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The paper proposes a new M2ACD(Multi-Actor-Critic Deep Deterministic Policy Gradient) algorithm 
to apply trajectory planning of the robotic manipulator in complex environments. First, the paper 
presents a general inverse kinematics algorithm that transforms the inverse kinematics problem into 
a general Newton-MP iterative method. The M2ACD algorithm based on multiple actors and critics 
is structured. The dual-actor network reduces the overestimation of action values, minimizes the 
correlation between the actor and value networks, and mitigates instability during the actor’s selection 
process caused by excessively high Q-values. The dual-critic network reduces the estimation bias of 
Q-values, ensuring more reliable action selection and enhancing the stability of Q-value estimation. 
Secondly, The robotic manipulator’s TSR (two-stage reward) strategy is designed and divided into 
the approach and close. Rewards in the approach phase focuses on safely and efficiently approaching 
the target, and rewards in the close phase involves final adjustments before contact is made with 
the target. Thirdly, to solve the position hopping jitter problem in traditional reinforcement learning 
trajectory planning, the NURBS(Non-Uniform Rational B-Splines) curve is used to smooth the 
hopping trajectory generated by M2ACD. Finally, the correctness of the M2ACD and the kinematics 
algorithm is verified by experiments. The M2ACD algorithm demonstrated superior curve smoothing, 
convergence stability and convergence speed compared to the TD3, DARC and DDPG algorithms. The 
M2ACD algorithm can be effectively applied to collaborative robots’ trajectory planning, establishing a 
foundation for subsequent research.
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Trajectory planning, Reward priority

DRL (Deep Reinforcement Learning) has become a research hotspot in the trajectory planning of robot arms, 
enabling robots to show behaviors close to humans in tasks such as grasping, opening doors, and walking1,2. 
Traditional industrial robot arm motion and grasping tasks usually rely on kinematics and S-type trajectory 
planning to provide accurate corner path planning for each robot arm joint3. However, cooperative robotic arms 
have multiple degrees of freedom and redundant axes, increasing the complexity of joint space path solving. In 
complex working environments, it is difficult for cobots to obtain closed-form analytical solutions, thus limiting 
their ability to obtain effective action strategies from kinematics and planning algorithms. Models based on 
DRL training have been successfully applied in various fields of robotics to some extent, and scholars at home 
and abroad have carried out in-depth research on trajectory Planning and inverse kinematics of robotic arm 
technology. Li Xiangjian et al.4 propose a general motion planning framework integrating deep reinforcement 
learning (DRL) , aiming at the key and challenging points of motion planning and optimization of redundant 
robots. Based on the exploration ability of DRL and the nonlinear fitting ability of the artificial neural network, 
the energy optimal solution of the inverse kinematics is derived, and the experimental results verify the 
performance of the proposed work. Su Hang et al.5 establish a kinematic model of the relationship between the 
humanoid robot arm and the human arm to solve the humanoid robot arm’s humanoid behavior. This paper 
proposes a new incremental learning framework using kinematic mapping in robot redundancy, combining the 
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incremental learning method with a deep convolutional neural network to realize fast and efficient learning. This 
structure improves the accuracy of regression and significantly reduces the processing time of learning human 
motion data. Guo Qiangqiang et al.6 present an innovative approach utilizing a two-step strategy that integrates 
data-driven imitation learning and model-based trajectory optimization to generate optimal trajectories for 
autonomous excavators. This research offers a new solution for autonomous trajectory planning in excavation 
robotics with significant theoretical and practical implications. Leng Shu et al.7 proposes a flexible two-arm 
strategy introducing a recursive neural network to handle the measurement error. Regarding the safety factor, 
the researcher considered the collision limit and the minimum joint moment constraint in designing the reward 
function. Fang, Zheng et al.8 propose a new snake-tongue algorithm based on a slope-type potential field is 
introduced and combined with a genetic algorithm (GA) and reinforcement learning (RL) to reduce the path 
length and the number of path nodes. Furthermore, the path search capability of the artificial potential field 
method is enhanced by integrating a genetic algorithm and reinforcement learning, thereby enabling more 
effective path searches in diverse and complex obstacle distributions. Marco Ewerton et al.9 addressed the 
problem of trajectory planning algorithms failing collaborative tasks due to unexpected obstacles and changes 
in the surrounding environment. They proposed a reinforcement learning algorithm based on trajectory 
distribution and validated it in the context of assisted teleoperation and motion planning. In the literature of 
inverse kinematics, although the inverse kinematics solution based on energy optimal solution and the inverse 
kinematics solution based on deep learning solve some problems, the deep learning model needs a large amount 
of training data to learn the inverse kinematic mapping effectively. The correlation inverse kinematics algorithm 
lacks a clear physical explanation. Their kinematics only consider the solution of the inverse kinematics of 
the robot and do not care about the correctness of the joint solution in the teaching reproduction task. In the 
relevant research of trajectory planning, the DDPG algorithm is prone to a significant overestimation bias in the 
continuous control domain. TD3 addresses this issue by employing dual critics for value correction, which may 
result in significant underestimation. Only a few scholars have tried to apply the method based on reinforcement 
learning to the motion planning of robotic arms in real scenes. Applying DRL in operations such as trajectory 
planning of robotic arms often relies on real robot platforms for training. However, this approach requires a 
lot of human intervention and long hours of training but also leads to high consumption of resources and a 
potential risk of collision. Although trajectory planning technology has made significant progress in continuous 
control, many algorithms still need to overcome the challenge of slow speed and unstable accuracy, especially 
after a period of training, which is prone to sudden changes10–12.

