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Cracks are common defects in physical structures, and if not detected and addressed in a timely 
manner, they can pose a severe threat to the overall safety of the structure. In recent years, with 
advancements in deep learning, particularly the widespread use of Convolutional Neural Networks 
(CNNs) and Transformers, significant breakthroughs have been made in the field of crack detection. 
However, CNNs still face limitations in capturing global information due to their local receptive fields 
when processing images. On the other hand, while Transformers are powerful in handling long-range 
dependencies, their high computational cost remains a significant challenge. To effectively address 
these issues, this paper proposes an innovative modification to the VM-UNet model. This modified 
model strategically integrates the strengths of the Mamba architecture and UNet to significantly 
improve the accuracy of crack segmentation. In this study, we optimized the original VM-UNet 
architecture to better meet the practical needs of crack segmentation tasks. Through comparative 
experiments on the Crack500 and Ozgenel public datasets, the results clearly demonstrate that the 
improved VM-UNet achieves significant advancements in segmentation accuracy. Compared to the 
original VM-UNet and other state-of-the-art models, VM-UNet++ shows a 3% improvement in mDS 
and a 4.6–6.2% increase in mIoU. These results fully validate the effectiveness of our improvement 
strategy. Additionally, VM-UNet++ demonstrates lower parameter count and floating-point 
operations, while maintaining a relatively satisfactory inference speed. These improvements make VM-
UNet++ advantageous for practical applications.
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Cracks, as one of the common defects on the surface of physical structures, can pose significant safety hazards to 
the structure if not regularly inspected and repaired, as they may further accumulate and propagate1. Currently, 
there are two main methods for crack detection: one is the traditional manual inspection method2, but this method 
is costly, inefficient, and susceptible to subjective factors, which can lead to missed or incorrect detections; the 
other is deep learning3–6. With the development of deep learning, some researchers have integrated computer 
vision (CV) tasks into crack detection, achieving efficient and accurate crack detection.

In recent years, the outstanding performance of models based on Convolutional Neural Networks (CNNs)7 
and Transformer8 in visual tasks has not only driven the overall advancement of computer vision technology 
but also prompted researchers to delve deeper into their exploration in numerous complex visual scenarios, 
including crack detection.

CNNs have been a significant milestone in the field of computer vision. Early CNNs demonstrated 
exceptional performance in tasks such as handwritten digit recognition and character classification, establishing 
their dominance in visual processing. The core advantage of CNNs lies in their unique convolutional kernel 
design, which captures and integrates key visual information from crack images through local connections and 
weight sharing. However, due to the inherent locality of CNNs, their ability to capture long-range dependencies 
is limited, which may result in suboptimal feature extraction and inferior segmentation results.

Transformers were initially developed for natural language processing (NLP) tasks before being introduced 
to visual tasks. Leveraging their powerful attention mechanism, Transformers have demonstrated unmatched 
advantages in capturing long-range dependencies in images. As Transformer-based architectures have been 
widely applied to image processing tasks, their capabilities in vision have been proven, as seen in models like 
Vision Transformer (ViT)9, Swin Transformer10, and SegFormer11. Although Transformers excel at capturing 
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global context and long-range dependencies, their computational and spatial complexity increases quadratically 
with the length of the input sequence, which presents an efficiency bottleneck and poses challenges for practical 
applications. In response, researchers have proposed efficient improvements to Transformer-based models, such 
as sparse Transformers12, linear attention13, and FlashAttention14. While these models optimize the Transformer 
architecture by reducing computational and spatial costs without compromising their global perception 
capabilities, the quadratic complexity issue of Transformers remains unresolved.

The U-Net network15 is a classic encoder–decoder architecture. Its U-shaped structure, which combines skip 
connections between the encoder and decoder and the fusion of features at different levels, enables precise 
capture of image details and edge information, significantly improving segmentation accuracy and performing 
excellently in visual tasks. Due to its strong performance in various image segmentation tasks, U-Net has 
been widely studied and improved. Researchers have proposed several modifications to further enhance its 
performance in image segmentation tasks, such as U-Net++16, which introduces a nested structure with deep 
supervision mechanisms, ResUNet17, which integrates residual learning into its network modules, and Attention 
U-Net18, which strengthens the decoder’s ability to learn features by incorporating an attention gate mechanism.

