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Periodontal inflammation is a chronic condition affecting the tissues surrounding teeth. Initiated by 
dental plaque, it triggers an immune response leading to tissue destruction. The AIM-2 inflammasome 
regulates this response, and understanding its peptide sequences could aid in developing targeted 
therapeutics. This study explores using transformers and graph attention networks (GAT) to treat 
periodontal inflammation. UniProt was used to download AIM-2 inflammasome proteins and FASTA 
sequences with 100%, 90%, and 50% similarity. DeepBio, a web service for developing deep-learning 
architectures, analyzed these sequences. Peptide sequence prediction methods were evaluated using 
a transformer, RNN-CNN, and GAT models. The transformer model achieved 84% accuracy, the GAT 
model 86%, and the RNN-CNN 64%. Both transformer and GAT models predicted peptide sequences 
more effectively than the RNN-CNN model, with the Transformer showing the highest class accuracy 
at 85%, followed by the GAT model at 80%. Models exhibited varying sensitivity and specificity, with 
the Transformer demonstrating superior performance in overall and class-specific peptide sequence 
prediction. AI-based peptide sequence prediction using transformers, GAT, and RNN-CNN shows 
promise for accurately predicting AIM-2 peptide sequences, with transformers and GAT outperforming 
RNN-CNN in accuracy and class accuracy.
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Periodontal inflammation is a chronic inflammatory condition that affects the periodontium, including the 
gingiva, periodontal ligament, cementum, and alveolar bone, which support the teeth1,2. It begins with the 
accumulation of dental plaque, a biofilm composed of bacteria and their byproducts, which triggers an immune 
response. This response activates immune cells and releases proinflammatory cytokines such as IL-1 and TNF-α, 
destroying tissue. The inflammation extends into deeper periodontal tissues, causing tooth mobility, and if left 
untreated, can result in tooth loss. Periodontitis is also associated with systemic conditions such as cardiovascular 
disease, diabetes, and adverse pregnancy outcomes. Effective management of periodontal inflammation requires 
a multidisciplinary approach, including oral hygiene measures and lifestyle modifications3,4.

Inflammasomes play a critical role in the development and progression of periodontal inflammation, a 
condition characterized by the destruction of tissues surrounding the teeth. These multiprotein complexes 
produce proinflammatory cytokines, particularly interleukin-1β (IL-1β)5. The activation of inflammasomes 
begins with the recognition of danger signals or pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs) expressed by immune cells. 
This recognition leads to activating proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis 
factor-alpha (TNF-α), which recruit and activate immune cells at the site of inflammation.
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The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) 
inflammasome is particularly significant in periodontal inflammation. It comprises the sensor molecule NLRP3, 
an adaptor protein called apoptosis-associated speck-like protein containing a CARD (ASC), and the effector 
molecule caspase-1. The NLRP3 inflammasome can be activated by various stimuli, including microbial 
products and endogenous DAMPs1,6,7. Once activated, the NLRP3 inflammasome triggers the release of IL-
1β and IL-18, exacerbating the inflammatory response in periodontal tissues. IL-1β promotes the production 
of other proinflammatory mediators such as IL-6, TNF-α, and matrix metalloproteinases (MMPs), leading to 
tissue destruction. IL-18 enhances the production of interferon-gamma (IFN-γ), further contributing to the 
inflammatory response in periodontal tissues2.

Dysregulation of inflammasome activation has been implicated in the development of periodontal disease. 
Studies have shown increased expression of NLRP3 and enhanced caspase-1 activity in patients with periodontitis 
compared to healthy individuals. Genetic variations in inflammasome-related genes have also been associated 
with an increased risk of severe periodontitis8. Targeting the inflammasome pathway may be a potential 
therapeutic strategy for managing periodontal inflammation. In preclinical studies, compounds that inhibit 
the inflammasome or antagonize IL-1β have shown promising results in reducing inflammatory cytokines and 
tissue destruction in experimental models of periodontitis. Activation of the NLRP3 inflammasome produces 
IL-1β and IL-18, exacerbating the inflammatory response and tissue destruction in periodontal tissues.

