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The traditional logging evaluation of comprehensive sweet spots in shale oil reservoirs has problems 
such as complex explanatory parameters, incompatible quantitative characterization scales, and 
low-cost efficiency. A method based on the fractal characteristics of conventional logging curves 
is proposed to evaluate the comprehensive sweet spots of fractured horizontal wells in shale oil 
reservoirs. Firstly, the existing evaluation parameters and methods were reviewed, pointing out the 
limitations of traditional logging evaluation methods. Furthermore, we analyzed 63 fractured sections 
from three horizontal fractured wells in the Yingxiongling shale oil reservoir of the Qinghai Oilfield, 
using tracer monitoring data. By applying wavelet transform to reduce noise in high-frequency signals 
from conventional logging curves, we then used multifractal spectrum analysis and R/S analysis to 
extract the multifractal spectrum width (∆α) and fractal dimension (D) from four conventional logging 
attributes: natural gamma logging (GR), acoustic time difference logging (AC), density logging (DEN), 
and neutron logging (CNL). A multi-attribute comprehensive fractal evaluation index was developed 
by using the post-fracturing tracer monitoring profile as a constraint and applying the grey relational 
analysis method. This approach enabled a quantitative classification and evaluation of the key sweet 
spots in shale oil reservoirs after fracturing. The results show that the comprehensive fractal evaluation 
index of the high-yield well section after Class I layering is 0.75<∆ α‘<1, 0 < D‘<0.25; 0.35<∆ α‘<0.75, 
0.25 < D‘<0.8 in the middle well section of Class II layer; Class III low production well Sect. 0<∆ α‘<0.35, 
0.8<∆ α‘<1. Finally, a prediction model for physical property parameters characterized by fractals was 
introduced using machine learning algorithms, which is 31.9% more accurate than the conventional 
interpretation physical property parameter prediction model for the comprehensive sweet spot of 
fracturing. This evaluation method is a concise approach to comprehensively evaluate the sweet spot 
area based on the extraction of multifractal spectral characteristic parameters from conventional 
logging data. It is of great significance for characterizing the volume fracturing effect of shale oil and 
providing technical support for the effective development of shale on a large scale.
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China has abundant continental shale oil resources1–3. However, due to the development of micro- and nano-
scale pores, challenging physical conditions, and significant vertical and horizontal heterogeneity, efficient 
extraction requires the use of the costly and technically difficult “horizontal wells + volumetric fracturing” 
approach. As a result, a sweet spot evaluation method for shale oil and gas reservoirs has been developed, which 
comprehensively considers geological, engineering, and economic factors3. Various scholars and oil companies 
have proposed as many as 52 parameters for evaluating shale oil and gas “sweet spots” based on specific 
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reservoir conditions. This has complicated the evaluation system in practice, leading to significant differences 
between evaluation results and actual production outcomes4. Since China released the industry standard 
“Shale Oil Geological Evaluation Methods” (GB/T38718-2020) in 2020, key evaluation parameters have been 
established, including TOC content, thermal evolution maturity, matrix inversion by porosity partitioning, 
mineral composition and content (lithologic facies), rock mechanical properties (e.g., Young’s modulus and 
brittleness index), fracture development, residual hydrocarbons (Sl), oil saturation, and formation pressure5,6. 
Quantitative research on these evaluation parameters has led to the creation of a variety of shale oil and gas 
sweet spot evaluation techniques encompassing seismic, geology, and well logging facets7–9. In particular, well 
logging during drilling serves as an alternative or supplement to indoor core studies and seismic interpretation. 
It provides continuous geophysical data (e.g., acoustic, electrical, and nuclear properties) with the benefits of 
lower cost and high vertical resolution. The vertical resolution of this technique ranges from millimeters (e.g., 
5 mm for imaging logging) to meters (as seen in conventional logging), improving the linkage between core and 
seismic data10,11.

The shale oil logging technique is mainly based on the qualitative assessment of “seven properties” and 
“three qualities.” The “seven properties” include lithology, electrical properties, physical properties, hydrocarbon 
content, hydrocarbon generation capacity, brittleness, and stress-induced anisotropy, while the “three qualities” 
refer to the quality of the source rock, reservoir, and engineering feasibility12–14. However, Chinese continental 
shale reservoirs are characterized by significant longitudinal variations in lithology, diverse mineralogical 
components, and the presence of laminae and shale bedding fractures at millimeter to micron scales. These 
factors make logging identification and quantitative analysis more challenging14,15. Furthermore, conventional 
anisotropic interpretive models are unable to accurately characterize the true longitudinal anisotropy. Despite 
advancements such as two-dimensional nuclear magnetic resonance (NMR) for mobile full-diameter cores, 
four-dimensional digital core simulation and analysis techniques, and high-precision elemental logging of 
rock mineralogical fractions16–18, these logging methods still ultimately rely on high-precision petrophysical 
experimental results19,20. The thin interbedding of shale reservoirs, along with their high variability in both 
vertical and horizontal distribution, makes it challenging to accurately capture their physical characteristics 
using discrete centimeter-scale core samples. This leads to problems in prediction accuracy and the continuity 
of interpreted regions when using interpretation templates that depend on the results of indoor experiments to 
calibrate logging curves.