To leverage the advantages of both Transformer and U-Net architectures, researchers have proposed methods 
that combine Transformer with U-Net to achieve better performance in image segmentation tasks. For example, 
models like TransUNet19, nnFormer20, and Swin-Unet21 integrate Transformer modules into the encoder and 
decoder parts of U-Net to enhance the ability to capture global contextual information. These hybrid models 
have shown significant advantages in image segmentation tasks, as they combine the global context-awareness 
of Transformers with the efficient feature fusion mechanism of U-Net. This not only improves segmentation 
accuracy but also significantly enhances the model’s generalization ability. However, these models also have 
drawbacks, such as the quadratic computational complexity of Transformers, leading to high computational 
costs, limited performance improvements on small datasets, and certain missegmentation issues. These 
shortcomings have prompted researchers to develop new image segmentation architectures that can capture 
global context information while maintaining linear computational complexity.

Recently, a new model, Mamba22, has garnered significant interest among researchers. Mamba is the first 
foundational model built using a state-space model (SSM). It possesses powerful global modeling capabilities 
while exhibiting linear computational complexity. This advantage has enabled Mamba to quickly expand across 
various tasks, such as natural language processing (NLP) and audio modeling. However, due to its design, 
Mamba is better suited for tasks involving long sequences and autoregressive characteristics, making it less 
suitable for most visual tasks. In these tasks, Mamba may not fully leverage its advantages, resulting in lower 
performance compared to traditional CNNs or Transformers. However, with the introduction of Vision Mamba 
(Vim)23 by Zhu et al. and VMamba24 by Liu et al., Mamba has successfully been adapted to the computer vision 
field. Vim and VMamba demonstrate faster processing speeds, as well as lower memory and computational 
resource requirements, when handling large-scale images and scenarios that demand efficient computation.

Inspired by this, several researchers have introduced Mamba into various image processing tasks for in-depth 
studies and have effectively deployed it in specific downstream tasks within computer vision (CV). Notably, 
Mamba has found widespread application in the field of medical image segmentation, with models such as 
U-Mamba25, VM-UNet26, Mamba-UNet27, and SegMamba28. Subsequently, Mamba has also been successfully 
applied to remote sensing image segmentation, with models like RS3Mamba29, CM-UNet30, PyramidMamba31, 
and ChangeMamba32, demonstrating the powerful capabilities and broad adaptability of Mamba. Recently, 
Zhao and his team33 innovatively applied VM-UNet technology to the fine segmentation of crack images. This 
attempt marks the first exploration of Mamba’s potential in the field of crack detection, showcasing its significant 
advantages in this area. The study not only injects new vitality into structural health monitoring but also provides 
a more efficient and reliable technological solution for infrastructure maintenance and repair.

This study presents innovative improvements and optimizations to the original VM-UNet architecture for 
the crack segmentation task. A series of innovative designs have been implemented with the aim of enhancing 
segmentation accuracy. The core feature of this architecture is that, in the encoder stage, we incorporate a 
dual attention mechanism into the skip connections to enhance the model’s ability to capture and focus on 
key information, improving its ability to extract and utilize crack features. In the decoder stage, we add a 
feature fusion module designed to effectively integrate feature information from various stages of the encoder, 
providing more rich and comprehensive feature inputs to the decoder when reconstructing image details. 
Through feature fusion, the model can make fuller use of the extracted features, further improving the accuracy 
of crack segmentation. We expect that our improvements will enhance the performance of VM-UNet in crack 
segmentation tasks and provide strong support for research and applications in related fields.

The main contributions of this paper are as follows:

	1.	� Improvement of VM-UNet network structure: We have refined the VM-UNet, which was originally designed 
for crack segmentation tasks, resulting in enhanced effect in this specific task.

	2.	� Introduction of a dual attention mechanism: In the skip connections of VM-UNet, we have introduced a 
channel and spatial attention mechanism. This dual attention combination enables the model to more accu-
rately focus on key information, improved fracture feature extraction and utilization.

	3.	� Design of a feature fusion module: To further enhance the capabilities of the model, we have designed a fea-
ture fusion module that effectively integrates feature information from various stages of the encoder, enrich-
ing the feature information available to the decoder. This improves the accuracy and completeness of crack 
segmentation.

