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Cerebral palsy (CP) is a neurological condition that affects mobility and motor control, presenting 
significant challenges for accurate diagnosis, particularly in cases of hemiplegia and diplegia. This study 
proposes a method of classification utilizing Recurrent Neural Networks (RNNs) to analyze time series 
force data obtained via an AMTI platform. The proposed research focuses on optimizing these models 
through advanced techniques such as automatic parameter optimization and data augmentation, 
improving the accuracy and reliability in classifying these conditions. The results demonstrate the 
effectiveness of the proposed models in capturing complex temporal dynamics, with the Bidirectional 
Gated Recurrent Unit (BiGRU) and Long Short-Term Memory (LSTM) model achieving the highest 
performance, reaching an accuracy of 76.43%. These results outperform traditional approaches 
and offer a valuable tool for implementation in clinical settings. Moreover, significant differences in 
postural stability were observed among patients under different visual conditions, underscoring the 
importance of tailoring therapeutic interventions to each patient’s specific needs.
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Cerebral palsy (CP) is a chronic neurological condition identified by altered body movements, psychomotor 
retardation, and, if not treated promptly, can lead to deformities of the limbs and trunk. Depending on the level 
of the lesion, four types of paralysis can be distinguished: monoparesis, diplegia, hemiplegia, and tetraparesis. 
In this study, a total of 57 pediatric patients diagnosed with hemiplegia and diplegia were included, classified 
as follows: 25 patients with right-sided hemiplegia, 10 patients with left-sided hemiplegia, and 22 patients with 
spastic diplegia. In hemiplegia (unilateral cerebral palsy), children exhibit greater motor impairments on one 
side of the body compared to the contralateral side. In contrast, in spastic diplegia (bilateral cerebral palsy), both 
sides of the body are affected, and the lower extremities are commonly more involved than the upper extremities.

These conditions are caused by a disturbance in the brain when the nervous system has not finished maturing 
(before the age of five). Causes can occur during pregnancy, at birth, after birth, and up to the age of five. Although 
the condition does not worsen over time, sequelae can worsen if left untreated. CP affects approximately 2-3 of 
every 1,000 live births worldwide1.

Early and accurate diagnosis of these conditions is crucial for timely intervention and significant improvement 
in quality of life2. However, the complexity of data and identification presents challenges for treatment specialists.

Advanced artificial intelligence (AI) techniques and time series analysis have shown the potential to improve 
diagnostic accuracy and support clinical diagnosis. Recent studies have demonstrated the effectiveness of 
computer vision and deep learning in the analysis of infant movements, crucial for the early detection of CP2–5. 
Pain in children with CP has been classified6, and robotic-assisted treatment has also been implemented7. 
Moreover, using RGB videos to extract pose sequences and analyze motion patterns has shown promising results 
in motion pattern recognition2,8,9. In addition, AI models such as long-short-term memory and gated recurrent 
units are effective in finding complex temporal patterns, thus improving the accuracy of various diagnostic and 
recognition3,10,11, but not in diagnosing infants with hemiplegia or diplegia.
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Several studies have addressed the use of AI in diagnosing and treating CP. For example, Morbidoni et al.12 
used electromyography (EMG) signals and machine learning (ML) to predict gait events in children with CP, 
obtaining high accuracy in predicting gait events (heel strike and toe off) even under conditions of high signal 
variability. Silva et al.13 reviewed computer vision and machine learning-based approaches for the assessment 
of general infant movement, highlighting the importance of large annotated datasets to improve automated 
solutions.

Studies report that gait assessment analyzes a patient’s movement pattern on the walk to identify and diagnose 
conditions such as cerebral palsy. They use sensors, cameras, or pressure platforms to capture data and identify 
gait abnormalities. Xiong et al.14 developed a neural interface for gait tracking based on muscle synergies and 
deep neural networks. Similarly, Jung et al.15 proposed a novel approach for multiple classifications of human 
gait using time-frequency representations and deep convolutional neural networks. However, Rueangsirarak et 
al.16 proposed a framework for classifying neurological disorders in older adults using 3D movement data.

In addition, Dolatabadi et al.17 explored using non-invasive sensor technology and machine learning methods 
to classify healthy and pathological gait patterns. Donahue and Hahn18 compared a heuristic feature identification 
algorithm with a hidden Markov model for the identification of gait events, showing that both approaches can 
accurately identify gait events in different locomotion modes. Ricardo et al.10 reviewed the impact of ankle-foot 
prosthesis on gait patterns in children with bilateral spastic CP, finding significant improvements in gait speed 
and stride length.