Fractal theory, as a mathematical method with unique advantages in characterizing complex irregularities, 
has been increasingly used in the field of geosciences. Studies have shown that the microstructure of shale 
reservoirs satisfies fractal features21–23 utilized multiple fractal parameters from T2 spectra in NMR experiments 
to highlight differences in rock pore structure and to classify the types of pore structures24. Classified the pore 
structure of carbonate rocks by analyzing the fractal dimension of logging curves. They used the weighted box 
dimension of porosity curves and the weighted R/S dimension rendezvous plot of resistivity curves to establish 
the criteria for classifying pore structures25. Established a test-well interpretation model for multi-stage fractured 
horizontal wells in fractured shale gas reservoirs and analyzed the influence of parameters such as fractal index 
and fractal dimension on pressure dynamics26. Explored the fractal characteristics and thermal evolution laws 
of shale pores using the FHH fractal model. Their work used fractal theory to make significant progress in the 
quantitative characterization of the physical properties of shale reservoirs.

Given the limitations of conventional well logging evaluation methods—such as regional geological 
influence, prediction accuracy, and parameter complexity—this study proposes a new comprehensive method 
for evaluating sweet spot sections in fractured horizontal wells within shale reservoirs. Building on the qualitative 
insights provided by conventional well logging curves, this method integrates multi-attribute well logging curves 
with meter-level accuracy and production profile data from post-pressure tracer concentration monitoring. 
The goal is to more effectively extract the physical parameters of shale reservoirs. This study established a 
comprehensive fractal evaluation method by extracting multiple fractal spectra and R/S fractal dimensions from 
conventional well logging curves, which were then used to classify and evaluate the production level of the 
sweet spot section in fractured horizontal wells in shale reservoirs. In this study, we use the CP2 and CP4 wells, 
located in the sweet spot of the 14–15 box in the Hero Ridge shale reservoir in the Qinghai Oilfield, as examples. 
The multiple fractal spectra are firstly applied to extract four logging attribute curves of the target wells, such 
as natural gamma logging (GR), electrical resistivity logging (AC), density logging (DEN), and neutron logging 
(CNL), and then analyze fractal characterizations of qualitative analysis of reservoir heterogeneity, pore and 
fluid distribution on the basis of the fractal dimension and the oil-phase dimension of the wells. Based on the 
qualitative analysis of the fractal characterization of reservoir inhomogeneity, pore and fluid distribution, and 
combined with the grading results of oil-phase tracer monitoring in oil wells, the gray correlation method was 
adopted to determine the ∆α’ and D’ values of the combined weights of fractal spectral width ∆α and fractal 
dimension D of the multi-attribute logging curves. By effectively integrating the geological attributes revealed by 
well logging curves, a comprehensive evaluation index system for shale oil classification was finally constructed. 
The system quantitatively characterizes the classification and evaluation criteria based on well logging curve 
fractals. This evaluation method addresses the limitations of traditional approaches and enables capacity grading 
of shale oil formations at comprehensive sweet spots after pressure testing. This method provides simple and 
necessary technical support for the selection of sweet spot zones in fractured shale oil wells, and has important 
practical application value.

Comprehensive sweet spots routine evaluation of Heroes’ Ridge shale reservoirs
Conventional evaluation criteria for integrated sweet spots in the Heroes’ Ridge Shale
The shale oil reservoir in the Hero Ridge E32IV-VI oil group of the Qinghai Oilfield has been vertically divided 
into 23 distinct layers, each characterized by unique mixed sedimentation27–29. Based on sedimentary structure, 

Scientific Reports |         (2025) 15:9318 2| https://doi.org/10.1038/s41598-025-93224-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


laminae thickness, and mineral components, these layers are classified into six lithological types: laminated 
limestone, laminated dolomite limestone, layered dolomite, layered dolomite limestone, layered clay shale, and 
layered mudstone.In evaluating and selecting vertical sweet spot sections and planar sweet spot areas for the 
Hero Ridge shale oil reservoir, the following key factors are considered: source rock quality, reservoir quality, 
engineering quality, and flow quality. These factors are essential for optimizing exploration and development 
strategies.