Given this, this study proposes solutions to the problems of redundant kinematics and complex trajectory 
equation construction in traditional robotic arm trajectory planning algorithms. The inverse kinematics 
problem is transformed into a general Newton-MP iterative method to improve the efficiency and accuracy 
of the solution. Then, this paper proposes a DRL-based M2ACD algorithm for robotic manipulator trajectory 
planning. The algorithm has three key components: (1)the Double Actor and Double Critic networks, which 
improve the agent adaptability and overall estimation accuracy and stability. The dual-actor network typically 
comprises two distinct policy models, allowing the simultaneous learning of two strategies to address different 
situations and task requirements. The dual-critic network usually employs two independent value estimation 
models, thereby reducing potential biases or overfitting arising from using a single model during training. (2)
The M2ACD algorithm divides the grasping reward strategy into two stages, approaching and closing, and 
this strategy prioritizes reward value to enhance the efficiency and overall quality of the training process. (3)In 
order to solve the problem of position hopping jitter in traditional reinforcement learning trajectory planning, 
the M2ACD trajectory uses the NURBS spline curve to generate the smooth trajectory curve. By conducting 
extensive training in a simulation environment, issues such as collisions and engine overspeed during training 
on real hardware are avoided, thus reducing the need for manual intervention and training time while conserving 
resources and reducing potential risks. The M2ACD trajectory planning algorithm exhibited superior stability 
and generalization abilities, effectively circumventing the computational and model complexity issues commonly 
encountered when dealing with high-dimensional, nonlinear, and complex environments.

Related program will be open source in the future: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​S​i​m​o​n​​Z​h​a​o​B​​i​n​/​D​R​L​​T​r​a​j​e​c​​t​o​r​y​-​p​​l​a​n​
n​i​n​g.

Motion control for collaborative robots
Planning strategies and simulation systems
Compared to traditional industrial robots, collaborative robots show greater flexibility and adaptability in 
environments where they interact with humans and can perform complex tasks safely. Figure 1 shows the 
M2ACD algorithm under the DRL framework, and the relevant symbols and formulas in the figure are explained 
in detail later in the article.

In order to solve the trajectory planning problem in DRL, the kinematics problem must be solved first so 
that the DRL algorithm can explore trajectory planning independently in Cartesian space. Kinematics provides 
the fundamental mathematical model for trajectory planning by describing the relationship between the robot’s 
joints and the end-effector, thereby assisting in generating feasible paths. Trajectory planning, under kinematic 
constraints, considers the smooth movement of the robot from the starting point to the target while ensuring 
the feasibility of the path. Kinematics ensures the feasibility of executing the planned trajectory, while trajectory 
planning, within the kinematic constraints, generates suitable paths and trajectories. DRL trajectory planning is 
designed to deal with the trajectory problem of the robot’s end in a rectangular coordinate system, which needs 
to be transformed into a joint coordinate system through kinematics.

As illustrated in Fig. 2, the seven-axis collaborative robotic arm of the SIASUN SCR3 is selected for the 
simulation experiment of target object trajectory planning based on reinforcement learning. In the initial state, 
the target object’s position is located within the working range of the end-effector of the robotic arm, and the 
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randomly generated target position should be in the robot operating space. In the simulation process, trajectory 
planning moves the suction cup at the end of the manipulator to a certain distance from the center point of the 
target object’s surface, and the planning is considered successful.

Kinematic solution
In order to resolve the DRL issue, it is first necessary to determine the kinematics of the redundant collaborative 
robot. Figure 2 depicts the mechanical configuration and joint coordinate system of the redundant collaborative 
robot. Although the increase in redundancy enhances the performance of obstacle avoidance, singularity 
avoidance, and dexterity, it also increases the complexity of the problem. Due to its distinctive structural 
characteristics, there are an infinite number of potential solutions, which are challenging to resolve effectively 
through traditional geometric relations and analytical methods. This paper presents a generalized inverse 
kinematics algorithm for addressing the kinematics problem of redundant collaborative robots. The algorithm 
transforms the inverse kinematics solution problem into a generalized Newton-MP iterative method solution, 
thereby enhancing the efficiency and accuracy of the solution. In the simulation process, trajectory planning 
moves the suction cup at the end of the manipulator to a certain distance from the center point of the target 
object’s surface, and the planning is considered successful.

1) Forward kinematics solving:

Figure 2.  Coordinate system and experiment platform for SCR3 collaborative robots.

 

Figure 1.  DRL framework of robot M2ACD algorithm flow.
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The forward kinematics of the redundant collaborative robot are divided into two parts: the four joints of 
the large arm (θ1, θ2, θ3, θ4) and the three joints of the end wrist (θ5, θ6, θ7). Calculate the 0elT , and then right 
multiply el

tcpT . The overall solution is 0tcpT , where the wrist coordinate system is {el} and the end coordinate 
system is {tcp}. The length of the connecting rod is Di(i = 1∼5). As the forward kinematics of the collaborative 
robot are relatively straightforward to solve, only the computational method is presented here.

	
0
tcpT =0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 T 6

7 T � (1)

2) Inverse kinematics Newton-MP method for optimal solution:
The Newton-MP algorithm is employed to solve this problem, and its algorithmic steps can be divided into 

five parts as follows:
Step 1: Collect the current values of each joint of the collaborative robot, and calculate the initial position 

vector in the world coordinate system by forward kinematics PX , Py, Pz . The inverse kinematics of the F (Θ(k)) 
are established by solving the nonlinear equations. The set of nonlinear inverse kinematics equations for the first 
k iteration value is given by Θ(k) = (θk

0 , θk
1 , ..., θk

n−1)T , where k is the number of iterations performed by the 
Newton-MP algorithm. The iteration formula for calculating the value of the K + 1 iteration of the Newton 
descent method is as follows (Eq. 2).