On the other hand, Xiong et al.14 demonstrated that the innovative neural interface based on muscle 
synergies can accurately estimate joint angles during gait. Ren et al.19 demonstrated the effectiveness of AI to 
evaluate different balance control subsystems using the center of pressure data. In addition, Agostini et al.20 
presented an algorithm for automatic segmentation and classification of gait cycles using foot switch signals, 
demonstrating an accuracy of 100% for healthy subjects and 98% for pathological subjects. Pérez-Ibarra et al.21 
developed unsupervised adaptive algorithms to identify gait events in healthy subjects with Parkinson’s using 
inertial sensors. In addition, Zhang et al.11 analyzed the accuracy of ambulatory gait analysis using machine 
learning models and instrumented shoe insoles. Duong et al.22 demonstrated the efficacy of recurrent deep 
learning models for estimating Center of pressure (COP) trajectories using multimodal instrumented shoe 
insoles, providing a valuable tool for gait monitoring in real-world settings and significantly correlating with 
clinical measures of ambulatory function and lower extremity muscle strength.

Recent studies have demonstrated significant advances in the assessment of motor function using monocular 
video and deep learning techniques. Zhao et al.23 proposed a spatio-temporal graph convolution network 
(STGCN) to extract motion features from pose data obtained from monocular videos, achieving an accuracy of 
76.6% in the assessment of children with CP using the Gross Motor Function Classification System (GMFCS), 
improving accuracy by 5% compared to current methods. Rahmati et al.3 developed a frequency analysis and 
feature reduction method to predict early infant CP. In addition, Skaramagkas et al.24 conducted a systematic 
review of deep learning techniques applied to the diagnosis of Parkinson’s disease (PD), highlighting the 
importance of data availability and model interpretability.

However, although gait assessment has been extensively studied, this approach has limitations regarding 
the complexity and variability of data collected in uncontrolled settings. In contrast, postural control measures 
stability and balance in a static position, which is crucial for patients with severe movement limitations, reducing 
physical strain for patients. This test is less invasive for the patient because it does not require the individual to 
perform complex movements or move around during the test. It benefits patients with cerebral palsy who may 
find it tiring or painful to perform a gait. In addition, the duration of a postural control test is generally shorter 
and less demanding than a gait assessment, reducing the overall assessment time and decreasing patient fatigue, 
improving the quality of the data collected. This system provides quantitative data that accurately reflect motor 
skills and postural control25. Studies show that posturographic measures, such as the displacement area of COP 
and the velocities in the mediolateral and anteroposterior directions, are sensitive to changes in postural control 
and can provide a solid basis for diagnosis and rehabilitation in diverse clinical populations25–29.

However, the literature has continued to explore the potential of AI in clinical practice. Ullrich et al.30 
developed an algorithm to automatically detect unsupervised standardized gait tests from data from the Inertial 
Measurement Unit (IMU) in Parkinson’s patients. Eguchi and Takahashi31 proposed an efficient method 
to estimate the vertical ground reaction force (vGRF) during gait using instrumented insoles, showing high 
accuracy and providing a viable alternative to force plates. Pham et al.32 used texture analysis for the classification 
of gait patterns in patients with neurodegenerative diseases, achieving high accuracy. Iosa et al.33 reviewed the 
use of gaming technologies in pediatric neurorehabilitation, showing promising results in improving children’s 
motivation and participation in therapies. Chakraborty and Nandy34 investigated the use of computational 
intelligence techniques for the automatic diagnosis of gait in CP using a low-cost multi-sensor approach, 
demonstrating high accuracy in detecting gait abnormalities. Gombolay et al.35 explored the application of AI 
in pediatric neurology, highlighting its potential to improve the accuracy and personalization of treatments. 
Khanna et al.36 reviewed neurodevelopmental treatment (NDT) in children with CP, showing positive results in 
improving motor function, balance and postural control.

Integrating advanced AI techniques and time series analysis offers a promising approach for an early and 
accurate diagnosis of cerebral palsy. AI models such as LSTM and GRU have shown improved diagnostic 
accuracy and identification of movement patterns, facilitating the adoption of these technologies in clinical 
practice and improving long-term outcomes for CP patients.

The diagnosis of hemiplegia and diplegia in pediatric patients using COP data presents significant challenges. 
The diverse nature of the data, including variations in collection methods, demographic differences, and testing 
conditions, makes it difficult to apply a single algorithm for all tasks. These unique characteristics require a 
customized approach. The absence of previous studies addressing these factors further underscores the need 
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for AI models tailored to the specific conditions of the data. Developing and evaluating such models will enable 
more accurate diagnoses and more effective treatments, ultimately enhancing clinical outcomes for pediatric 
patients.

