfitting, with training halted if the validation loss failed to improve for 10 consecutive epochs.
Additionally, a batch size of 16 was selected, providing an optimal balance between computational efficiency and
model performance.

Analysis of test results

Result evaluation indicators

On the test data set, select the pixel accuracy Acc (Pixel Accuracy) and the average intersection-over-union ratio
(mIoU) as the performance indicators of the model*>*. The pixel accuracy Acc formula is shown in Eq. (9):

k
Z Dii

Ace = 5 =—, ©)

>0 Pij

i=0 ;=0

Where, Acc is equal to the number of correctly predicted pixels divided by the total number of predicted pixels.
The average intersection ratio is shown in Eq. (10):

k

1 Dii
M IOU = (10)

— E E )
k+1 i=0 ijopij + Zj:o Pji = pii
This formula is equivalent to Eq. (11):

1 < TP
M I = 11
_tou k+1;FN+FP+TP’ (n

Where, TP means that the real situation and the predicted result are both 1; FN means that the real situation is
1, and the predicted result is 0; FP means that the real situation is 0, and the predicted result is 1; TN means that
the real situation and the predicted result are both 0.

Pre: This metric indicates the percentage of correctly predicted crack pixels out of all pixels predicted as
cracks, calculated as

TP

Pre= ——
YT TP fFP’

(12)
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Rec: This metric measures the percentage of actual crack pixels correctly identified by the model, calculated as

TP

Ree = 5 N

(13)

FI-score: The F1-score is the harmonic mean of precision and recall, providing a single metric that balances both.
It is calculated as

2 x Pre x Rec
F1- = 14
seore Pre + Rec '’ (14)

Use the trained model to predict the crack image, and a mask image will be generated after prediction. Traverse
the mask image pixel by pixel, identify each pixel corresponding to the crack, and use the formula to obtain the
identification of the crack.

M px

MOTaine_pTe = m,

(15)

Where, Moraine_pre is the identification of cracks obtained, M_px is the number of pixels corresponding to
cracks in the mask image, and O_px is the number of pixels corresponding to the asphalt pavement in the mask
image.

Result analysis

In this study, five different deep learning models were evaluated: VGG-16, AlexNet, MobileNet, FCN-attention,
and GoogleNet. The same datasets and evaluation metrics were applied consistently across all models during
both the training and testing phases. As shown in Table 1, the performance comparison focused on four key
indicators: model training loss rate, global accuracy rate, average intersection-over-union (IoU) ratio, and test
duration. Each model was tested on the same image 10 times, with the average time taken recorded as the test
duration. The results indicate that AlexNet required the most time to predict a single image, while the FCN-
attention and GoogleNet models had similar, shorter prediction times of 109.10 ms and 108.10 ms, respectively.
Overall, the variation in test duration among the five models was minimal.

Based on the experimental results presented in Table 1, the FCN-attention model clearly outperforms the
other models across multiple evaluation metrics. It achieves the lowest loss rate of 9.99% and the highest global
accuracy rate of 90.792%, indicating its superior ability to accurately detect and segment cracks in asphalt
pavement images. Additionally, the FCN-attention model excels in precision, recall, and F1-score, with values
of 92.3%, 89.5%, and 90.9%, respectively, highlighting its robustness in minimizing false positives and false
negatives. The model also maintains a competitive test duration of 109.10 milliseconds, demonstrating its
efficiency in real-time applications. In contrast, models like VGG-16 and GoogleNet, while showing moderate
performance, lag behind in both accuracy and speed. AlexNet and MobileNet also perform reasonably well, but
their higher loss rates and lower precision and recall values compared to FCN-attention underscore the latter’s
superiority. Overall, the FCN-attention model is the most reliable and efficient among the tested models, making
it highly suitable for asphalt pavement crack detection tasks.

As shown in Fig. 8a, the loss graph illustrates how the error of the models decreases over time as they learn
from the training data. The FCN-attention model (depicted in red) begins with a high loss, similar to the other
models, but its loss decreases sharply and remains consistently lower as training progresses. This suggests that
the FCN-attention model is learning effectively from the data. By the end of training, it exhibits the lowest loss,
indicating a better fit to the training data compared to models like AlexNet, VGG16, MobileNet, and GoogleNet.