	 Θ(k+1) = Θ(k) − ω
(
F ′ (

Θ(k)))−1
F

(
Θ(k))� (2)

where ω is the iteration factor and J is the ratio of the 3×4 Jacobi matrix of order.
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Step 2: Verify that the selected initial joint vector Θk  is optimal for the complete constrained equation ϕ.The 
complete stroke power constraint equation ϕ is as follows (Eq. 4).

	




NORM
(
F

(
Θ(k+1)) , 3

)
< NORM

(
F

(
Θ(k)) , 3

)
< 1 × 10−5,

NORM
(
τ (k+1), 4

)
< NORM

(
τ (k), 4

)
< 1 × 10−5,

NORM
(
Θ(k), 4

)
< 1 × 10−5

� (4)

In the formula, NORM(variable, number) represents the norm of the variable. F is a nonlinear equation, and τ  is 
the torque. When the vector Θ(k) is not optimal, we first take ω = 1/2 and obtain Θ(k+1) according to Eq. (4).

Step 3: Determine whether the F (xn) matrix of order m × n is full rank. Since it is impossible to invert the 
Jacobi matrix of order 3 × 4 established in this paper, the MP generalized inverse matrix is used to solve the 
pseudo-inverse matrix. When the row J is full rank, J(k)− = JT (JJT )−1, the following can be derived:
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Step 4: Determine whether the fully constrained equations ϕ is satisfied. If this is not satisfied, the ω should 
be updated to 1/2 × ω.

Step 5: Verify whether the conditions |Θ(k+1) − Θ(k)| < δ are met. If so, set limn→∞ F
(
Θ(k)) = 0, 

thereby terminating the Newton-MP convergence of the iteration process. Otherwise, proceed to step 2 and 
continue iterating until the above condition is met.

The above has already been solved for θ1 ∼ θ4. Since the robot wrist joint orientation is determined by the 
joints θ5, θ6, θ7. It can be directly adopted 07T =0

4 T 4
7 T ⇒ (0

4T )−10
7T =4

7 T  analytic method for solving.

M2ACD trajectory planning
The combined kinematic modeling and DRL approach circumvents the need to construct intricate trajectory 
equations by processing intricate relational mappings through interacting information with the environment13–18. 
The robotic arm kinematic model furnishes the requisite coordinate information for trajectory planning and 
serves as the foundation for the trajectory planning task19–23. The paper proposes a new M2ACD method for 
trajectory planning of a collaborative robotic arm. As illustrated in Fig. 3, the structure of the M2ACD algorithm 
proposed in this paper is described. The multi-strategy and multi-value network structure, action space, and 
reward function are designed to meet the robotic arm grasping task requirements.
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M2ACD algorithm
This paper proposes a reinforcement learning planning algorithm for M2ACD, which is based on a multi-strategy 
network and a multi-value network. As illustrated in Table 1, the flow of the M2ACD algorithm is depicted in 
detail, providing a clear depiction of the software execution process of the proposed algorithm.

Algorithm 1.  Multi Critic Deep Deterministic Policy Gradient

The fundamental steps of the M2ACD algorithm are as follows:
Step 1 Construct four networks:

Figure 3.  M2ACD network structure.
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Initialize replay buffer B = {}, the current double Actor and current double Critic are then initialized 
randomly. The current double Actor and current double Critic are initialized first. Subsequently, the network 
parameters of the current double Actor and current double Critic are copied to the double Target Actor and 
double Target Critic networks, respectively. For the sake of clarity, let the parameters of the double Actor network 
and double Target Actor network be denoted as θ and θ− respectively, and the parameters of the Critic network 
and Target Critic network be denoted as w and w− respectively.

	

{
w−

1 = w−
2 = w−

rand , w1 = w2 = wrand
θ−

1 = θ−
2 = θ−

rand , θ1 = θ2 = θrand
� (6)

Figure 4 illustrates the Policy network (Actor and Target Actor) and the Q-value network (and Target Critic). The 
Policy network is responsible for generating actions based on the current state. In contrast, the Q-value network 
evaluates the value of these actions by computing the Q-value of the current state-action pair to assess their 
quality. To mitigate fluctuations during training, the Target Actor and Target Critic networks adopt a soft update 
strategy, ensuring consistency with the original networks. Specifically, these target networks act as delayed copies 
of the original networks and are updated incrementally, thereby reducing instability during training.

Step 2 Double Actor network take action to predict:

	

{
a1,t+1 = µ1

(
st; θ−

1,now
)

+ ξ1

a2,t+1 = µ2
(
st; θ−

2,now
)

+ ξ2
� (7)

Step 3 Interact with the environment, store data and update parameter:
Interact with the environment, inputting st and at into the double Critic networks for predictive evaluation, 

which in turn determines at+1.

	

{
Q1,t = Q1 (st, a1,t; w1, now ) + Q2 (st, a1,t; w1, now )
Q2,t = Q1 (st, a2,t; w1, now ) + Q2 (st, a2,t; w1, now )

at+1 = if (Q1,t > Q2,t) a1,t, else a2,t

� (8)

The action at+1 is applied to the environment, which returns the next state st+1 and the reward rt. Use the 
double Critic networks evaluate separately the Q value.

	

{
Q̂1,t = Q1 (st, at+1; w1,now)
Q̂2,t = Q2 (st, at+1; w2,now) � (9)

The tuple (st, at, rt, st+1) is stored within the experience replay buffer. The subscripts “now” and “new” indicate 
the current and updated parameters of the neural networks, respectively.