The present study focuses on the development of a decision support system that automatically classifies 
hemiplegia or diplegia in pediatric patients. The system improves diagnostic accuracy and facilitates early and 
personalized intervention using LSTM and GRU models to capture complex temporal dynamics in force time 
series data.

This article develops a deep learning-based classifier to classify hemiplegia or diplegia in pediatric patients. 
It uses long short-term memory (LSTM), gated recurrent units (GRU), bidirectional long short-term memory 
(BiLSTM), bidirectional gated recurrent units (BiGRU), and the autoregressive integrated moving average 
(ARIMA) models to analyze temporal patterns and postural control in various visual conditions, thereby 
enhancing clinical diagnosis and supporting early intervention in cerebral palsy.

Methodology
The present study aims to automatically classify hemiplegia or diplegia in pediatric patients, supporting clinical 
diagnosis using advanced time series analysis techniques and explainable artificial intelligence. To this end, 
force data were collected via an AMTI force platform during tests conducted with eyes open. Long Short-Term 
Memory (LSTM), Gated Recurrent Units neural network models, and ARIMA were used to capture the complex 
temporal dynamics present in the biomechanical data.

Data collection and preprocessing
This study collected force data, referring to the measurement of forces exerted by the patients on the force platform 
during postural assessments, from 57 patients, aged 7 to 14 years (age: 9.2 ± 1.8 years; 29 males, 28 females), 
all diagnosed with hemiplegia or diplegia. The data were collected during the patient evaluation stage, prior to 
the start of any rehabilitation process, using clinical evaluations that comply with international standards. This 
study was approved by the Scientific Ethics Committee of the University of Talca, Chile, under protocol number 
24-2018 on 26/09/2018. Furthermore, the study is registered with the Australian New Zealand Clinical Trials 
Registry (ANZCTR) under the number ACTRN12621000117819 with date of trial registration 05/02/2021. The 
data was collected using an AMTI force platform by a team of researchers specializing in postural control for 
cerebral palsy in Chile25–28. The AMTI force platform is a highly precise device that measures the forces and 
moments generated by the subjects during the tests. In detail, the structure of the clinical trial study (Fig. 1) 
consists of 3 trials (t = 3) with a total of 103 samples. The trials have different sample sizes: trial 1 (n = 34), trial 
2 (n = 5), and trial 3 (n = 18), each with different repetitions (rep). Trial 1 is performed with a single repetition 
of 34 samples, while trials 2 and 3 are repeated three times with 15 and 54 samples, respectively. The samples 
are classified into two clinical conditions: hemiplegia (Hem) and diplegia (Di), with 64 cases of hemiplegia and 
39 cases of diplegia. In clinical neurology, particularly in postural control research within pediatric populations 
with CP, smaller sample sizes are common due to the specificity and complexity of the condition. In Chile, 
CP represents a significant proportion of pediatric neurorehabilitation cases, with approximately 33% of all 
neurorehabilitation services corresponding to children with CP, according to the Teletón Foundation. National 
disability studies further confirm the high prevalence and clinical relevance of CP in the country37. Given these 
factors, the data utilized in this study are representative and sufficient to provide meaningful insights into 
supporting clinical diagnosis in CP subtypes.

Fig. 1.  Structure of the clinical trial study with three trials (t = 3) and 103 samples from 57 participants, 
categorized into hemiplegia (Hem, n = 64) and diplegia (Di, n = 39). Each trial varies in repetitions and sample 
size, enabling comparative analysis of outcomes between the two conditions
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Each child participated in a test where they stood barefoot on the force platform in a natural posture, looking 
at an ‘X’ positioned at eye level on a wall in front of them. They maintained this position for 30 seconds while 
force data were recorded at a frequency of 200 Hz. This high sampling rate allowed for a detailed capture of the 
child’s postural control.

The AMTI platform measures the forces applied on its axes (Fx, Fy , Fz) and the moments generated (Mx, 
My , Mz). These data are essential for analyzing postural control in different visual conditions, providing a solid 
basis for diagnostic and rehabilitation research. The platform was calibrated before each testing session to ensure 
the accuracy of the measurements.

Unlike other studies, the collected data were not pre-processed to remove outliers; instead, it was processed 
entirely, allowing for a more representative analysis of movement dynamics and postural control. This 
methodology provides a detailed assessment of patient conditions, contributing to a more reliable evaluation of 
postural impairments.

Centre of pressure
Centre of Pressure (COP) is a key measure used to represent the point where the resultant of the ground reaction 
forces acts on the body’s supporting surface. The position is quantified through coordinates on the x- and y-axes, 
which are determined using specific equations (1 and 2) that account for the distribution of forces across the 
platform.