	4.	� The improved VM-UNet performs well in image segmentation tasks, significantly improving the mIoU and 
mDS metrics. It provides an exploration direction for the further advancement of image segmentation tech-
nology.
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Preliminaries
State space models (SSM)
Gu et al. proposed a new architecture called Mamba, which is based on a selected state space model (SSM). By 
introducing selective scanning operations and hardware-aware algorithms, it significantly reduces computational 
complexity. Notably, the Mamba exhibits distinct advantages, characterized by its computational complexity that 
increases linearly with the length of the input sequence, and its inherent global perception capabilities, which 
have attracted increasing attention from researchers.

SSM have become an important infrastructure in the field of deep learning, originating from traditional 
control theory and providing scalability with a linear relationship to the length of data sequences for handling 
long-term dependencies. Both the structured state space sequence model (S4) and Mamba are based on a 
continuous time dynamical system that can maps a one-dimensional input function or sequence, denoted as 
x (t) ∈ RL, to an output y (t) ∈ RL through a series of intermediate hidden states h (t) ∈ RL. These state 
space models can be described by the following form of linear ordinary differential equations (ODEs):

	 h′(t) = Ah(t) + Bx(t)� (1)

	 y(x) = Ch(t) + Dx(t)� (2)

In state space models, A ∈ RN×N  is the state matrix, while B ∈ RN×1, C ∈ RN×1, and D ∈ R are projection 
parameters. In order to apply these models to deep learning algorithms, discretization is typically required. 
Specifically, Δ as a time-scale parameter, it is used to convert the continuous-time parameters A, B into discrete-
time parameters Ā, B̄. The commonly used method for discretization is the zero-order hold (ZOH) rule, which 
is defined as follows:

	 Ā = exp (∆A)� (3)

	 B̄ = (∆A)−1 (exp (∆A) − I) · ∆B� (4)

After the discretization process, the discrete forms of Eqs. (3) and (4) with step sizes Δ can be reformulated as 
the following form of recurrent neural network (RNN):

	 h′
t = Āht−1 + B̄xt� (5)

	 yt = Cht + Dxt� (6)

Furthermore, Eq. (3) can be equivalently transformed into the following form of convolutional neural network 
(CNN):

	 K̄ =
(
CB̄, CĀB̄, , CĀL−1B̄

)
� (7)

	 y = x ∗ K̄ � (8)

where K̄ ∈ RL represents a structured convolutional kernel, and L denotes the length of the input sequence x. 
This convolution method optimizes the calculation process by integrating the output sequence as a whole, which 
not only accelerates the processing speed but also enhances the model’s adaptability to data of different scales. 
Moreover, by integrating all elements in the sequence, it enhances the model’s capability to process complex 
patterns, thereby increasing the overall system’s flexibility and scalability.

Method
Overall framework
In this section, we introduce the improved VM-UNet, i.e.VM-UNet++. As shown in Fig. 1, in the initial stage, 
VM-UNet++ employs a patch embedding layer to process the input image data, precisely segmenting the input 
image into several independent and non-overlapping patches of size 4 × 4, and then transforming the image 
dimensions to C. The embedded images are then fed into the encoder section, which consists of four core stages 
for deep feature extraction. In the first three stages, patch merging downsampling modules are adopted to reduce 
the size of the feature map while increasing its channel count, thus achieving more efficient and precise capture 
and encoding of image information. Similarly, the decoder section is divided into four stages, applying patch 
expansion upsampling modules to reduce the number of channels while expanding the feature map size.

The visual state space (VSS) in both the encoder and decoder serves as the core of VM-UNet++, playing a 
crucial role in feature processing. After layer normalization, the input features are separated into two processing 
paths. The first path undergoes a linear transformation followed by activation using the Sigmoid linear unit 
(SiLU)34 to enhance feature representation. In the second path, the input features are first transformed by a linear 
layer, optimized by a depthwise separable convolutional layer, and activated with SiLU. These processed input 
features then pass through the SS2D module and layer normalization to extract additional features. Finally, the 
feature outputs from both paths are fused through element-wise operations, processed by a linear layer, and 
combined with the original residual connection to produce the final output.