Conventional logging can provide a qualitative and comprehensive evaluation of shale reservoir pore 
structure, natural fracture complexity, fluid distribution, and oil content conditions. The total organic carbon 
content (TOC) and hydrocarbon production potential (S1) of rock pyrolysis, which are indicators for evaluating 
the organic matter abundance of hydrocarbon source rocks, are not obtained directly from logging curves, but 
are obtained from laboratory core analysis, which indirectly establishes the correlation with certain logging 
curves. For example, clay is correlated with organic matter through natural gamma logging (GR); resistivity 
logging (AC) reflects the porosity and fluid type of the formation and infers the presence of organic matter; 
density logging (DEN) provides the porosity and mineralogical composition of the formation’s rocks, indirectly 
correlating with the organic matter content; neutron logging (CNL) reflects the formation’s hydrogen content, 
which can indirectly indicate the type of pore fluids, including the presence of organic matter; elemental logging 
can indirectly infer organic matter content by measuring specific elements (e.g., carbon, sulfur) in the rock; and 
nuclear magnetic resonance (NMR) logging can provide information about pore fluids and pore structure of the 
rock, which can help in assessing the organic matter content of the rock.

Although the above logging curves can provide indirect information about formation properties, they usually 
need to be interpreted comprehensively in conjunction with core analysis and other geological data. Based on a 
comprehensive analysis of logging, oil test, and production test data, the key parameters for oil enrichment in the 
Heroes’ Ridge Shale were identified as TOC, S1, porosity, saturation, and compressibility index. Subsequently, 
three types of sweet spot classification and evaluation criteria were established, as detailed in Table 1.

In the process of evaluating the comprehensive sweet spot of shale reservoirs, conventional logging evaluation 
techniques encounter many problems. For example, the evaluation parameters are complicated and numerous, 
and the calculation process is intricate, which itself increases the complexity of the work. Moreover, obtaining 
these evaluation parameters often requires reliance on expensive indoor experiments and field tests. Additionally, 
the interpretation templates of conventional logging curves are mostly based on discontinuous centimeter-scale 
core samples, which limits their ability to comprehensively characterize reservoir properties. By combining 
production profile data with tracer concentration monitoring from post-pressure wells, it becomes clear that 
areas categorized as Class I composite sweet spots are not necessarily the fractured sections that contribute the 
most to production. These observations highlight the shortcomings of conventional logging evaluation methods 
in quantitative categorization, which in turn affects their utility and accuracy in guiding effective volumetric 
fracturing.

 Comprehensive sweet spots post-pressure effect analysis of Heroes’ Ridge Shale reservoirs
The oil-phase tracer monitoring horizontal well production profiles were used to evaluate and analyze the post-
compression effect of the fractured horizontal wells CP2 and CP4 in the middle-sweet spot zone of the 14–15 
box of the Heroes’ Ridge shale reservoir. The oil production contribution rate was determined based on the 
percentage of oil and water phase tracer content in the CP2 and CP4 wells. The dimensionless productivity rate 
of each fractured horizontal well was calculated based on the average oil production per section. A dimensionless 
productivity rate greater than 1.2 times the datum value was classified as high yield (Class I)30. A rate less than 
0.6 times the datum value was classified as low yield (Class III). Rates between 0.6 and 1.2 times the datum 
value were classified as medium yield (Class II). The data processing results are shown in the dimensionless 
productivity capacity grading table for shale oil wells in Table 2.

	
q = qo

−
qo

� (1)

Criteria for classification Category I Category II Category III

Main lithologies Laminated gray dolomite, grainy cloudy limestone Laminated gray dolomite, grainy cloudy 
limestone

Striated gray 
dolomite, 
striated clayey 
shale

TOC > 1.0% 0.6–1.0% 0.4–0.6

S1 > 3 mg/g 1–3mg/g < 1 mg/g

Effective porosity % ≥ 6 4–6 < 4

100ms cutoff % porosity ≥ 2 0.5–2 –

NMR permeability/mD > 0.1 > 0.02 > 0.01

Clay mineral content/% < 20 < 35 < 40

brittleness Good Good Medium/Poor

Development of the lamellar suture well better poor

source storage factor 1.2–1.5 1-1.2 < 1

Table 1.  Sweet spot characteristic evaluation standards of Yingxiongling shale oil.
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q is the dimensionless productivity, decimal; qo is the segmental oil production, t/d; and qois the average 
segmental oil production, t/d.

Additionally, by incorporating the effective thickness weighting of each fracturing section and applying the 
three types of sweet spot classification criteria in Table  1, we plotted the relationship between the weighted 
grading of geological sweet spot reservoirs and the post-fracturing production profiles of wells in the 14–15 
box area, as shown in Plate 1. As shown in Fig. 1, the dimensionless production of fracturing sections in Class 
I sweet spot reservoirs (weighted thickness), evaluated according to the parameters in Table 1, is at high and 
medium levels. In contrast, the dimensionless production for Class II sweet spot reservoirs (weighted thickness) 
is more variable, with production spread across high, medium, and low ranges. The dimensionless production of 
Class III sweet spot reservoirs (weighted thickness) is generally low, with only a few instances at high levels. The 
dimensionless yield shows a scattered distribution, being distributed in high, medium, and low intervals. The 
dimensionless yield of the fractured section of Class III sweet spot reservoirs (weighted thickness) is basically 
low, with only a few instances in the high yield category.