	
COPx = −My + F x · dz

F z
� (1)

	
COPy = Mx − F y · dz

F z
� (2)

where dz = 41.3 mm. This value represents a calibration constant used to calculate the COP on the AMTI force 
platform.

Velocity
Measures how quickly a patient’s position changes over time, making it essential for assessing posture. It helps 
assess motor function, detect asymmetries, and follow rehabilitation progress. Equations 3 and 4 are used for 
this variable.

	
V elocidadx = ∆COPx

∆t
� (3)

	
V elocidady = ∆COPy

∆t
� (4)

where ∆t = 1/200 (seconds) (5 milliseconds) is the time interval between consecutive measurements, 
corresponding to the sampling frequency of 200 Hz used by the force platform. This interval is the time between 
each data point recorded during the test.

Standard deviation
Standard Deviation (STD) quantifies the variability or dispersion of values, providing a measure of stability in 
COP positions. In this study, the standard deviation of COP positions along the x and y directions serves as an 
indicator of postural stability. A higher standard deviation suggests increased variability and potential instability 
in maintaining balance. Specifically, the standard deviations STDx and STDy  capture the average deviation of 
COP positions from their respective mean values, calculated using the root mean square approach (Equations 
5 and 6).

	
ST Dx =

√∑
(COPx − ¯COP x)2

N
� (5)

	
ST Dy =

√∑
(COPy − ¯COP y)2

N
� (6)

where N  refers to the total number of data points used to calculate the standard deviation, based on measurements 
taken over 30 seconds at 200 Hz, resulting in 6000 data points per trial.

Area of the ellipse
that encompasses the COP positions provides a measure of the extent of variability of the COP position in the 
plane. This area is calculated using the standard deviations in the x and y directions and is expressed as:

	 Area elipse = π · ST Dx · ST Dy� (7)

Given the 200 Hz sampling frequency and the 30-second recording, the COPs form a 6000-point time series, 
while the velocities are a 30-point time series. Initially, STDS and Area elipse are static values. However, to 
use these variables as input for the model, they were transformed into time series through a sliding-window 
technique. Specifically, six sliding windows were applied, each 5 seconds long and containing 1000 points. This 
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approach effectively converted static variables into dynamic time series, capturing the evolution of postural 
stability over time.

Several COP variables were calculated from these data, which are necessary to assess the subject’s postural 
stability. These variables quantitatively measure oscillations and balance control in response to different visual 
conditions.

Finally, all tests and procedures were conducted following established ethical considerations, ensuring 
informed consent of the participants and the confidentiality of the data.

Data augmentation
Data augmentation techniques were used to address the class imbalance in the data set. These methods 
expand the data set and improve model robustness by generating or modifying data, helping the model handle 
imbalanced distributions.

SMOTE
Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic samples by selecting instances of 
the minority class and interpolating between the selected instance and its closest neighbors. This increases the 
representation of the minority class, balancing the dataset and reducing classifier bias towards the majority class, 
thereby improving the model’s ability to classify minority class instances correctly.

TSAUG
Time Series Augmentation (TSAUG) is designed to augment time series data. Modifies the temporal structure 
of the data while preserving underlying patterns, introducing slight variations through methods such as 
time warping, shifting, and scaling. These transformations enhance the model’s ability to capture temporal 
dependencies by simulating real-world variability, such as shifts or fluctuations in time-dependent signals.

Jittering
This technique is a data augmentation method in which slight random noise is added to the data. This noise 
enhances model robustness by encouraging it to focus on underlying patterns rather than memorizing specific 
examples, thereby reducing the risk of overfitting, particularly in small datasets.

Models and validation
Recurrent Neural Networks (RNNs) specialize in processing data sequences, such as time series and text. Unlike 
traditional neural networks, RNNs have feedforward connections that allow them to maintain a short-term 
memory of previous inputs in the sequence. This is especially useful for tasks where context and order of data are 
crucial. While RNNs are useful for processing sequential data, they have limitations, especially in learning long-
term dependencies. This is due to the vanishing and exploding gradient problems that occur during training.

Long short-term memory
Long Short-Term Memory (LSTM)38 is an improvement over standard RNN, designed to address the difficulty 
of learning long-term dependencies. The LSTM architecture includes a cell memory and three gates that control 
the flow of information: the input gate, the forgetting gate, and the output gate. This allows LSTMs to retain 
information for long periods and better manage temporal dependencies. The LSTM equations can be expressed 
as follows:

	 ft = σ(Wf · [ht−1, xt] + bf )� (8)

	 it = σ(Wi · [ht−1, xt] + bi)� (9)

	 C̃t = tanh(WC · [ht−1, xt] + bC)� (10)

	 Ct = ft · Ct−1 + it · C̃t� (11)

	 ot = σ(Wo · [ht−1, xt] + bo)� (12)

	 ht = ot · tanh(Ct)� (13)

Where:

•	 ft is the forgetting gate that decides which information to forget from the previous cell state.
•	 it is the input gate that decides what new information to store.
•	 C̃t is the candidate cell state, which is the new candidate information to be added to the cell state.
•	 Ct is the updated cell state.
•	 ot is the output gate that decides which part of the cell state will be used for the output.
•	 σ is the sigmoid function, which limits the values between 0 and 1.
•	 tanh the hyperbolic tangent function, which produces values between -1 and 1.