Step 4 Target Actor network evalues action:
Double Target Actor networks make prediction: state st+1 and noise ξt are executed by selecting the action 

â−
t+1 with the deterministic strategy µT . The Target Actor network is shown as follows:

	

{
â−

1,t+1 = µT1
(
st+1; θ−

1,new
)

+ ξ1,t

â−
2,t+1 = µT2

(
st+1; θ−

2,new
)

+ ξ2,t
� (10)

Step 5 Target Critic networks generate target value of action:
The double Target Critic network serves as a delayed copy of the Critic network to stabilize the target update 

of the Q̂−
t+1 value. Specifically, calculate the minimum values for Target Critic1 and Target Critic2 by taking st+1

, â−
1,t+1, and â−

2,t+1 respectively.

	

{
Q̂−

1,t+1 = min
(
QT1

(
st+1, â−

1,t+1; w−
1, new

)
, QT1

(
st+1, â−

2,t+1; w−
1, new

))
Q̂−

2,t+1 = min
(
QT2

(
st+1, â−

1,t+1; w−
2, new

)
, QT2

(
st+1, â−

2,t+1; w−
2, new

)) � (11)

Figure 4.  Actor network and critic network.
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Step 6 Calculate the total reward of TSR Strategy:

	 T SRr = ρminRnear + ρmaxRapproaching � (12)

Step 7 Calculate the TD target:

	 ŷt = rt + R + γ · min
{

Q̂−
1,t+1, Q̂−

2,t+1
}

� (13)

where rt is the current reward. γ is the discount factor.
Step 8 Calculate the TD error:

	

{
δ1,t = Q̂1,t − ŷt

δ2,t = Q̂2,t − ŷt
� (14)

The ŷt represents the value based on actual observations, while Q̂t is the predicted result obtained through 
inference. The objective is to make the current Critic network’s output Q̂t as close as possible to the target value 
ŷt, thereby transforming the problem into a supervised learning task. In this framework, Q̂−

t+1 is treated as the 
target label, and the goal of optimization is to train the network so that its output Q̂t closely approximates the 
label value Q̂−

t+1.
Step 9 Update the Critic network:
The gradient descent method is employed to minimize. Convergence of the value function is achieved using 

Bellman’s equation, which relies on the loss function to update the Critic network:

	

{
Loss1 = 1

N

∑
i

(
ŷt − Q1

(
st+1, at+1; w−

1, now

))2

Loss2 = 1
N

∑
i

(
ŷt − Q2

(
st+1, at+1; w−

2, now

))2 � (15)

The Adam optimizer is employed to modify the parameters of an online policy network with the objective of 
enhancing its performance. The objective is to bring the q̂t value as close to the ŷt value as possible, thereby 
minimizing the TD error.

	

{
w1, new ← w1, now − α · δ1,t · ∇wq (st, ât; w1, now )
w2, new ← w2, now − α · δ2,t · ∇wq (st, ât; w2, now ) � (16)

During the updating process, only the weights w of the Q(s, a; w) network are updated, while the weights w− 
of the Q(s(t + 1), a; w−) network remain unchanged. Subsequently, the weights of the updated evaluation 
network are transferred to the target network for the subsequent batch of updates, so that the target network can 
also be updated.

Step 10 Update the Actor networks:
The Actor network is employed to compute the action anew at the state of the s, thereby providing the Q 

value Q(s, anew) in the current Critic network.
Update the Actor in order to achieve the maximum Q value, which is defined as Q(s, anew). This can be 

achieved by maximizing Q(S, anew) or minimizing −Q(S, anew). This process essentially informs the actor 
network that the optimal direction of action adjustment is towards a higher Q. Update all parameters θ of the 
Actor network with gradient ascent:

	

{
θ1, new ← θ1, now + β · ∇θµ (st; θ1, now ) · ∇aQ (st, ât; w1, now )
θ2, new ← θ2, now + β · ∇θµ (st; θ2, now ) · ∇aQ (st, ât; w2, now ) � (17)

Among them, 0 ≤ β ≤ 1.
Step 11 Update Parameter of Target Critic and Target Actor networks:
The M2ACD algorithm is using a soft update approach. That is, a learning rate is introduced τ  that makes 

a weighted average of the old target network parameters and the new corresponding network parameters, and 
then assigns a value to the target network.

Target Actor network update process:

	

{
θ−

1, new ← τθ−
1, new + (1 − τ)θ−

1, now
θ−

2, new ← τθ−
2, new + (1 − τ)θ−

2, now
� (18)

Target Critic Network update process:

	

{
w−

1, new ← τw−
1, new + (1 − τ)w−

1, now
w−

2, new ← τw−
2, new + (1 − τ)w−

2, now
� (19)

At each fixed time interval, the parameters of the Target Actor and Target Critic networks are updated using the 
parameters of the Actor and Critic networks.

Step 12 Return to the initial step:
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The process will continue to iterate until the predefined termination condition is met, at which point NURBS 
curve smoothing will be performed. The training strategy for the network is to have the update frequency of 
the target network lower than that of the current network. This design allows for the prioritization of error 
minimization before introducing policy updates, thereby enhancing the overall effectiveness of training.

TSR strategy
According to the position of the target object and task requirements, the grasping task of the robot arm is divided 
into two stages: approach to the target and close to the target, and the TSR strategy function of the M2ACD 
algorithm is designed according to the two stages. In the approach to the target phase, the robot’s primary task 
is to move from its current position to a region near the target object. During this phase, trajectory planning 
focuses on safely and efficiently approaching the target. Once the robot reaches the vicinity of the target object, 
it transitions into the close to the target phase, which involves final adjustments before contact is made with the 
target. Trajectory planning in this phase emphasizes precise end-effector control to ensure proper alignment and 
grasping posture when making contact with the target.