In general, the geological sweet spots established with the help of the parameters in Table 1 have a certain 
correspondence with the graded contribution of oil production from fractured wells. According to specific 
analysis, the dimensionless production of the fracturing section corresponding to the Type I sweet spot is usually 
located in the high-yield or medium-yield area and has a relatively stable output performance. However, for 
the fracturing section in the transition zone between Type I and Type II, and Type II and Type III sweet spot 
reservoirs (weighted thickness), the dimensionless production distribution is relatively scattered and uncertain. 
The dimensionless production appears in high-yield, medium-yield, and low-yield areas and lacks clear regularity.
However, due to limitations in the accuracy of conventional logging interpretation methods, the contribution 
of oil production from fractured wells is very low in some of the geological Class II sweet spots. Conventional 
sweet spot evaluation methods can no longer meet the exploration and development needs of unconventional 
reservoirs that require large investments. The author adopts the multiple fractal spectrum extraction method to 
continuously characterize multiple attributes from logging curves and combines them with the constraints of 
production profile test data with meter-scale accuracy to propose a comprehensive multiple fractal evaluation 
method for shale reservoirs with complex non-homogeneous distribution. This method eliminates the tedious 
process of calculating multiple physical property parameters during logging interpretation, reduces the cost of 
indoor high-precision core experiments, and organically combines engineering sweet spots and geological sweet 
spots with reservoir production capacity. This is of significant value in engineering applications.

 Establishment of fractal characterization methods for logging curves
Preparation for standardization of logging data
In order to eliminate the influence of singular sample data, it is necessary to standardize the logging data.

	 Xi = xi−xmin
xmax−xmin

� (2)

In the above equation, Xi is the data value after normalization, xi is the original logging data value, and xmax and 
xmin are the maximum and minimum values in the original logging data, respectively.

Pound 
sign

Fracturing 
section

Water 
phase

Oil 
phase

Oil phase 
contribution

Dimensionless 
productivity

Pound 
sign

Fracturing 
section

Water 
phase

Oil 
phase

Oil phase 
contribution

Dimensionless 
productivity

CP 2

1 3.8 4.9 0.56 1.14

CP 4

2 4 3.2 0.44 0.86

2 3 5.9 0.66 1.34 3 1.7 6.2 0.78 1.52

3 2.3 4.9 0.68 1.37 4 8.8 8.2 0.48 0.93

4 3.6 4.3 0.54 1.1 5 5.3 4.7 0.47 0.91

5 3 5 0.63 1.27 6 4.3 3.5 0.45 0.88

6 3.5 5.3 0.6 1.21 7 2.5 4.3 0.63 1.23

7 4 3.5 0.47 0.95 8 6.2 6.5 0.51 0.99

8 6.2 1 0.14 0.28 9 7.5 3.5 0.32 0.62

9 5 3.6 0.42 0.84 10 8.7 3 0.26 0.51

10 4.1 5.5 0.57 1.16 11 4.1 6.8 0.62 1.21

11 3.7 4.2 0.53 1.07 12 3.5 4 0.53 1.03

12 3.2 6.6 0.67 1.36 13 3 9 0.75 1.46

13 7.3 6 0.45 0.91 14 7.3 6.2 0.46 0.89

14 6.8 2.2 0.24 0.49 15 6 4.1 0.41 0.8

15 6.1 4.2 0.41 0.82 16 9.5 5.6 0.37 0.72

16 8.5 13 0.6 1.22 17 4.2 5.8 0.58 1.13

17 4.8 12.7 0.73 1.47 18 2.9 5.2 0.64 1.25

18 11.3 3.4 0.23 0.46 19 2.1 4.2 0.67 1.3

19 9.1 3.4 0.27 0.55 20 1 2.7 0.73 1.42

Table 2.  Shale oil well dimensionless production grading scale.
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Pickup of multiple fractal spectra of logging curves
The pore structure and fluid distribution of the reservoir are not homogeneous, and there exists only an 
approximate self-similarity in the statistical sense31,32. A multifractal method can be used to establish the fractal 
dimensions of a number of different fractal subsets for a comprehensive identification and description of the 
pore structure and fluid distribution at different scales.

First, the actual logging values are mixed with the noise spectrum, necessitating noise elimination through 
wavelet analysis. A wavelet function with volatility and attenuation characteristics is selected for wavelet 
decomposition of the logging curve. The volatility characteristic requires that the higher-order moments of the 
wavelet function are zero, i.e.:

	

∫ +∞

−∞
xkψ(x)dx = 0, (k = 0, ?, N − 1)� (3)

At this point, it is referred to as an Nth order vanishing moment wavelet, and its Fourier spectral function is Nth 
differentiable. Attenuation requires that the domain of definition of the wavelet function is compactly supported 
to ensure its rapid decay properties.