Gated recurrent unit
Gated Recurrent Unit (GRU)39 is a simpler variant of LSTM that was introduced to improve the efficiency of 
recurrent neural networks. GRUs combine the input and forgetting gates into a single update gate and eliminate 
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the separate cell state, simplifying the architecture, and reducing the number of parameters. This simplicity 
allows for faster and more efficient training. The GRU equations are the following.

	 zt = σ(Wz · [ht−1, xt] + bz)� (14)

	 rt = σ(Wr · [ht−1, xt] + br)� (15)

	 h̃t = tanh(Wh · [rt · ht−1, xt] + bh)� (16)

	 ht = (1 − zt) · ht−1 + zt · h̃t� (17)

where:

•	 zt is the update gate that decides how much of the previous state ht−1 and the new candidate state h̃t should 
be combined.

•	 rt is the reset gate that decides how much of the past memory should be forgotten.
•	 h̃t is the candidate hidden state, which is the new value proposed for the hidden state.

In the GRU cell, the two vectors in the LSTM cell are combined into a single vector ht. A gate driver handles 
the entry and forgets the gates. When zt is 1, the forgetting gate opens, the input gate closes, and vice versa. This 
simplified architecture allows for more efficient processing in terms of computation and memory, although in 
some cases it may be less effective in capturing very long-term dependencies.

Bidirectional
Bidirectional models40, such as bidirectional LSTM (BiLSTM) and bidirectional GRU (BiGRU), allow 
information to flow in both directions through the data stream. Unlike unidirectional LSTM and GRU models, 
which process information in one temporal direction (past to future), bidirectional models process sequences 
in two directions (past to future and future to past). This ability to capture temporal dependencies in both 
directions improves performance in tasks where both past and future contexts are essential for classification, 
such as in identifying patterns in complex time series.

AutoRegressive integrated moving average
AutoRegressive Integrated Moving Average (ARIMA) A statistical model widely used to analyze and predict 
linear time series. This model combines three main components: an autoregressive (AR) component, a 
differencing (I) component, and a moving average (MA) component41. These components were not optimized. 
Instead, the default values for the parameters were used during the analysis. The autoregressive component 
uses past values of the time series to predict the current value. The moving average component captures the 
relationship between the current value and past prediction errors. Finally, integration is used to make the series 
stationary if necessary. The general equation of ARIMA (p,d,q) is expressed as:

	
yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p

+θ1ϵt−1 + θ2ϵt−2 + · · · + θqϵt−q + ϵt
� (18)

Where:

•	 yt the value of the time series over time t.
•	 c is the constant.
•	 ϕ1, ϕ2, . . . , ϕp are the autoregressive coefficients that measure the relation between the current value and the 

past values yt−1, yt−2, . . . , yt−p.
•	 θ1, θ2, . . . , θq  are the moving average coefficients that measure the relationship between past errors 

ϵt−1, ϵt−2, . . . , ϵt−q .
•	 ϵt is the error or term of white noise in time t.
•	 p is the order of the autoregressive component (AR).
•	 d is the order of differentiation (I).
•	 q is the order of the moving average (MA) component.

Validation
To assess the effectiveness of the models, the data set was split into training and test subsets. The model was 
trained using the training data and then evaluated on the test data to assess its performance. This approach helps 
to ensure that the model generalizes well to unseen data and is not overfitted to a specific subset.

In addition, performance metrics such as precision, accuracy, sensitivity, and F1 score were implemented to 
compare the LSTM and GRU models. These metrics provide a comprehensive assessment of model performance, 
considering the ability to correctly identify hemiplegia and diplegia conditions and minimization of false 
positives and negatives.

The validation results are presented in the results section, where the performance metrics of the LSTM and 
GRU models are compared using separate test data. The final model is chosen based on its performance in these 
metrics, ensuring the best combination of precision and accuracy for the clinical diagnosis of cerebral palsy.
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Results
This section presents the results obtained by implementing GRU, LSTM, Bidirectional GRU, Bidirectional LSTM 
and ARIMA models to classify hemiplegia and diplegia using time series data from an AMTI force platform. The 
analysis involved extracting COP variables, such as COP coordinates, velocity, and standard deviations, essential 
to evaluate postural stability under different visual conditions. As illustrated in Fig. 2, the methodology included 
multiple steps, such as data collection from 103 samples, the application of various data augmentation techniques 
(SMOTE, TSAUG, and Jittering) to balance the dataset, and the optimization of the model architectures. The 
results were then analyzed to assess the effectiveness of each model in accurately distinguishing between 
hemiplegia and diplegia.