The AIM-2 inflammasome, a multimeric protein complex, regulates the inflammatory response in periodontal 
tissues. Activated by cytosolic DNA, AIM-2 recruits an adaptor protein ASC, which then recruits and activates 
caspase-1, producing proinflammatory cytokines. AIM2 consists of an N-terminal pyrin domain (PYD), a 
central DNA-binding domain (HIN200), and a C-terminal regulatory domain (CARD)9. Once activated, AIM2 
recruits ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which recruits 
and activates caspase-1, producing proinflammatory cytokines. The upregulation of AIM-2 and associated 
inflammasome components in patients with periodontal disease is attributed to the recognition of bacterial 
DNA released during infection6. The AIM-2 inflammasome also interacts with other innate immune pathways, 
such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), to modulate the inflammatory response in 
periodontal tissues. Targeting AIM2 may represent a promising therapeutic strategy to control the inflammatory 
response and mitigate tissue damage. Further research is needed to explore the efficacy and safety of targeting 
AIM-2 for managing periodontal diseases. One previous study found that increased expression of inflammasome 
components, including Aim2, Ifi204, and Nlrp3, increased expression of proinflammatory Il1b in gingival tissues 
of murine experimental periodontitis patients7.

Periodontal inflammation, caused by dental plaque accumulation, is a significant health issue requiring 
effective therapeutic interventions. The AIM-2 inflammasome plays a crucial role in regulating the immune 
response during inflammation, influencing the extent and persistence of inflammation. Advanced computational 
models like transformers and graph attention networks (GAT) are used to analyze vast datasets to identify peptide 
sequences associated with AIM-2, a key factor in periodontal inflammation severity and treatment response10. 
This leads to targeted therapeutics, predictive models, patient outcomes, educational campaigns, and clinical 
practice integration. Sequence prediction is crucial in understanding genetic mutation dynamics, particularly 
in periodontal inflammation. This approach can help identify novel therapeutic agents and polymorphisms that 
may influence disease progression and contribute to personalized diagnostic tools for periodontal conditions.

Peptide sequence prediction using Language Models (LLM) is a method that leverages deep learning 
architectures, such as GPT and BERT, to predict peptide sequences with high accuracy11–13. Peptides are crucial 
in biological processes, including signaling, enzyme activity, and immune responses. LLM models learn from vast 
amounts of text data through unsupervised pre-training, enabling them to recognize sequence patterns. These 
models can then be fine-tuned using labeled data for specific tasks like peptide sequence prediction12,13. CAMP, 
a deep learning framework, outperforms current methods for binary peptide-protein interaction prediction and 
binding residue identification, facilitating peptide drug discovery based on attention mechanisms14 and another 
recent study showed that AlphaPeptDeep offers modular APIs for N.N. architectures like LSTM, CNN, and 
transformers, with a HuggingFace transformer library. It offers universal training and transfer learning steps 
and saves learned parameters, source code, and hyperparameters15. These studies inspire us to explore peptide 
sequence prediction using advanced algorithms.

LLM models employ a multi-layer architecture with self-attention mechanisms to capture long-range 
dependencies and complex relationships between protein sequences. Despite the challenges of requiring large 
amounts of labeled training data and significant computational resources11–13. LLM-Attention Networks, 
particularly Transformers, are advanced deep-learning models that predict peptide sequences. These models 
have shown potential in drug discovery, biomarker identification, and vaccine design, accurately predicting 
peptide binding affinities to receptors or major histocompatibility complex molecules. They have also been 
used to identify antimicrobial peptides and toxin sequences, aiding in developing new antibiotics and toxin 
inhibitors10. However, LLM-Attention Networks demand substantial training data and computational resources, 
limiting their applicability in data-scarce tasks. Further research is necessary to optimize these models and 
address their limitations. Nonetheless, with ongoing advancements, LLM-Attention Networks hold significant 
promise for revolutionizing peptide sequence prediction and biomedical applications13,16,17.