Signals of finite energyf(x) ∈ L2(R)of the wavelet transform as:

	
Wf (a, b) = ⟨f, ψa,b⟩ =

∫ +∞

−∞
f(x)ψ∗

a,b(x)dx =
∫ +∞

−∞
f(x) 1√

a
ψ∗(x − b

a
)dx� (4)

Fig. 1.  Plate of the relationship between the integrated sweet spot section and the corresponding 
dimensionless capacity contribution of the fractured horizontal wells in the middle sweet spot area of Hero 
Ridge.
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where a is the scale parameter.a ∈ R,anda ̸= 0,b is the translation parameter,b ∈ R. a, b constitutes the phase 
space of scale-localized positions.

For multifractals, there are some modulus maxima of their wavelet transforms. From Eq. (4):

	 |Wf (a, b)| ∼ aα+ 1
2 � (5)

α  is the singularity index, from Eq. (5), the above equation holds when the wavelet function satisfies the order 
vanishing moment. The larger the singularity of the analyzed signal is the higher the order of the required 
vanishing moment, the smoother the wavelet is Daubechies wavelet as a tightly supported orthogonal wavelet 
has enough high order vanishing moments and symmetry, which can effectively avoid the phase distortion, and 
db3 is selected as the orthogonal wavelet basis and then reconstructs the signal by the low-frequency coefficients 
obtained through wavelet decomposition and high frequency coefficient reconstruction signal obtained by 
thresholding quantization processing to achieve the Wavelet denoising goal33.

Multifractal singular spectrum is obtained using wavelet modulus maxima transform. Firstly, the waveform 
data are polarized to obtain the corresponding extreme value points, and db3 is used as the orthogonal wavelet 
basis to measure all the singularity indices. The partition function at each scale is then calculated and linearly 
regressed.

	 log2Z(q, a) ≈ τ(q)log2a + C(q)� (6)

	
τ(q) = min

(
q

(
α + 1

2 − f(α)
))

� (7)

Find the spectrum of multifractal singularities:

	
f(α) = min

(
q

(
α + 1

2 − τ(q)
))

� (8)

	 ∆α = αmax − αmin� (9)

	 ∆f(α) = f(αmax) − f(αmin)� (10)

The four main fractal extraction properties that characterize the multifractal parameters are the spectral width 
∆α, the multifractal spectrum f(α)max, the maximum and minimum probability subset fractal dimension 
difference ∆ f (α), and the symmetry parameter |B|.

Determination of the dimensionality of the R/S variable scale fractal
R/S analysis34, or variable scale analysis, is suitable for analyzing data with continuous volatility. In the field of 
logging, the logging values at different depths are used as variables to form a sequence that varies with logging 
depth. The heterogeneity of logging data can be evaluated by the R/S fractal dimension, and the larger the fractal 
dimension, the stronger the heterogeneity35.

To perform R/S analysis, it is first necessary to find the mean value of the logging data, and then calculate the 
accumulated deviation of the sampling points in each stratum section.

	
Z(u, N) =

u∑
n=1

{
x(n) − x(n)

}
(1 ⩽ u ⩽ N, n = 1, 2, ?, N)� (11)

The extreme deviation is then derived from the accumulated deviation, which reflects the degree of variation in 
the logging curve.

	
R(N) = max

0<u<N
Z(u, N) − min

0<u<N
Z(u, N)� (12)

Finally, the standard deviation is then taken, which reflects the degree of deviation of each sampling point from 
the mean and characterizes the volatility of the overall logging curve.

	
S(N) =

√√√√ 1
N

N∑
u=1

[
x(u) − x(n)

]2

� (13)

Then divide and get the dimensionless ratio R/S, and then perform linear regression on log(N) ~ log(R/S) in 
double logarithmic coordinate system. When R/S is approximately linear with N, it indicates that the logging 
curve has fractal characteristics and the relationship exists, so the fractal dimension D can be obtained.

Establishment of comprehensive fractal evaluation indicators
Taking CP 2 and CP 4 wells as examples, the fractal-related information of AC, CNL, DEN, and GR logging 
attribute curves of each fractured well section is picked up respectively, and the fractal attributes of the four 
logging curves are calculated to compare with the dimensionless production, and the statistical results are shown 
in Table 2. Since the four conventional logging curves respectively reflect reservoir attributes to get numerous 
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fractal parameters, it is necessary to establish a comprehensive fractal characterization considering the weighting 
level. Accordingly, the gray correlation analysis was used in this study, with the dimensionless production of CP 
2 and CP 4 wells as the parent sequence xi0(i = 1,2,3…n), and the fractal spectral width ∆α value and fractal 
dimension D value of each logging curve as the subsequence xij (i = 1,2,3…n; j = 1,2,3 …m) jointly to determine 
the gray correlation coefficient.