Input data analysis
Force data were collected from 103 instances of 57 patients diagnosed with hemiplegia and diplegia. Measurements 
were taken at a frequency of 200 Hz, allowing a detailed analysis of postural control. The variables calculated 
included the COP coordinates, the velocity of the COP, the standard deviation of the COP on the x and y axes 
and the ellipse area that encompasses the displacement of the COP. These variables are crucial in assessing 
postural stability under different visual conditions.

Data balance
The data imbalance was addressed using three algorithms: SMOTE, TSAUG, and Jittering. Five iterations were 
performed for each technique. A GRU model was used as the base classifier to evaluate the techniques. The GRU 
was configured with 50 units in the first layer and a dropout rate of 0.2. The second layer also had 50 units with 
a dropout rate of 0.4. The dense layer consisted of 10 units with an additional dropout of 0.2, and the learning 
rate was set to 0.1. This base architecture was chosen for its simplicity and computational efficiency, serving as 
a consistent benchmark to compare the performance of the data balancing techniques. The primary goal of this 
step was to identify the best data augmentation method. Once the optimal technique (TSAUG) was identified, 
the balanced dataset was used to evaluate and optimize the five distinct architectures for each model (GRU, 
LSTM, Bi-GRU, and Bi-LSTM). TSAUG achieved the best performance (Table 1) and improved metrics such 
as recall and F1 score due to controlled diversification of the data. Specifically, the TSAUG package applied the 
following methods for augmentation: TimeWarp(), Crop(), Quantize(), Drift(), and Reverse().

Fig. 2.  Workflow for classifying hemiplegia and diplegia using time series data from an AMTI force platform. 
It includes data acquisition, extraction of COP variables, data augmentation (SMOTE, TSAUG, Jittering), and 
training of deep learning models (GRU, LSTM, BiGRU, BiLSTM) and ARIMA, optimized
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Modelling evaluation
In this study, the available data were partitioned into training and test sets to evaluate the performance of the 
models in the classification task of hemiplegia and diplegia.

Data splitting
The data was split using the train-test split technique. Specifically, the data set was split into an 80% for training 
and a 20% for testing. This split ensures that a significant portion of the data is used to train the models. In 
contrast, a smaller portion is reserved for evaluating the generalizability of the models on data not seen during 
training.

Training set (80): This set was used to fit the GRU, LSTM, BiGRU, BiLSTM, and ARIMA models, applying 
different pre-processing and optimization techniques during training. During this process, an automatic 
hyperparameter optimization tool was used to find the optimal settings for each model, selecting those that 
improved the model’s performance on the training set.

Test set (20): This test set evaluated trained and optimized models. Provides an estimate of the actual 
performance of the model on data not observed during training.

Parameter optimization
This study evaluates the performance of four deep learning algorithms: GRU, LSTM, BiGRU, and BiLSTM. For 
each algorithm, five distinct architectures were explored and optimized to maximize classification performance. 
The optimization process focused on tuning shared hyperparameters across all algorithms, including the number 
of units per layer, learning rate, and dropout rate.

Each model consisted of three layers of neurons. The number of units per layer was tested within the following 
ranges: [50, 200] for the first layer, [50, 200] for the second layer, and [10, 50] for the third layer. The dropout rate 
was varied within the range [0.2, 0.5], while the learning rate was tested in the interval [10−5, 10−3]. The models 
were trained using the Adam optimizer and the categorical cross-entropy loss function. Accuracy was used as 
the primary evaluation metric.

The models were trained for 50 epochs, meaning the model passed through the entire training dataset 
50 times. The data was split into training and test sets using the train_test_split function from sklearn, with 
80% allocated for training and 20% for testing. The training process used a batch size of 32, meaning that the 
data was processed in smaller chunks during each epoch. Furthermore, early stopping was applied to prevent 
overfitting, and training was halted if no improvement was observed in the validation set. To systematically 
identify the optimal hyperparameters, Bayesian optimization was employed, allowing efficient exploration of the 
hyperparameter space and ensuring robust model performance across the selected architectures.