In the training process, the TSR strategy takes the distance between the end pos and the target pos as the 
primary basis of the reward function, and its reward rules are as follows: (1) If the end of the robot exceeds the 
working space, the maximum penalty will be given; (2) If the robot has been idle and can not touch the object in 
the maximum number of steps, it needs to give a certain punishment; (3) When the motion of the cooperative 
robot meets the requirements, neither punishment nor reward will be given;

As illustrated in Fig. 5, the deterministic goal-based trajectory planning reward strategy is divided into two 
regions, the rmin and rmax. If the distance of the planning goal from the robot is greater than rmax, the 
probability of capture is considered to be 0. Conversely, if the distance of the planning target from the robot is 
less than rmin, it is assumed that the probability of success of target trajectory planning is close to 90%. In the 
region between rmin and rmax, the probability of successful target trajectory planning is calculated using linear 
interpolation.

The grasp of the mechanical arm is progressive, and the judgment of whether the mechanical arm has reached 
the grasp position is as follows:

	
ρd = (rmax − r)2

(rmax − rmin)2 � (20)

The safe distance between the obstacle and the robot, designated as rmax, represents the distance within which 
the probability of collision with the robot is considered to be zero. Conversely, the progressive grasping distance, 
designated as rmin, represents the distance within which a significant reward value is given to the collaborative 
robot. The criterion for determining whether the robot arm has reached the grasping position is as follows:

	 SB1
{x,y,z} − GP

{x,y,z} < ∆near
{x,y,z}� (21)

The coordinatesSB1
(x,y,z) represent the position of the end-effector of the collaborative robot, while GP

{x,y,z} 
denotes the target position of the robot.∆near

{x,y,z} represents the incremental distance between the current position 
and the target position. Suppose the collaborative robot meets the criteria defined by the above equations during 
the grasping process. In that case, it indicates that the robot has reached the grasping position and can execute 
the grasping action, resulting in the assignment of reward values Rnear  and Rapproaching  . Finally, the sum of 
the obtained reward values is calculated to yield the total reward function, as shown in Equation 22

	 R = ρmin Rnear + ρmaxRapproaching � (22)

Figure 5.  Capture probability of trajectory planning based on target distance.
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Through different stages of reward design, TSR can effectively reduce the sparse reward problem and promote 
the rapid convergence of learning agents. Rewards in the approach phase can be based on proximity to the target. 
In contrast, rewards in the close phase can be based on alignment accuracy or task completion, enabling more 
targeted learning.

NURBS curve smoothing
The application of NURBS in trajectory smoothing offers superior shape and local adjustment control compared 
to polynomial splines and Bézier curves, particularly in trajectory planning involving complex geometries and 
constraints. Using rational functions, NURBS avoids the numerical instability caused by high-order polynomial 
curves. NURBS can precisely represent standard geometric shapes, such as straight lines and arcs while providing 
local control and global smoothness. In order to solve the problem of position hopping jitter in traditional 
reinforcement learning trajectory planning, the M2ACD uses the NURBS spline curve to smooth the hopping 
trajectory. This method is the optimal choice for the smoothing trajectory. The fitting process of the NURBS 
spline curve is shown in Fig. 6.

(1) The process of calculating node parameter ui (cumulative chord length method), the data point passed 
by the k polynomial NURBS curve is pi (i = 0, 1, · · · , n), according to the joint displacements - time node 
sequence {pi, ti}, i = 0, 1, 2, · · · , n (there are n+1 position points), the parameter is the value:

	




U = {u0, u1, · · · , un+2k} , u0 = u1 = · · · uk = 0
ui+k = ui+k−1 + ∆pi, i = 1, 2, · · · , n − 1

∆pi = (pi − pi−1) /s
un+k = un+k+1 = · · · un+2k = 1

� (23)

where ∆pi is the forward difference vector, and s is the distance between sequential adjacent two points. Each 
parameter value can be calculated accurately. In order to continue the following operation, when k=3, k+1=4 
(repetition).

ui formula calculated by cumulative chord length method:

	
ui+3 = ui+2 + |pi − pi−1|∑

|pi − pi−1|
i = 1, 2, · · · , n − 1� (24)

(2) Matrix R element calculation process:

Figure 6.  NURBS spline curve fitting process.
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


a0 = 1, b1 = c1 = 0, an+1 = bn+1 = 1, cn+1 = 1
∆ui = ui+1 − ui

ai = (∆ui+2)2

l2
= (ui+3−ui+2)2

ui+3−ui
, i = 2, 3, · · · , n

bi = ∆i+2l0
l2

+ ∆i+1l1
l3

= (ui+3−ui+2)(ui+2−ui)
ui+3−ui

+ (ui+2−ui+1)(ui+4−ui+2)
ui+4−ui+1

ci = (∆ui+1)2

l3
= (ui+2−ui+1)2

ui+4−ui+1

e1 = p0 + ∆u3
3 p′

0 = p0 + u4−u3
3 p′

0

en+1 = pn − ∆un+2
3 p′

n = pn − un+3−un+2
3 p′

n

ei = (∆ui+1 + ∆ui+2) pi−1 = (ui+3 − ui+1) pi−1i = 0, 1, · · · , n

� (25)

In the formula, l0 = ∆ui + ∆ui+1,l1 = ∆ui+2 + ∆ui+3,l2 = ∆ui + ∆ui+1 + ∆ui+2
,l3 = ∆ui + ∆ui+1 + ∆ui+2 + ∆ui+3.p′

0 is the first end tangent vector, p′
n is the end tangent vector.

(3) The process of calculating the control vertex di: the piecewise connection points of the curve, which 
correspond to the nodes in the curve domain. The number of control vertices is two more than the data points; 
there are n+3 unknown vertices. The calculation formula for control vertices is as follows:

	







d1
d2
...
...

dn+1




= inv




1 · · · · · ·
...

a2 b2 c2 · · ·
...