	 ∆X = |xij −xi0|� (14)

	 ∆Xmax = max |xij − xi0|� (15)

	 ∆Xmin = min |xij −xi0|� (16)

	
Rco =

∆Xmin + δ∆Xmax
∆X + δ∆Xmax

� (17)

where: is the absolute difference between the factors of the subsequence and the parent sequence, and are the 
maximum and minimum of the absolute difference, respectively; Rcois the gray correlation coefficient, δ  is the 
discriminant scale, used to reduce the impact of the absolute difference is too large; the value of δ is between
[0.1,1], this time to take 0.5, so that the evaluation of gray correlation coefficient is more significant.

Firstly, the grey incidence coefficient is calculated:

	
Rj,0 = 1

n

n∑
i=1

Rco� (18)

The closer the gray correlation is to 1, the more closely the subsequence is linked to the parent sequence. The 
degree of influence of different sub-sequences on the parent sequence can be determined based on the ordering 
of the gray correlation.

The weight coefficients are then calculated by normalizing the gray correlation:

	
ωj = Rj,0∑m

j=1 Rj,0
� (19)

The grey correlation coefficients were further determined and normalized according to the grey correlation 
coefficients between the partial factors of the sub-sequence and the partial factors of the parent sequence to 
obtain the weighting coefficients about ∆α and D. The statistical results are shown in Table 3 and 4.

Comprehensive fractal evaluation method validation and application
 Establishment of comprehensive fractal metrics for volumetric fracturing of shale oil
According to the method of Sect. 2, the flow chart of this study is as follows :
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Taking CP2 well as an example, according to the statistics of fractal attributes and dimensionless yield 
classification in Table 2, the corresponding four-attribute multiple fractal spectra of the conventional logging 
curves were drawn schematically by selecting the fractured sections with high, medium, and low levels of yield 
classification, respectively, as shown in Fig. 2.

Combining the fractal characteristics of the fractured section capacity grading of CP 2 wells reflected in 
Table 2; Fig. 2, there are mainly the following insights:

	(1)	� The multifractal spectrum width ∆α of GR logging curves reflecting shale clay content and organic matter 
properties is the largest, and the multifractal spectrum width ∆α of DEN logging curves reflecting shale 
pore structure ( DEN, CNL, AC ) is the smallest, indicating that there is no significant difference in the de-
velopment degree of nanopore structure. The multifractal spectrum f(α) max of the four logging attributes 
is not much different, indicating that the peak values of the four attributes are not significantly different.

	(2)	� The fractal dimension D values of the attribute parameters extracted from the four logging channels by the 
R/S technique are more consistent in the fracturing sections corresponding to high, medium, and low pro-
duction capacities. Specifically, the fractal dimension D of the high-production section is lower than that of 
the low-production section. The fractal dimension D values for each attribute are as follows: AC corresponds 
to 1.535 for the high-production section and 1.585 for the low-production section; CNL corresponds to 
1.409 for the high-production section and 1.603 for the low-production section; DEN corresponds to 1.524 
for the high-production section and 1.594 for the low-production section; GR corresponds to 1.524 for the 
high-production section and 1.594 for the low-production section. The overall fractal dimension D value 
is 1.438 for the high-production section and 1.566 for the low-production section, indicating that the pore 
structure of the reservoir in the high-production section is more uniform than that in the low-production 

causality AC CNL DEN GR

Spectral width ∆α 0.2472 0.2442 0.2490 0.2596

Dimension D 0.2501 0.2618 0.2457 0.2424

Table 4.  Grey relational degree of multifractal spectrum width ∆α and fractal dimension D.
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section. This suggests that the reservoir in the high-production section is more homogeneous, with higher 
permeability and higher flowable oil saturation in the nanopore space.

In summary, selecting the multiple fractal spectral width ∆α and fractal dimension D values among the fractal 
attributes that are more sensitive to reflecting the production capacity level can qualitatively evaluate the 
fracturing production capacity grading of shale oil wells. In order to comprehensively consider the weights of 
the signals of each logging attribute, gray correlation analysis is used to fit the ∆α’ value and D’ value according 
to the weight coefficients. Taking CP 2 and CP 4 wells as an example, the comprehensive evaluation indexes of 
the training set (60% of the data points are selected) and the testing set (40% of the data points) are calculated 
respectively by the above method to plot the comprehensive scores. Comprehensive fractal evaluation method 
is an efficient and low-cost shale oil well capacity evaluation technique. By analyzing the fractal features of 
logging data and combining with gray correlation analysis, it can quickly and accurately evaluate the production 
capacity of shale oil wells in a hierarchical manner. The method shows significant cost advantages and efficiency 
improvement potential in practical applications, and is particularly suitable for the development and management 
of unconventional oil and gas reservoirs.

A graphical version of the shape indicator is shown in Fig. 3. In the graphical version of Fig. 3 Comprehensive 
Fractal Evaluation, red and blue colors are used to distinguish the evaluation metrics for the training and test 
sets, respectively: the training set metrics are marked with red dots, while the test set metrics are represented 
by blue dots, allowing for the intuitive observation of a close relationship between the fitted and predicted 
comprehensive fractal evaluation metrics and the dimensionless yield.