The best performance achieved by each model is shown in Table 2. The architectures corresponding to these 
models that perform best are illustrated in Figure 3. For the GRU model, the highest performance was obtained 
with Architecture 1, which consisted of 100 units in the first layer, 150 units in the second layer and 50 units 
in the third layer, with dropout rates of 0.3, 0.4, and 0.3, respectively, and a learning rate of 0.001. The LSTM 
model also reached its best performance using Architecture 1, which comprised 50 units in the first layer, 50 
units in the second layer, and ten units in the third layer, with dropout rates of 0.2, 0.4, and 0.2, respectively, and 
a learning rate of 0.001. Architecture 4 yielded the best results for the BiGRU model, characterized by 200 units 
in the first layer, 150 in the second layer, and 40 in the third layer, with dropout rates of 0.5, 0.3, and 0.2 and a 

Model Arch. Accuracy Precision Recall F1 Score

GRU 1 0.67 0.78 0.67 0.57

LSTM 1 0.71 0.80 0.71 0.66

Bi GRU 4 0.76 0.77 0.76 0.75

Bi LSTM 3 0.62 0.58 0.62 0.54

ARIMA - 0.43 0.77 0.43 0.31

Table 2.  Optimal performance achieved by each model using optimised architectures. Accuracy, precision, 
recall, and F1 score values are presented, and recurrent models (GRU, LSTM, BiGRU, BiLSTM) and the 
ARIMA model are compared.

 

Tecnic Accuracy Precision Recall F1 Score

Original 0.48 0.49 0.48 0.48

SMOTE 0.52 0.52 0.52 0.52

TSAUG 0.62 0.58 0.62 0.54

Jittering 0.57 0.56 0.57 0.56

Table 1.  Comparative performance of data augmentation techniques applied to the training set, evaluated 
in terms of accuracy, precision, recall, and F1 Score over five iterations. The results were consistent across all 
iterations.
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learning rate of 0.0006. Finally, the optimal performance of the BiLSTM model was achieved using Architecture 
3, which included 150 units in the first layer, 150 in the second layer and 40 in the third layer, with dropout rates 
of 0.3 for all layers and a learning rate of 0.0003. The details of the parameters tested in these experiments are 
shown in Table S1.

Discussion
This study classifies hemiplegia and diplegia in children with cerebral palsy (CP) using force data (Fx, Fy , Fz) 
and moment (Mx, My , Mz) obtained from an AMTI force platform. Subsequently, we converted the data into 
Center of pressure (COP) variables. The decision to use COP variables instead of raw force or moment data was 
based on clinical expertise in the domain, as COP is a widely accepted indicator of postural control and balance 
in rehabilitation. The method enables the recognition of dynamic postural control patterns instead of static 
features. This approach ensures that our results are accepted within the clinical field. Motion-based studies often 
require patients to perform physically demanding tasks. In contrast, our study involves a brief 30-second static 
postural control test, making it a non-invasive alternative for children with CP, minimizing patient fatigue and 
discomfort.

We considered recurrent neural networks, including LSTM, GRU, BiLSTM, and BiGRU, to detect hemiplegia 
and diplegia based on time series. Bidirectional models, particularly BiGRU, shown superior performance by 
effectively capturing temporal dependencies in both directions. These findings are consistent with previous 
research stating that bidirectional architectures outperform unidirectional models in tasks that require detailed 
temporal analysis42.

The relatively inferior performance of standard LSTM and GRU models could be attributed to their inability 
to capture bidirectional dependencies. However, their performance remains significant, suggesting that these 
models are still valuable for clinical applications where bidirectionality is not essential. The choice of the model 
will depend on the characteristics of the dataset and the clinical problem to be solved, highlighting the need for 
more comparative studies in different clinical settings.

Specifically, when comparing the results of LSTM and BiGRU, both models achieve a similar accuracy (0.71 
- 0.76). However, BiGRU obtained a higher F1 score (0.75) compared to LSTM (0.66), suggesting that BiGRU is 
more effective in identifying the minority class in this clinical dataset. The superior precision of the LSTM model 
relative to BiGRU suggests that it produces fewer false positives, leading to a higher specificity in classification. 
This implies that when LSTM assigns a positive label, it is more likely to be correct. However, since recall remains 
the same for both models, LSTM does not identify more true positives than BiGRU but instead classifies fewer 
false positives. Consequently, this imbalance between precision and recall reduces the F1 score, given that 
this metric represents the harmonic mean of both. In contrast, BiGRU benefits from bidirectional processing, 
enhancing its ability to capture temporal dependencies in past and future contexts. This bidirectionality enables 
a more balanced trade-off between precision and recall, ultimately leading to a higher F1 score. LSTM did not 
achieve the same level of balance between precision and recall, which limits its classification ability in situations 
where classes are unbalanced. Moreover, BiGRU surpasses LSTM in performance and benefits from a simpler 
architecture, reinforcing its position as a more efficient and practical alternative. Healthcare specialists concurred 
that these accuracy levels are acceptable, considering the complexity of the process.