...
. . .

. . .
. . .

...
... · · · an bn cn

...
... · · · · · · 1




·




e1
e2
...
...

en+1







dl1
dl2
...

dln+2
dln+3


 =




p0
d1
...

dn+1
pn




� (26)

(4) The process of calculating B-spline basis functionNi(u) and the expression of four B-spline basis functions 
N(j, 3)(u) for each segment is calculated as follows:

	

Nj,3(u) =





(ui+1−u)3

h0h1h2
, j = i − 3

(ui+1−u)2(u−ui−2)
h0h1h2

+ (u−ui−1)(ui+1−u)(ui+2−u)
h1h2h1

+ (ui+2−u)2(u−ui)
g0g1h2

, j = i − 2
(ui−1−u)2(ui+1−u)

g0h1h2
+ (u−ui−1)(ui+2−u)(u−ui)

g0g1h2
+ (ui−u)2(ui+3−u)

g2g1h2
, j = i − 1

(u−ui)3

g2g1h2
, j = i

� (27)

w h e r e , 
h0 = u(i+1) − u(i−2), h1 = u(i+1) − u(i−1), h2 = u(i+1) − ui, g0 = (u(i+2) − u(i−1)), g1 = u(i+2) − ui, g2 = u(i+3) − ui, j = (i − 3, i − 2, i − 1, i)
, each paragraph needs to be calculated periodically.

(5) The expression of each NURBS spline curve is calculated, and segmentation curve expression calculation 
process:

	




Px(u) =
∑i

j=i−3
ωj pxj Nj,3(u)∑i

j=i−3
ωj Nj,3(u)

Py(u) =
∑i

j=i−3
ωj pyj Nj,3(u)∑i

j=i−3
ωj Nj,3(u)

i = k − 1, k, · · · , n + k − 1

Pz(u) =
∑i

j=i−3
ωj zj Nj,3(u)∑i

j=i−3
ωj Nj,3(u)

� (28)

(6) in the section of the spline connection, such as node xi must satisfy 
si(xi) = s(i+1)(xi), s′

i(xi) = s′
(i+1)(xi), si

′′(xi) = s′′
(i+1)(xi). At this point, the NURBS spline curve has 

been generated.
Through NURBS’s smooth transitions, local control, acceleration smoothing, and weight control features, 

NURBS curves effectively eliminate the issue of “positional jumps and jitters” in trajectories, ensuring smoothness 
and stability in complex trajectory planning. They not only allow for precise control of trajectory shapes but 
also guarantee the trajectory’s continuity, stability, and adaptability. These features make NURBS suitable for 
trajectory generation tasks requiring high precision and stability.
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Experiments
Experiment settings
Using the SIASUN robot verifies the M2ACD algorithm in the real-world scenarios. The SIASUN robot is 
equipped with advanced features such as rapid configuration, drag-and-teach functionality, visual guidance, and 
collision detection. These robots have a payload capacity of 5 kg, a maximum speed of 90◦/s, a maximum reach 
diameter of 1600 mm, and a minimum reach diameter of 750 mm. They are well-suited for various industrial 
operations, including precision assembly, product packaging, polishing, inspection, and machine tending. The 
hardware environment of the experimental environment is as follows:

Operating system: Ubuntu MATE16.04
CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
GPU: Titan X
Python version: 3.7.13
Torch version: 1.10.1+cu111
Torch vision version: 0.11.2++cu111
Robot model: 7-axis collaborative robot of SIASUN SCR3.
The M2ACD adopts an ϵ-greedy strategy to achieve a better balance between exploration and exploitation. 

The exploration probability is defined by the formula ϵ + (1 − ϵ)−Batch/EpsilonDecay , where ϵ = 0.01. To 
optimize the network parameters, the Adam stochastic optimization method is utilized, with specific parameters 
detailed in Table 1.

The index of algorithm comparison includes: (1)The convergence speed directly reflects the efficiency of an 
algorithm in learning task objectives, typically measured by the time or number of training iterations required 
to reach a specified performance level. (2)Convergence stability refers to the degree of fluctuation in accuracy 
metrics during the later training or upon completion stages. Higher stability indicates greater robustness of the 
policy across different environments. (3) trajectory smoothnesss can effectively reduce robot vibrations and 
high-frequency variations during motion, minimizing the risk of collisions with obstacles and enhancing task 
safety. All the experimental data of trajectory planning are obtained directly from the position parameters of 
the driver. To ensure the accuracy of the experiment, this paper randomly generates the start and end points of 
trajectories, and some typical trajectories are selected for analysis.

Related experiment video: https:​​​//w​ww.bilib​ili​.com/​video/BV1Hku​​peeE​T​x/?sha​re_s​ource=copy_web

Trajectory planning and kinematics experiment
The correctness of kinematics algorithm is verified, as shown in Fig. 7. The M2ACD algorithm DRL trajectory 
planning under Cartesian coordinates will use Newton-MP iterative kinematics to convert the robot end 
trajectory into the joint coordinate system and send it to the joint drive unit through the bus. The absolute 
kinematic error shows the absolute error between the theoretical position value of the robot and the real 

Figure 7.  Kinematic absolute error.

 

Parameter Value

Experience replay buffer 1000

Batch 16

Learning rate 1 × 10−2

Network update rate 100

Exploration rate 1 × 10−2

Epsilon decay 10

Table 1.  Hyperparemeters configuration of the M2ACD.
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kinematic position value. The horizontal axis is the absolute error unit: mm, and the vertical axis is the number 
of iterations unit: 16ms. The absolute error is about 0.00013mm, and the correctness of the kinematics is verified.