The level of fracturing section capacity at different geologic sweet spots is meticulously divided into three 
categories, each with a unique range of evaluation metrics:

Fig. 3.  Graph of integrated fractal evaluation index for weighted fractal parameters.

 

Fig. 2.  Four-attribute multifractal spectrum of logging in different fractured sections of CP 2 wells.
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	(1)	�  Class I fractured high-yield section: the comprehensive fractal evaluation index is defined between 0.75 
and 1, while the value of fractal dimension D’ is between 0 and 0.25. The index in this interval reflects that 
the reservoir in the high-yield section has a high degree of pore homogeneity and good permeability

	(2)	� Class II fractured medium-producing section: the comprehensive fractal evaluation index ranges from 0.35 
to 0.75, while the value of fractal dimension D’ is between 0.25 and 0.8. The indicators in this interval re-
veal that the pore structure and permeability of the reservoir are in a transitional state between high- and 
low-production well sections.

	(3)	� Class III fractured low-productivity section: the comprehensive fractal evaluation indexes range from 0 to 
0.35, while the value of fractal dimension D’ is higher than the range of 0.8 to 1. These indicators suggest 
that the reservoir pore structure and permeability are relatively poor in the low-producing well sections.

The overall trend shows that the comprehensive fractal evaluation index ∆α’ of high-producing wells is close 
to 1, and this index shows a decreasing trend with decreasing production. Comparatively, the integrated fractal 
evaluation index D’ of R/S subdimension for low-production wells is also close to 1, and this indicator shows 
a decreasing trend as the yield rises. The conclusions of the training set and the test set are highly consistent, 
which not only verifies the validity of the method, but also demonstrates its reliability in practical applications.

Method validation
This fractal evaluation method was applied to the tracer-monitored fluid-producing profile of the Yangpai 14 − 2 
well, located in the sweet spot two platform of the Hero Ridge shale reservoir. First, the multiple fractal spectrum 
of the conventional logging curve for the multi-segment fractured section of this well is calculated10. Although 
the AC logging curve is missing from this well test, its pore and fluid information is captured by the other 
three attribute logging curves. Therefore, the absence of the AC logging curve does not significantly impact the 
prediction results. Calculating the fractal characteristics of the other three logging attributes, as shown in Fig. 4, 
shows that the second platform’s reservoir has the following fractal characteristics:

	(1)	� The multiple fractal spectral width ∆α of attribute GR is the largest, and that of attribute DEN is the small-
est, indicating that the reservoir has a higher degree of fracture development and contains fluid, which re-
flects more sensitively to the degree of irregularity in the fractal structure of the extracted attribute signals.

	(2)	� The symmetry parameter B < 0 of the multifractal spectrum of attribute CNL shows that the right skewed 
spectrum has a larger fractal dimension index, stronger fractal intensity, and denser fracture development.

	(3)	� The symmetry parameter B > 0 of the multifractal spectrum of attribute GR shows that the dimension index 
of the left skewed spectrum is lower, and the fractal intensity is weaker, which indicates that the non-homo-
geneity of the reservoir is weaker, and it is empirically proved that the multifractal characteristics basically 
conform to the multifractal law of volumetric fracturing summarized in the previous section.

Comprehensive fractal evaluation indicator plate, drawing the fractal characterization and prediction of well 
logging curves of Yangpai 14 − 2 well comprehensive sweet spots Fig. 5 shows that the comprehensive fractal 
evaluation indicator ∆α’ of the high-yielding wells is close to 1 and shows a decreasing trend from high-yielding 

Fig. 4.  Multifractal spectrum of different well sections of YYH14-2 fractured horizontal well.
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to low-producing; the comprehensive fractal evaluation indicator D’ of the R/S fractional dimension of the low-
producing wells is close to 1 and shows a decreasing trend from low-producing to high-yielding. D’ is close to 1, 
and shows a decreasing trend from low to high production. When compared to conventional geological sweet 
spot evaluations and production profile grading, this method shows a high overall match with the fractured 
section. Out of the fractured sections, six segments of high-yielding Class I layers were accurately predicted 
with an accuracy of 83.3% using this method. In contrast, the geological sweet spot criterion only achieved a 
16.7% accuracy for the prediction of one high-yielding layer segment. Nine segments of the medium-producing 

Fig. 5.  Graph of well log and comprehensive fractal evaluation index relationship.
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Class II layers were fractured, with this method reaching a prediction accuracy of 88.9%. In contrast, using the 
geological sweet spot criterion, the prediction accuracy for four segments of the medium-producing layers was 
only 44.4%. Fracturing and tracer data for the low-producing layers reveal seven non-producing segments. This 
method achieved a prediction accuracy of 57.1% for these layers. In contrast, the geological sweet spot standard 
identified no Class III layers in this context, highlighting the validity and effectiveness of the comprehensive 
fractal evaluation method.