Similarly, as shown in Fig. 8b, the accuracy graph demonstrates the percentage of correct predictions made
by the models throughout the training epochs. Like the loss graph, the FCN-attention model quickly achieves
a high level of accuracy and maintains it as training continues, outperforming the other models. The FCN-
attention model appears to plateau around 90% accuracy, which is particularly strong for a complex task. While
other models also improve in accuracy over time, none match the performance of the FCN-attention model,
with GoogleNet being the closest competitor.

In conclusion, the FCN-attention model outperforms other CNN architectures in this task, as evidenced by
the provided graphs. It achieves lower loss and higher accuracy, making it a more suitable model for asphalt
pavement crack detection. The attention mechanism’s ability to focus the model’s learning on important features
likely contributes to this improved performance.

Loss rate | Global accuracy rate | Average intersection and | Pre | Rec | Fl-score | Test duration
Model (%) (%) union ratio (%) (%) | (%) | (%) (ms)
VGG-16 38.49 77.864 52.9 754 | 68.2 | 71.6 129.00
AlexNet 28.86 86.971 59.6 80.5 | 74.9 | 77.6 133.00
FCN-attention | 9.99 90.792 69.7 92.3 [ 89.5 | 90.9 109.10
Mobile 27.65 85.351 55.3 78.9 | 70.6 | 74.5 118.20
GoogleNet 32.61 85.652 54.3 81.0 | 72.3 | 76.4 108.10

Table 1. Four model segmentation experimental results.
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Table 2. Asphalt pavement crack identification results.

Based on the above analysis, this study uses the FCN-attention model to identify cracks in asphalt pavement.
In order to better demonstrate the performance of the model in the recognition process, this study classified the
test images according to the complexity of the cracks. The recognition results are shown in Table 2. It can be seen
that when using the FCN-attention model to identify simple cracks, very fine cracks can be identified, and the
recognition effect is very good. At the same time, when identifying cracks of medium complexity, the details of
the cracks can also be easily identified. When identifying relatively complex cracks, although the model cannot
completely reflect the entire crack area, it can still identify most areas and the direction of the crack, and the
identification results are still satisfactory.

Testing results on the crack dataset

In this section, we evaluate the performance of various models on the Crack dataset, using the same metrics as
in previous tests: loss rate, global accuracy rate, average intersection-over-union (IoU) ratio, and test duration.
These comparisons aim to assess the effectiveness of each model in handling task-specific datasets.

As summarized in Table 3, the FCN-attention model consistently outperforms the other models. It achieves
the lowest loss rate at 10.18% and the highest global accuracy rate at 91.792%, demonstrating its strong capability
in accurately recognizing and segmenting cracks. The model also achieves the highest average IoU ratio at 68.9%,
reflecting its precise delineation of crack regions compared to the background. Additionally, the FCN-attention
model maintains a competitive test duration, making it well-suited for real-time applications. While AlexNet
shows minor improvements in loss and accuracy, it still falls short of FCN-attention’s performance. VGG-16,
Mobile, and GoogleNet exhibit moderate results without significant changes in their metrics.
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Loss rate | Global accuracy rate | Average intersection and | Test duration
Model (%) (%) union ratio (%) (ms)
VGG-16 39.49 78.864 53.1 139.12
AlexNet 27.86 84.971 57.4 143.82
FCN-attention | 10.18 91.792 68.9 112.47
Mobile 37.65 83.351 51.5 120.98
GoogleNet 36.71 84.652 52.7 111.18

Table 3. Experimental results on the crack dataset.

Crack 1

Crack 2

Fig. 9. Part of the crack mask skeleton extraction effect display.

Analysis of crack calculation results

This paper selects length and average width parameters to quantify cracks. The crack mask images detected
by the FCN-attention model are binarized, and the skeleton images are generated according to the method in
section “Crack calculation method”. Some results are shown in Fig. 9.

The detection results indicate that the skeleton extraction algorithm preserves the shape and connectivity
features of the cracks, effectively describing the crack characteristics. For example, at a resolution of 100 dpi,
there are 100 pixels per inch, and 1 cm=0.3937008 inches, which converts to 1 cm =39.37008 pixels. Using this
conversion, the actual parameters of the cracks can be calculated as described in section “Crack calculation
method”. The resolution of the crack images used in this paper is 96 dpi. According to this conversion rule, Crack
1 has a length of 5.23 dm, an average width of 0.11 dm, and a maximum width of 0.21 dm. Crack 2 has a length
of 5.17 dm, an average width of 0.09 m, and a maximum width of 0.18 dm.