In industrial linear tasks with high precision and teaching reproduction, the joint values of the robot are 
required to be the same as the joint values calculated by the inverse solution. This paper compares Newton-
MP’s inverse kinematics, energy optimal solution’s inverse kinematics, and deep learning’s inverse kinematics 
concerning the linear task of teaching reproduction. According to Table 2, the Newton-MP algorithm proposed 
in this paper can effectively meet the above requirements and ensure the accuracy of the teaching reproduction 
task. In contrast, the inverse kinematics method of energy optimal solution and the inverse kinematics method 
based on deep learning rely on experience and energy model, which tend to cause the joint Angle of adjacent 
position points to change too much in the process of inverse solution, so it is challenging to meet the needs of 
practical application and accuracy.

Structural comparison of related trajectory planning algorithms, including the typical DDPG,DARC, 
M2ACD, and TD3 algorithms, is presented in Table 3 below.

As shown in Fig. 8, the results of the experiments demonstrate that the M2ACD algorithm can rapidly achieve 
a high accuracy rate in the fourth epoch stage and stabilize the reward value within a narrow range close to zero. 
Following the attainment of 100% accuracy, there is no abrupt change in the accuracy rate during subsequent 
training. Moreover, the loss value change curves of M2ACD algorithms all demonstrate a decreasing trend, while 
the accuracy rates are all in a 100% trend. This indicates that the reward value obtained by the action process of 
collaborative robot trajectory planning has been enhanced through training.

The convergence stability of the algorithm is verified, as shown in Fig. 9. Experiments are conducted using the 
DDPG, TD3, DARC, and M2ACD algorithms proposed in this paper. The results of the experiments illustrates 
the performance comparison of the four methods. It can be observed that TD3, DDPG, DARC, and M2ACD 
exhibit comparable performance, except for a slight variation in the accuracy of the first two methods. The TD3 
and DDPG algorithms exhibited a certain degree of instability in accuracy with increased training. In contrast, 
M2ACD and DARC, the proposed algorithm in this study, demonstrate consistent performance. But DARC 
showed inferior performance in avg_return and return.

The performance of DDPG, TD3, DARC, and M2ACD algorithms is compared and tested, as shown in Fig. 
9. Although these algorithms are similar in overall performance, there are significant differences in accuracy and 
convergence speed. M2ACD algorithm can quickly make the accuracy reach 100% around the fourth epoch, 
while TD3 and DDPG algorithms have a long exploration stage and slow convergence speed in the early stage. 
The accuracy of TD3 and DDPG algorithms fluctuates significantly in the training process, and instability and 
sudden fluctuation occur frequently. In contrast, M2ACD and DARC algorithms show higher stability, with 

Figure 8.  M2ACD algorithm training results.

 

Algorithms Actors Critics Value Correction Regularization Cross Policy Update

DDPG one one × × ×
TD3 one double ✓ × ×
DARC double double ✓ ✓ ×
M2ACD double double ✓ × ✓

Table 3.  Structural comparison of related algorithms.

 

Method (M) success rate

Newton-MP’s inverse kinematics 100%

Energy optimal solution’s inverse kinematics 87.62%

Deep learning’s inverse kinematics 30.21%

Table 2.  The success rate of the linear task of teaching reproduction (%).
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no apparent fluctuations and mutations during training. The M2ACD algorithm proposed in this chapter has 
significant comprehensive advantages in convergence time, accuracy, stability, and resource utilization efficiency 
and shows high application potential.

This paper randomly generates the start and end points of trajectories, and some typical trajectories are 
selected for analysis. Fig. 10 shows the hopping trajectory contrast curves of three trajectory planning methods 
of DRL.

px = 0.544768059, py = 0.022876087, pz = 0.47057345 are the starting position, px = 0.646975827, 
py = 0.026603052, pz = 0.04075532 are the end position. The results show that during the trajectory planning 
of TD3, DARC, DDPG, and M2ACD without NURBS, there are significant position hopping jitter problem, 
which proves that it is difficult to cope with sudden obstacles and environmental changes effectively and lacks 
self-learning ability. Especially in a dynamic environment, the DRL algorithm is difficult to apply this algorithm 
to actual engineering projects.

Curve smoothing experiment
In order to solve the position hopping jitter problem, the trajectory planning curve is smoothed by NURBS 
spline. In Fig. 11a, the blue curve represents the expected trajectory of reinforcement learning, and the red dots 
represent the 11 critical points sampled. In Fig. 11b, the calculation process of control vertex di is calculated. The 
red vital points represent the calculated control vertex dii, and the blue points represent the sampling position 
points of reinforcement learning planning. As shown in Fig.11c, the red points are the critical points of the 
reinforcement learning trajectory, and the blue curve is the fitting result of the NURBS spline curve. In the 
straight line section, the fitted curve is consistent with the expected curve, while the error will occur in the 
region with significant curvature. Fine-tuning can be done by adjusting the weight factor. Although there are 
some errors, the fitting effect is significantly improved, and the error is small compared with the direct linear 
approximation method.

Figure 9.  Comparison results of TD3, DDPG, DARC and M2ACD algorithms.
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The trajectory smoothness of the algorithm is verified.During the experiment, the target trajectory of the 
trajectory planning of the collaborative robot is randomly selected to perform the trajectory planning task. Figure 
12 shows the results of four randomly selected trajectory planning of M2ACD without NURBS experiments. The 
trajectory planning is poor in smoothness, and the position hopping jitter problem occurs.