In the lateral connections between the encoder and decoder, we innovatively employ channel attention 
and spatial attention mechanisms. The introduction of these two attention mechanisms enables the model to 
focus more precisely on key information in the image, thereby improving the accuracy and efficiency of feature 
extraction. Furthermore, in the decoder section, we enhance the model’s capabilities by adding a feature fusion 
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module. This module effectively fuses feature information from different stages of the encoder, providing a 
richer source of information for the decoder during image detail reconstruction. This improvement ensures 
that the model can more comprehensively utilize the extracted features, further enhancing the accuracy and 
completeness of crack segmentation.

Attention model
We have designed and implemented an efficient attention module to enhance the model’s ability to extract and 
utilize crack features. As shown in Fig. 2a, the attention module has finely processed and optimized the image 
features.

First, we use Reshape to adjust the dimensions of the input feature map, ensuring the smoothness and 
efficiency of data in the subsequent processing steps, laying the foundation for deeper feature extraction. 
Subsequently, a dual attention mechanism is introduced, consisting of channel attention (CA) and spatial 
attention (SA). CA emphasizes channels that are more critical for the crack segmentation task by weighting the 
features of different channels, optimizing feature selection and utilization. SA further enhances the module’s 
spatial feature extraction capabilities, precisely locating key regions in the image, allowing the model to focus 
more on the detailed features of cracks. Then, we will add and fuse the attention weights obtained through CA 
and SA, and integrate the attention weights generated by CA and SA into the original feature map through 

Fig. 2.  Provides an overview of our attention module. (a) Attention module overall network structure, (b) 
Channel attention block, (c) Spatial attention block.

 

Fig. 1.  The overall architecture of VM Net++ proposed.
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multiplication operation. This not only achieves optimization of features in both spatial and channel dimensions 
but also enhances the model’s sensitivity and robustness to crack features. The formula is as follows:

	 AttentionModel(x) = x ⊙ SpatialAttention(x ⊙ ChannelAttention(x)) + x� (9)

where x is the input feature with a shape of (B, C, H, W ), B is the batch size, C  is the number of channels, 
and H  and W  are the height and width of the feature map, respectively.  ChannelAttention (·) and  
SpatialAttention (·) represent channel attention and spatial attention.

Channel attention block (CAB)
The channel attention block (CAB) dynamically adjusts the importance of different channels by assigning 
distinct importance weights to each channel. This enhances the model’s sensitivity to different input channels, 
enabling it to focus on more useful feature information while suppressing less significant features.

As shown in Fig. 2b, in the implementation of the CAB, we initially process the input feature map through 
both adaptive average pooling and adaptive max pooling layers. Following this, the pooled features are handled 
by fully connected layers. Lastly, the outcomes of these processing steps are summed and passed through a 
Sigmoid function to derive the attention weight for each channel. These weights can be utilized to enhance or 
suppress the information in different channels of the feature map. The formula is represented as follows:

	 ChannelAttention(x) = σ(F C(AdaptiveAvgP ool(x)) + F C(Adaptive max P ool(x)))� (10)

where x is the input feature map with a shape of (C, H, W ), where C  is the number of channels, and H  and W  
represent the height and width of the feature map, respectively. AdaptiveAvgP ool (·) represents the adaptive 
average pooling operation, which pools the feature map down into dimension of (C, 1, 1). AdaptiveAvgP ool (·) 
represents the adaptive maximum pooling operation, which similarly pools the feature map to a dimension of 
(C, 1, 1). F C (·) stands for a sequence of fully connected layers, comprising two convolutional operations and 
a Sigmoid activation function. σ (·) is the Sigmoid activation function.

Spatial attention block (SAB)
The spatial attention mechanism focuses on spatial position information in the images. By identifying and 
concentrating on key areas where cracks are located, the module can more effectively segment crack features 
from complex backgrounds.