Ablation study

To further validate the effectiveness of the attention mechanism integrated into our fully convolutional network
(FCN) model, an ablation study was conducted. The purpose of this study was to isolate the impact of the
attention mechanism by comparing the performance of the FCN model with and without this component. We
trained two versions of the model: one with the attention mechanism (FCN-attention) and one without (standard
FCN). Both models were trained under identical conditions using the same dataset, optimizer settings, and loss
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functions. The evaluation metrics used for comparison included the global accuracy rate, average intersection-
over-union (IoU), precision, recall, F1-score, and test duration, as shown in Table 4.

As summarized in Table 4, the inclusion of the attention mechanism significantly improved the model’s
performance across all evaluation metrics. The FCN-attention model achieved a global accuracy rate of
91.792%, while the standard FCN model achieved 88.345%. Similarly, the average IoU improved from 64.3%
in the standard FCN to 68.9% in the FCN-attention model. Precision, recall, and F1-score also showed marked
improvements, with the FCN-attention model achieving a precision of 92.3%, recall of 89.5%, and an F1-score of
90.9%, compared to the standard FCN’s precision of 88.1%, recall of 85.0%, and F1-score of 86.5%.

The test duration for the FCN-attention model was slightly longer, averaging 112.47 milliseconds per image,
compared to 98.54 milliseconds for the standard FCN. However, this increase in processing time is justified by
the significant gains in accuracy and precision.

These results clearly indicate that the attention mechanism plays a crucial role in enhancing the model’s
ability to focus on relevant features, leading to more accurate and robust crack detection. The improvements
in IoU, precision, recall, and F1-score demonstrate the effectiveness of the attention mechanism in refining the
feature maps generated by the encoder and enabling the decoder to produce more accurate segmentation masks.

Discussion

The findings of this study have significant practical implications for road maintenance and safety. The proposed
FCN-attention model demonstrates high accuracy and efficiency in detecting asphalt pavement cracks, which
can greatly enhance road maintenance programs. By enabling precise and timely crack detection, this model
helps identify potential issues before they escalate into major road damage, thereby reducing maintenance costs
and prolonging pavement lifespan. Additionally, automating crack detection alleviates the labor-intensive nature
of traditional inspection methods, allowing for more frequent and widespread monitoring of road conditions.

Practical benefits
The FCN-attention model provides several practical advantages that directly impact road maintenance:

(1) Enhanced Accuracy: The model’s high precision and recall rates ensure accurate crack identification, min-
imizing false positives and negatives. This leads to more reliable pavement assessments, enabling mainte-
nance teams to allocate resources efficiently.

(2) Real-Time Monitoring: With its efficient image processing capabilities, the model can be integrated into
real-time monitoring systems, continuously updating road surface conditions. This is particularly beneficial
in high-traffic areas where road safety is critical.

(3) Cost Efficiency: Automating the crack detection process reduces the reliance on manual inspections, low-
ering labor costs and accelerating the assessment process. This allows for broader monitoring coverage
without increasing operational expenses.

Challenges and future directions
Despite its promising performance, the FCN-attention model has certain limitations and areas for improvement
that should be addressed in future research.

While the FCN-attention model achieves superior crack detection, its performance in complex environments
still presents challenges. Specifically, the model struggles with images containing heavy texture, overlapping
objects, or pavement markings, where the attention mechanism may incorrectly focus on irrelevant features. For
example, cracks that intersect with road markings or debris are sometimes misclassified, either as non-cracks or
as extraneous objects. Figure 10 illustrates cases where the model encounters such misclassification. To mitigate
these issues, potential improvements include:

(1) Enhanced Data Augmentation—Expanding the dataset with synthetic noise, varying lighting conditions,
and complex background textures can improve generalization.

(2) Multi-Modal Fusion Approaches—Integrating additional sensor data, such as LIDAR or infrared imaging,
may help distinguish cracks from environmental noise.

(3) Refined Attention Mechanisms—Implementing adaptive attention modules that dynamically adjust focus
areas based on contextual cues could further improve segmentation accuracy.