Machine learning integrated sweet spot prediction based on fractal characterization of 
reservoir physical parameters
The production capacity of fractured sections in shale reservoirs depends not only on the geological sweet spot 
evaluation but also on optimizing fracturing construction parameters. This machine learning approach adopts 
the random forest algorithm to build two prediction models for shale oil well fracturing production capacity12. 
It collects data on fracturing construction parameters from the CP2 and CP4 well segments, geological 
interpretation physical property parameters, and fractal parameters from extracted logging attributes. The 
models, prediction model I and prediction model II, are constructed using the attribute parameters listed in 
Table 5.

The results of comparing the multiple prediction models are shown in Fig. 6. Overall, the prediction accuracy 
of Prediction Model II for the overall 22 sections of the H14–2 well in the Yangpai 2 platform is 95.5%, which is 
18.2% higher than that of the 77.3% prediction accuracy of the multifractal spectral interpretation method, and 
31.9% higher than that of the 63.6% accuracy of Prediction Model I.

For the prediction of the middle-class II layer (a total of nine segments), the Prediction Model II still leads 
with 100% accuracy, while the prediction accuracy of the multifractal spectrum interpretation method is 88.9%, 
and the accuracy of Prediction Model I is 62.5%. Although the accuracy of the latter two is slightly lower than 
that of Prediction model II, they still have high reliability in the prediction of the middle-class II layer.

In the prediction of the low-yield class III layer (a total of seven segments), the accuracy of Prediction 
model II is 88.9%, showing good prediction performance. The prediction accuracy of the multifractal spectrum 
interpretation method is 57.1%, while the accuracy of Prediction model I is 55.6%. This shows that although the 
prediction of low-yield layers is difficult, the prediction accuracy of Prediction model II is still high.

The reason for the low prediction accuracy of the models for the low-yield class III layers can be traced 
back to the tracer interpretation results for four sections (the 4th, 5th, 11th, and 15th sections, respectively). In 
these sections, prediction model II indicates low-yield oil contribution for the 4th, 5th, and 11th sections, and 
medium-yield oil contribution for the 15th section. In contrast, the multifractal spectrum interpretation method 
classifies these sections as Class III, Class II, Class II, and Class II, respectively. Prediction Model I consistently 
identifies these sections as Class II. These differences highlight the limitations and differences between prediction 
methods in assessing low-yield data.

Fig. 6.  Accuracy comparison diagram of three productivity prediction methods.

 

Sports event Geological parameter Fracturing construction parameters

Predictive model I Porosity, permeability, oil saturation, brittleness index Total sand volume, cluster spacing, 
average sand ratio, total fluid volume, 
70–140 mesh quartz sand, 40–70 mesh 
quartz sand, 30–50 mesh ceramic 
grains, fracturing section length

Predictive model II Multiple fractal spectral widths (∆α1, ∆α2, ∆α3) for sonic, neutron, and density logging, the
Fractal dimensions (D1, D2, D3) for sonic, neutron, and density logging

Table 5.  Attribute parameter design of machine learning-based fracturing production capacity prediction 
model for shale oil wells.
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Through in-depth analysis of these prediction results, we can not only understand the advantages and 
limitations of different prediction methods but also provide valuable reference and guidance for future research 
and practice. At the same time, the results also emphasize the necessity for further optimizing models and 
methods for predicting low-yield layers.

Conclusion

	(1)	� Aiming at the problem of low accuracy of comprehensive sweet spot prediction in conventional geological 
evaluation, a comprehensive sweet spot evaluation method for fractured horizontal wells in shale reser-
voirs based on fractal theory to extract fractal characteristics of conventional logging curves is proposed. 
Taking the post-fracturing production profile as the constraint, the weighted multifractal spectrum width 
and weighted fractal dimension are introduced by using the grey correlation analysis method, and the 
three types of productivity evaluation criteria of fractured horizontal well section characterized by fractal 
are formed. The fractal evaluation method of comprehensive sweet spot section after fracturing of shale oil 
wells is established, which provides a new way for the accurate identification of sweet spots in shale reser-
voirs.

	(2)	�  Based on the proposed fractal comprehensive evaluation method, it is verified in other fractured horizontal 
wells in the same sweet spot area, and the overall accuracy is 45.4% higher than that of the conventional 
geological evaluation method. By introducing the random forest algorithm combined with logging fractal 
characteristic parameters and fracturing construction parameters, a comprehensive sweet spot prediction 
model for fracturing is established, and the prediction accuracy is improved to 95.5%.

	(3)	� This method needs to use the post-fracturing production profile data to reflect the comprehensive sweet 
spot information, which is of great significance for identifying high-quality shale reservoirs and improving 
the development efficiency of shale reservoirs, and can provide strong technical support for the effective 
development of shale reservoirs.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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