As shown in Fig.  2c, in the implementation of spatial attention block (SAB), we first aggregate channel 
information by calculating the mean and maximum values. Subsequently, a spatial attention map of the same 
size as the input feature map is generated through convolution and the Sigmoid function. This attention map can 
be used to weigh the spatial locations of input feature map, thereby enhancing or suppressing information from 
different spatial positions. The formula is represented as follows:

	 SpatialAttention(x) = σ(Conv([Avg(x), Max(x)]))� (11)

where x is the input feature with a typical shape of (C, H, W ), in which C  represents the number of channels, 
and H  and W  represent the height and width of the feature map, respectively. Avg (·) denotes calculating 
the average along the channel dimension C , resulting in a shape of (1, H, W ). Max (·) indicates finding 
the maximum value along the channel dimension C , also yielding a shape of (1, H, W ). [·, ·] represents 
concatenating the two feature maps along the channel dimension, resulting in a shape of (2, H, W ). Conv (·) 
stands for a 2D convolution operation applied to the concatenated feature map, outputting a feature map with 
a shape of (1, H, W ). σ (·) is the Sigmoid activation function, used to normalize the output feature map of the 
convolution to the range of [0, 1], generating the final spatial attention map.

Feature fusion module (FFM)
In this study, we designed a feature fusion module to improve the performance of crack image segmentation 
by fusing feature information from the encoder and decoder. As shown in Fig.  3a, its uniqueness lies in its 
innovative dual attention mechanism, namely channel attention (CA) and spatial attention (SA), which play a 
key role in the module.

The fusion module receives two input features: one of which is the feature Xdown enhanced by the encoder’s 
attention module, and the other is the feature Xup obtained by upsampling through the decoder’s VSS. Xdown is 
rich in attention-enhanced feature information, while Xup provides further enhanced feature details.

In the fusion process, firstly, Xdown and Xup will extract features through convolutional layers to enhance 
their feature expression ability. Then, the extracted features are added together and subjected to non-linear 
processing using the Sigmoid activation function to generate more refined fusion features XS .

In order to further enhance the richness and expressive power of the features, we perform channel fusion 
on Xdown and Xup to generate a new feature Xconcat. Next, we utilize the channel attention mechanism (CA) 
to process Xconcat, resulting in the feature XCA. In this process, the CA mechanism learns and evaluates the 
importance of each feature channel, adaptively adjusts the weights of each channel to strengthen key features 
and weaken non-key features. This approach ensures that the model focuses more on the feature channels that 
are most critical for the crack segmentation task. Subsequently, XCA is processed through the spatial attention 
mechanism (SA) to capture spatial correlations in the feature map and generate feature XSA. The introduction 
of SA mechanism enables the model to more effectively identify and emphasize key regions, while reducing the 
influence of backgrounds or irrelevant regions, thereby enhancing the model’s focus on crack regions.
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Finally, we pass the SA processed feature XSA through a convolutional layer (Conv) for deep feature 
extraction, resulting in the feature Xo. Afterwards, we perform element-wise feature multiplication to fuse Xo 
with the previously generated feature XS , and then add the fused feature information to the original Xo through 
an addition operation, ultimately generating the output feature XF usion. The formula is represented as follows:

	 xS = σ (Conv (xdown) + Conv (xup))� (12)

	 xconcat = [xdown, xup]� (13)

	 xCA = xconcat + xconcat ⊙ CA (xconcat)� (14)

	 xSA = xCA + xCA ⊙ SA (xCA)� (15)

	 xo = conv (xoutputSA)� (16)

	 xF usion = xS ⊙ xo + xo� (17)

where σ (·) represents the Sigmoid activation function, Conv represents the convolutional operation, [·, ·] 
indicates concatenation along the channel dimension, ⊙ signifies element-wise multiplication, CA (·) and 
SA (·) represent channel attention and spatial attention, respectively.

Experiments
Datasets
In this study, to comprehensively and objectively evaluate the performance of our improved VM-UNet model 
in crack detection tasks, we selected two widely used public crack datasets: Crack500 and Ozgenel. These two 
datasets cover various complex crack conditions, as shown in Fig. 4. Next, we will introduce these two datasets.

Crack50035: This dataset contains 500 images of pavement cracks (with a resolution of 2000 × 1500 pixels), 
and all these images have been annotated at the pixel level. Due to the limited number of images in this dataset, 
each image was cropped into 16 non-overlapping regions, retaining areas with more than 1000 pixels. As a result, 
we obtained 1896 training images and 1124 test images. In this study, to meet the input requirements of the 
model, we resized all images and their annotations to a uniform size of 448 × 448 pixels.