Another critical factor for real-world deployment is the model’s ability to generalize across diverse environments.
The dataset used in this study consists of 913 high-resolution images captured using a single camera setup under

Metric FCN (without attention) | FCN-attention (with attention)
Global accuracy rate (%) 88.345 91.792

Average IoU (%) 64.3 68.9

Precision (%) 88.1 92.3

Recall (%) 85.0 89.5

F1-Score (%) 86.5 90.9

Test duration (ms per image) | 98.54 112.47

Table 4. Ablation study results comparing FCN and FCN-Attention models.
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Fig. 10. Examples of model misclassification in complex environments.

specific conditions. While the model performs well on this dataset, its robustness in different geographical
regions, lighting conditions, or when using different imaging equipment needs further validation. Several
challenges arise when applying the model to data from different sources:

(1) Variations in pavement texture, material composition, and environmental factors (e.g., wet surfaces, shad-
ows, and debris) may introduce inconsistencies affecting segmentation accuracy.

(2) Lighting conditions significantly impact image quality, with extreme brightness or darkness potentially
leading to misclassifications.

(3) Differences in camera resolution, focal length, and capture angles can alter the visual representation of
cracks, influencing detection performance.

To enhance generalization, future research should focus on:

(1) Expanding the Dataset—Collecting images from multiple regions, road types, and weather conditions to
improve model robustness.

(2) Domain Adaptation Techniques—Utilizing transfer learning or domain adaptation methods to fine-tune
the model with additional, smaller datasets from different sources.

(3) Advanced Data Augmentation—Implementing techniques such as brightness adjustments, synthetic noise,
and style transfer to simulate real-world variations.

(4) Multi-Sensor Integration—Combining visible spectrum images with infrared or LiDAR data for more reli-
able crack detection, reducing environmental variability effects.

Model complexity and efficiency

While the FCN-attention model demonstrates superior accuracy in crack detection, its computational complexity
presents challenges for deployment on resource-constrained devices, such as embedded systems, drones, and
mobile applications. The current test duration of 112.47 ms per image, though acceptable for high-performance
GPUs, may be a limiting factor in real-time applications where lower latency is required. To improve efficiency,
model pruning can remove redundant parameters, and quantization can reduce weight precision to lower
memory usage and increase inference speed. Using a lightweight backbone such as MobileNet, EfficientNet,
or ShuffleNet can reduce computational cost while maintaining accuracy. Knowledge distillation can train a
smaller model to retain the performance of a larger one. Optimizing the model for TensorRT, OpenVINO, or
TFLite can enhance inference speed, and using FPGA or EdgeTPU accelerators can further improve real-time
performance. Slightly reducing input resolution with adaptive upsampling can balance computational efficiency
and detection accuracy. Future research can focus on these aspects to optimize the model.

Real-world application

The FCN-attention model can be deployed in real-world road maintenance by integrating it with unmanned
aerial vehicles (UAVs), vehicle-mounted cameras, or mobile applications. UAV-based deployment enables
large-scale road inspections with minimal human intervention, improving efficiency and reducing labor costs.
Vehicle-mounted systems can perform continuous real-time monitoring on highways, detecting cracks during
regular patrols and transmitting data to maintenance teams for timely repairs. Mobile applications allow field
inspectors to capture images with smartphones and obtain instant crack detection results, enhancing on-site
decision-making. Optimizing the model for embedded AI chips can enable real-time inference on edge devices,
reducing dependence on cloud computing and improving response speed. These deployment strategies enhance
crack detection automation, making road maintenance more efficient and cost-effective.

Conclusion

This study proposes a fully convolutional network (FCN) enhanced with an attention mechanism for the
automated detection and analysis of asphalt pavement cracks. The introduction of the attention mechanism
significantly improves the model’s ability to focus on relevant features, leading to more precise crack identification
and segmentation, especially in complex environments. The results demonstrate that the FCN-attention
model achieves superior performance compared to other models such as VGG-16, AlexNet, MobileNet, and
GoogleNet. Specifically, the FCN-attention model achieves a global accuracy rate of 91.792% and an average
intersection-over-union (IoU) of 68.9%, with a test duration of 112.47 ms. These results highlight its robustness
and efficiency, making it highly suitable for real-time applications in road maintenance. The crack parameter
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calculations, including length and average width, further validate the effectiveness of the proposed model. The
crack skeleton extraction preserves the shape and connectivity features, enabling accurate quantification of
cracks. For instance, the calculated lengths and widths of cracks in test images align well with expected values,
showcasing the model’s practical utility.

Data availability
The dataset can be found in the supporting files. https://github.com/liujiawei214/Crack-Data.git.
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