The NURBS is used to smooth the trajectory curve, and the results are shown in Fig. 13. Compare original 
curve without NURBS and the curve with NURBS, the M2ACD algorithm can effectively eliminate unnecessary 
fluctuations and sharp changes while preserving the overall shape of the curve. The experiment proves that the 
M2ACD algorithm successfully solves the trajectory hopping problem and can be effectively applied to the robot 
planning task in the actual scene.

The smoothness of NURBS curves can be evaluated through positional continuity G0 and tangential 
continuity G1, with several quantitative metrics assessing curve smoothness from different perspectives:

1. Positional Continuity G0:

	 G0 = Ci (ustart) = Ci+1 (uend)� (29)

Here, Ci (uend) represents the tangent derivative at uend . If this condition is satisfied, it indicates that the 
endpoints of adjacent curve segments are connected.

2. Tangential Continuity G1:

	 G1 = (Ci (ustart + s) − Ci (ustart)) /s� (30)

where s denotes the distance between two sequentially adjacent points, corresponding to the distance between 
key points in the NURBS curve. The variation in G1 indicates tangential continuity, and the larger G1 indicates 
less continuity.

The positional continuity metrics of the TD3, DARC, and DDPG algorithms fully meet the required 
standards. However, regarding tangential continuity, M2ACD with NURBS improves by 275% compared to the 
M2ACD without NURBS.

Real scene experiments
In the tasks of collaborative robots, medical thermal ablation requires high stability and accuracy of trajectories. 
The robot needs to move the ablation needle at the end precisely to the designated surgical site to ensure the 
accuracy of the treatment. The M2ACD algorithm parameters trained on the simulation platform are applied 
to the SCR3 collaborative robot to verify the effect of the planning algorithm in simulating the thermal 

Figure 10.  Trajectory planning comparison results of TD3, DDPG, DARC, and M2ACD algorithms.
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ablation task of the narrow position of the human skeleton. When the trajectory planning task is executed, 
the tasks and objectives of the trajectory planning of the cooperative robot are randomly published so that 
the end of the cooperative robot moves from a position to a specified target position. As illustrated in Fig. 
14, collaborative robots can smoothly and accurately reach the marked thermal ablation position on the gray 
ball. The experiment verifies the accuracy and smoothness of the inverse kinematics and trajectory planning 
algorithms. The experiment confirmed that the M2ACD algorithm does not need to rely on a real training and 
validation platform, significantly reducing training costs and potential physical damage and security risks. In 
the face of a new environment or unseen scenes, the algorithm shows strong generalization ability and performs 
excellently in practical application.

The validity of TSR strategy is verified, as shown in Table 4, the efficacy of distinct algorithms is evaluated 
in the context of trajectory planning tasks. The M2ACD algorithm modified with a reward strategy can further 
improve the training time of the M2ACD algorithm and satisfy real-time requirements with minimal planning 
time. The experiment confirmed that the M2ACD algorithm introduces the TSR (two-stage reward) strategy, 
which speeds up the training speed and overcomes the learning complexity caused by sparse or delayed reward 
signals.

In summary, Several discrepancies and challenges typically arise when transferring DRL trajectory planning 
algorithms from a simulated environment to real-world conditions. First, the simulated environment’s control 
parameters and sensor data are idealized. In contrast, in the real world, variability in the environment may lead 
to instability or errors in trajectory planning. The robot may encounter unforeseen obstacles or disturbances in 
the real environment, requiring real-time adaptation and strategy adjustment. Second, sensor data in simulated 
environments is usually accurate, whereas the robot in real-world operations may face unpredictable external 
interference or object changes. During the simulation training phase, noise can be introduced in the simulated 
environment to improve stability. Finally, differences in the inference speed and computational resource 
requirements between the simulated training environment and the real world may affect the algorithm’s real-

Figure 11.  NURBS spline curve sampling fits reinforcement learning trajectory planning.
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Figure 13.  Experimental results of trajectory planning of the cooperative manipulator.

 

Figure 12.  Four times reinforcement learning trajectory planning for randomly selected collaborative robots.
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time performance and effectiveness. Therefore, transitioning from simulation to the real world often requires 
domain adaptation techniques, additional field data, and hardware fine-tuning to overcome these discrepancies.

Conclusion
This paper presents a novel M2ACD algorithm for robotic arm trajectory planning in robots based on the structure 
of a multi-strategy network and a multi-value network. In addition, the paper proposes a reward strategy based 
on reward value prioritization and divides the robotic arm grasping task into the approach and close based on 
the TSR strategy. In order to improve the smoothness of reinforcement learning trajectory planning, NURBS 
spline is used to smooth the trajectory of M2ACD reinforcement learning output. The M2ACD algorithm is 
employed in a simulation environment to train the robot’s trajectory planning strategy, which is then transferred 
to a real experimental platform for grasping experiments. Simulation and real robotic arm experiments show 
that the proposed M2ACD algorithm is significantly more effective than TD3 and DDPG algorithms, and the 
M2ACD algorithm takes less time and converges faster than TD3 and DDPG algorithms in the early exploration 
stage. The planned curve has a good smooth line, which can effectively eliminate unnecessary fluctuations while 
ensuring accuracy.

Future research will focus on combining vision sensor technology to explore real-time obstacle avoidance 
planning methods of the M2ACD algorithm in complex obstacle environments. Specifically, the obstacle image 
information captured by the vision sensor is replaced with the environmental feature information suitable for 
the state space of the M2ACD algorithm. Regarding reward mechanism design, a positive reward is provided for 
each successful collision avoidance behavior, and enormous punishment is imposed on the collision behavior 
to restrain the potential risk. Use real-time feedback from the environment for dynamic adjustment to improve 
obstacle avoidance in complex and dynamically changing environments. To further enhance its adaptability and 
robustness in practical application scenarios.
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