Ozgenel36: This dataset consists of 458 high-resolution images of concrete cracks (with a resolution of 
4032 × 3024 pixels) and corresponding annotated masks. The dataset is divided into two categories: images with 
cracks and images without cracks. In this study, we resized all images into smaller blocks of 448 × 448 pixels to 
prepare for the evaluation of the dataset. After processing, we obtained a training set containing 1800 images and 
corresponding masks, as well as a test set containing 454 images and corresponding masks.

As shown in Table 1, the specifications of the two datasets are presented, including the size of input images 
and the number of images in the training and test sets.

Implementation details
This study conducted both the training and testing of the model on Nvidia RTX 3090 GPUs, with the primary 
software environment consisting of CUDA 11.8 and Python 3.8. The deep learning framework employed was 
PyTorch version 1.13.0. The Adam optimizer was utilized for training the model, with the training parameters set 
to a learning rate of 5 × 10−5, a weight decay of 0.0001, a batch size of 14, and 100 epochs. To prevent overfitting 
during the training process, the training dataset was randomly shuffled, and random image augmentation 
techniques, such as vertical and horizontal flips, were applied.

Fig. 3.  The feature fusion module FFM proposed in this article effectively fuses two input feature maps 
through convolution and Concat operations to generate more refined feature maps. Meanwhile, with the 
innovative channel attention (CA) and spatial attention (SA) mechanisms, FFM can accurately focus attention 
on the regions of interest.
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Evaluation metrics
In the task of crack segmentation, where the goal is to classify crack and non-crack pixels, the balanced 
evaluation of segmentation accuracy typically relies on the mean Dice score (mDS) and mean intersection over 
union (mIoU) as the primary evaluation metrics37. Therefore, this study uses mDS and mIoU to evaluate model 
performance. Their definitions are expressed as follows:

	
DS = 2 |P ∩ T |

|P | + |T | � (18)

	
IoU = |P ∩ T |

|P ∪ T | � (19)

In this context, P represents the pixel map output by the model, and T is the corresponding ground truth pixel 
map.

Intersection over union (IoU) measures the similarity between the predicted mask and the ground truth 
segmentation map by comparing their intersection and union areas. The Dice score (DS) evaluates their 
similarity by calculating the ratio of twice the intersection area to the sum of the areas of both the predicted 
and ground truth masks. Both evaluation metrics have a scoring range from 0 to 1, where 1 represents a perfect 
match and 0 indicates no overlap. It is worth noting that when the overlapping region is small, the IoU criterion 
is relatively stricter, often resulting in lower scores compared to DS. However, as the overlapping area increases, 
the difference between the two gradually diminishes. Therefore, mIoU is more sensitive to categories with low 
prediction accuracy, while mDS provides a more comprehensive reflection of the model’s overall segmentation 
effectiveness across all categories. Importantly, both IoU and DS do not rely on specific pixel classification 
thresholds during the evaluation process; instead, they consider the entire segmentation region, including 
overlap at the boundaries. This characteristic makes both metrics fairer and more objective for assessing image 
segmentation performance, which is why they are widely used.

Results
Accuracy comparison
To evaluate and compare the performance of our improved VM-UNet++ model, this study employs established 
benchmarks represented by various architectures in the field. Specifically, we consider the following representative 
models: CNN-based UNet15 and LinkNet38 with EfficientNet39 as the backbone (Net-EB7 and LinkNet-EB7); 
Transformer-based SwinUNet21 and SegFormer-B511; CNN-Transformer hybrid designs, namely TransUNet40 
and DTrC-Net41; the efficiently self-attention designed PoolingCrack42 and the base model VM-UNet33. 
Through comparative analysis, we aim to validate the performance enhancements achieved by our modified 
VM-UNet++. Next, we will further highlight the advantages and practical application value of our model in 
crack detection tasks through model comparison analysis.

We investigated the results of these models (see Table 2) and compared them with our improved VM-UNet, 
which stands out due to its unique dual attention and feature fusion modules. This design significantly enhances 

Dataset name Image size for training Total number of images Number of images for train Number of images for test

Crack500 448 × 448 3020 1896 1124

Ozgenel 448 × 448 2254 1800 454

Table 1.  Details of the two datasets used.