ARIMA was used as a traditional benchmark model, but it was unable to capture the dynamics present in the 
postural control data. This highlights the complexity of the problem and justifies the use of deep learning models, 
which are designed to handle high-dimensional sequential data. However, due to the focus of the research, the 
alternative of converting the dataset into static data and comparing it with a traditional machine learning model 
was not considered.

Fig. 3.  Optimized Architectures of the Best-Performing Recurrent Neural Network Models for Postural 
Control Assessment in Cerebral Palsy Diagnosis
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Although deep learning models exhibit strong performance, their limited interpretability poses a significant 
challenge to clinical adoption. Integrating explainability tools is crucial to building trust and enabling healthcare 
professionals to effectively use these methods. We anticipate that future research will prioritize addressing this 
critical need.

To tackle the class imbalance, we evaluated three data augmentation techniques: TSAUG, SMOTE, and 
Jittering, and compared them with the original unbalanced data. A GRU model with a simple architecture was 
employed as a baseline classifier to ensure consistent evaluation across techniques. This choice allowed us to 
focus on comparing the augmentation methods under controlled conditions without introducing variability 
from complex model architectures. TSAUG proved to be the most effective technique, as it preserves the 
temporality of the time series while generating synthetic data. In particular, TSAUG improved precision (0.58), 
accuracy (0.62), and recall (0.62). These values suggest that TSAUG is better at generating new instances while 
preserving the temporal dependencies of the data. However, it is important to note that TSAUG achieved a 
slightly lower F1 score (0.54) compared to Jittering (0.56), which could indicate a moderate false positive rate, 
limiting the overall accuracy of the model. As shown in Table 1, Jittering performed poorly in the other metrics.

The proposed system provides a noninvasive tool to assist in the clinical diagnosis of hemiplegia and diplegia. 
Traditionally, diagnosis has relied on clinical evaluations, visual analysis, and standardized tests performed by 
specialists, which can introduce variability in diagnostic outcomes. Early and accurate diagnosis can aid in 
the rehabilitation of children with cerebral palsy (CP), allowing timely interventions and potentially reducing 
the long-term impact of motor impairments. Additionally, our deep learning method provides reliable results 
through a brief and non-intrusive test, making it a practical option for clinical settings where efficiency and 
patient comfort are important.

Despite the results obtained with the deep learning models for classifying hemiplegia and diplegia, several 
limitations should be considered. The study used force data from a small cohort of 57 pediatric patients, which 
can limit the generalizability of the findings to more extensive and diverse populations. Furthermore, data were 
collected over a 30-second period, which may not capture the full variability in postural control, potentially 
affecting the model’s performance in different clinical scenarios. Although data augmentation techniques, such 
as SMOTE, TSAUG, and Jittering, were applied to address class imbalance, their impact remains influenced 
by data distribution and may not fully represent the complexities of real-world clinical datasets. The black-box 
nature of deep learning models limits their interpretability, requiring improvements in explainability for clinical 
application.

Conclusion
The proposed method for classifying hemiplegia and diplegia offers a substantial advance in diagnostic precision 
compared to traditional approaches. The method captures complex temporal dynamics in force data using time 
series analysis with LSTM, GRU, BiLSTM, BiGRU, and ARIMA models, allowing more accurate differentiation 
of the characteristic variations of postural control of each condition. This capability is critical for refining the 
diagnostic process and addressing the challenges associated with traditional clinical assessments.

Transitioning from static diagnostic methods to a data-driven analysis framework allows a deeper exploration 
of temporal patterns in motor functions. Bidirectional models, which account for past and future dependencies 
in time series data, have proven especially effective in distinguishing between hemiplegia and diplegia, achieving 
accuracy metrics of 76% obtained by BiGRU. Health specialists agreed that these accuracies are acceptable given 
the difficulty of the process. This approach facilitates a more refined analysis of motor patterns in pediatric 
patients, significantly improving diagnostic accuracy.

The proposed method supports clinical diagnosis, providing a systematic and objective tool to distinguish 
between hemiplegia and diplegia. This advancement represents a significant leap forward in the field of pediatric 
neurology, offering new opportunities for the early and effective management of cerebral palsy.

Data availibility
The datasets generated and analyzed during the current study are not publicly available due to data confidenti-
ality and ethical considerations, as they involve data from underage patients diagnosed with hemiplegia and di-
plegia. However, the source code used in the study is not publicly available, but can be provided on a reasonable 
request by contacting the author, Javiera T. Arias Valdivia, at javiera.arias@utalca.cl.
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