 

Fig. 4.  The crack example images of the Crack 500 and Ozgenel datasets in Fig. 5 are divided into two parts: 
the upper part is the original image, and the lower part is the corresponding crack detection image (GT 
indicates ground truth).
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the model’s segmentation performance. As shown in Table 2, VM-UNet++ achieved substantial improvements 
in both the mDS and mIoU metrics. Specifically, on the Crack500 and Ozgenel datasets, ours model improved 
mDS by 3.2%, and mIoU showed a significant increase of 4.6–6.2%. Table 2 provides a detailed comparison of 
the accuracy of different network architectures on the two datasets. It is evident from the table that, compared 
to other leading models such as UNet-EB7, LinkNet-EB7, and TransUNet, our VM-UNet++ demonstrates 
superior performance in both mDS and mIoU metrics, while maintaining a relatively low parameter count. 
Notably, on the Ozgenel dataset, VM-UNet++ achieved an mDS of 90.3% and an outstanding mIoU of 82.3%, 
which clearly demonstrates the remarkable performance of the improved VM-UNet model in handling complex 
image segmentation tasks.

Figure 5 illustrates the experimental results of VM-UNet++ on the Crack500 and Ozgenel datasets. It can 
be observed that VM-UNet++ performs remarkably well on both training and validation sets, with the loss 
rapidly converging and accuracy steadily improving, demonstrating its strong generalization ability. As shown 
in Fig.  5a, on the Crack500 dataset, the training loss stabilizes after the 20th epoch, and the validation loss 
follows a similar trend. The training and validation accuracies reach approximately 0.985 and 0.980, respectively, 
after the 80th epoch, with no significant overfitting observed. Similarly, as shown in Fig. 5b, on the Ozgenel 
dataset, the training loss stabilizes after the 15th epoch, while the validation loss exhibits some fluctuations 
initially but gradually decreases. The training and validation accuracies stabilize at approximately 0.990 and 
0.988, respectively. These results indicate that the VM-UNet++ effectively learns features from different datasets 
and achieves consistent and robust performance on the validation sets, aligning closely with the training results.

As shown in Fig. 6, VM-UNet++ performs excellently in the task of crack detection for both the Crack500 
and Ozgenel datasets through the confusion matrix analysis. For the Crack500 data set, the true case rate (TN) 
is as high as 92.54%, the false positive case rate (FP) is as low as 1.86%, and the true case rate (TP) is as high as 
4.38% in the recognition of crack images, which strongly proves that VM-UNet++ has a certain accuracy in the 
recognition of crack images. In the detection of Ozgenel data set, the true case rate (TN) of the model to identify 
non-crack images is 94.47%, the false positive case rate (FP) is 0.36%, and the true case rate (TP) of the model 
to identify crack images is 4.56%, which also clearly reflects the reliability of the model in the crack detection 
scene. The excellent performance of the model on these two data sets fully demonstrates its strong application 
value and potential in the field of fracture detection.

Fig. 5.  Evaluate the loss and accuracy performance of two datasets: (a) Crack 500 and (b) Ozgenel.

 

Model Param (M)

Crack500 Ozgenel

mDS (%) mIoU (%) mDS (%) mIoU (%)

UNet-EB715 67 69.9 55.7 84.1 77.3

LinkNet-EB738 64 69.9 55.6 84.6 78.1

TransUNet40 106 70.2 56.0 85.3 79.2

SwinUNet21 42 68.1 53.3 83.3 76.1

SegFormer-B511 85 70.7 56.5 84.9 78.6

DTrC-Net41 42 67.5 53.3 84.7 78.3

PoolingCrack42 32 70.6 56.4 85.7 79.7

VM-UNet33 27 70.3 56.0 85.7 79.4

VM-UNet++ (Ours) 55 73.4↑ 57.9↑ 90.3↑ 82.3↑

Table 2.  Comparison of accuracy of different network structures on the dataset. Significant values are in 
[bold].
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Figure  7 shows the predictions for both data sets. On the Crack500 dataset, VM-UNet++ demonstrates 
the ability to generate clear and continuous crack segmentation maps in most cases, significantly better than 
VM-UNet. As shown in Fig. 7a, VM-UNet exhibits several significant shortcomings, such as the lack of crack 
pixels in the first, second, sixth, and seventh columns, and the misclassification of some background noise as 
cracks in the fourth and fifth columns. These problems lead to unstable crack profile delineation. In contrast, 
the modified VM-UNet++ produces more consistent crack profiles, showing greater robustness and accuracy. 
It enables a more reliable classification of crack pixels and provides a more accurate representation of the actual 
crack profile. Similarly, on the Ozgenel dataset, VM-UNet++ also shows superior result. As shown in Fig. 7b, 
the crack segmentation map generated by VM-UNet++ is more complete and the crack boundary is clearer than 
that generated by VM-UNet. These results further validate the high accuracy and robustness of VM-UNet++ in 
the task of crack image segmentation.

Efficiency comparison
To evaluate the efficiency of the model, we selected three key metrics: model parameters, floating-point 
operations (FLOPs), and inference time. The number of parameters is used to measure the complexity of the 
model, the number of floating-point operations assesses the computational workload, and the inference time 
reflects the duration required for the model to make predictions. The relevant evaluation results can be found 
in Fig. 8.

In this study, we present a comprehensive comparison of VM-UNet++ with other state-of-the-art 
segmentation models. Compared to other models, VM-UNet++ reduces the number of parameters, such as a 
decrease of approximately 17.9% compared to UNet-EB7, and about 48.1% compared to TransUNet. However, 
it increases by approximately 50.1% when compared to VM-UNet. In terms of computational complexity, VM-
UNet++ also demonstrates superior performance, with its FLOPs significantly lower than those of other models. 
Specifically, it reduces FLOPs by about 73.3% compared to UNet-EB7, and by as much as 93.8% compared 
to DTrC-Net. When compared to VM-UNet, it achieves a 50% reduction. Although the inference time is not 
the shortest, VM-UNet++ reduces inference time by only about 15 ms compared to other high-performance 
models such as SwinUNet and SegFormer-B5. While the inference time of VM-UNet++ is approximately 5 ms 
longer compared to VM-UNet’s 16  ms, this increase is entirely acceptable when considering the significant 
optimizations in parameters and FLOPs relative to other models.

Ablation studies
To evaluate the actual effectiveness of our proposed dual attention module and feature fusion module within 
VM-UNet, we conducted four ablation experiments, as presented in Table 3. Our network architecture primarily 
comprises three components: the VM-UNet, the dual attention module, and the feature fusion module. The first 
row of Table 3 illustrates our base model, VM-UNet. The second row demonstrates the impact of incorporating 
the dual attention module. The third row reflects the results obtained after integrating the feature fusion module. 
A comparison of the second and third rows in Table 3 clearly indicates that both the dual attention module and 
the feature fusion module significantly enhance the model’s segmentation performance. Notably, the combined 
utilization of the dual attention and feature fusion modules in the fourth row yields the best results in terms of 
mDS and mIoU metrics.

Conclusions
In the research presented in this paper, the dual attention mechanism and feature fusion module have 
demonstrated exceptional performance in image segmentation tasks. These modules not only improve the 
accuracy and precision of segmentation but also enhance the robustness and generalization ability of the model. 

Fig. 6.  Confusion matrix for Crack500 and Ozgenel datasets.
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This innovative design brings new breakthroughs to the field of image segmentation and lays a solid foundation 
and valuable reference for subsequent related research.

Future work
Regarding our future work plans will focus on several key directions. First, we plan to further explore the 
performance of the VM-UNet model in handling higher-resolution images. High-resolution image processing 
has become a critical area of development in the industry, and we anticipate that VM-UNet will demonstrate 
its unique advantages in this field. Additionally, we aim to investigate the potential application of Mamba 
technology in other image processing tasks, such as object detection. Crack detection and object detection are 
closely related in image processing, and we expect that Mamba’s powerful capabilities will lead to innovative 
advancements in tasks such as crack detection and segmentation. Through continuous research and practical 
applications, we aim to establish Mamba as a robust tool in the field of image processing, contributing to the 
growth and development of this domain.

Fig. 7.  Prediction results on the two datasets: (a) Crack 500 and (b) Ozgenel.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due confidentiality 
requirements of the school but are available from the corresponding author on reasonable request.
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