Limited studies have focused on using LLM-based prediction for the AIM-2 inflammasome, a crucial 
molecular complex involved in the inflammatory response. By understanding and accurately predicting the 
peptide sequences associated with AIM-2, we can potentially develop targeted therapeutics to modulate its 
activity and mitigate the inflammatory response in periodontal disease. This study aims to explore the prediction 
of AIM-2 inflammasome sequences using transformers and graph attention networks to treat periodontal 
inflammation.
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Materials and methods
Using UniProt18, the AIM-2 inflammasome proteins and their corresponding FASTA sequences were 
downloaded, including I.D.s with 100%, 90%, and 50% similarity: O14862, A0A8Q3WLZ2, Q5T3W0, and 
Q5T3W0. These sequences were identified, downloaded, and checked for quality. The FASTA sequences were 
then processed using DeepBIO, a tool for analyzing large language models and deep attention networks (Fig. 1).

The protein sequence analysis process involves several preprocessing steps, including deduplication, similarity 
filtering, data splitting, and regularization. Deduplication removes duplicated protein sequences, while similarity 
filtering ensures diversity and minimizes redundancy. Data splitting divides the deduplicated dataset into three 
parts: the training set, validation set, and test set. Early stopping prevents overfitting by monitoring the model’s 
performance on the validation set. Cross-validation, such as k-fold cross-validation, maximizes available data 
while providing a robust evaluation. These steps enhance the dataset quality and model performance, yielding 
more reliable biological insights from protein sequence analysis.

DeepBIO
DeepBIO19 is a web service that allows researchers to create deep-learning architectures for biological problems, 
visualize sequencing data, compare and enhance models, and provide in-depth interpretations and visualizations. 
It uses sequence-based datasets to offer conservation motif analysis and well-trained architectures for over 20 
tasks.

Transformers architecture
Introduced in 2017, the Transformers architecture has revolutionized natural language processing and 
computer vision. Its self-attention mechanism allows the model to weigh the importance of input tokens, 
capture dependencies, and learn contextual representations, making it applicable across various domains. The 
architecture comprises an encoder and decoder, each equipped with a multi-head self-attention mechanism and 
a feed-forward neural network. The self-attention mechanism transforms the input sequence into queries, keys, 
and values vectors, while the feed-forward neural network refines these representations. The encoder-decoder 
structure stacks multiple layers to produce contextual representations and generate output sequences.

Key components of the transformers architecture:

	1.	� Encoder-Decoder Structure: The model consists of an encoder and a decoder. The encoder processes the 
input sequence into hidden representations while the decoder generates the output sequence.

	2.	� Self-Attention Mechanism: This allows the model to focus on different parts of the input sequence during en-
coding and decoding, capturing dependencies between sequence points. It assigns weights to each position 
in the sequence based on their relevance.

Fig. 1.  Architecture and Workflow of Protein Sequence Analysis.
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	3.	� Multi-Head Attention: Transformers use parallel self-attention layers, where each head learns different atten-
tion weights and representations. The outputs from all heads are concatenated and linearly transformed to 
capture diverse relationships.

	4.	� Positional Encoding: To incorporate word order and position information, positional encoding vectors are 
added to the input embeddings, indicating each word’s position in the sequence.

	5.	� Position-wise Feed-Forward Networks: Each position in the sequence receives a fully connected feed-for-
ward network after the self-attention layers, capturing complex non-linear relationships between sequence 
positions.

	6.	� Layer Normalization and Residual Connections: Residual connections are used around self-attention and 
feed-forward layers to facilitate gradient flow and optimization in deep networks. Layer normalization is 
applied to the output of each sublayer.

	7.	� Masking: During training, transformers use masking to prevent the model from looking ahead in the input 
sequences. In the encoder, masking restricts attention to earlier positions, while in the decoder, it focuses on 
preceding output positions.

Graph attention network architecture
The Graph Attention Networks (GAT) architecture is a neural network model tailored for graph-structured data, 
integrating attention mechanisms to assess the significance of neighboring nodes and learn node representations 
effectively. It incorporates multiple attention heads, each responsible for computing attention weights that 
capture different relationships between nodes. The model utilizes a self-attention mechanism to compute these 
weights, which are then aggregated to form comprehensive node representations, capturing diverse and intricate 
relationships within the graph structure. The multi-head attention scheme facilitates enhanced information 
exchange and captures higher-order dependencies in the graph.

Overview of graph attention networks architecture:

	1.	� Input Layer: The model takes in a graph with nodes and edges, where each node possesses specific features, 
and edges connect pairs of nodes.

	2.	� Node Embedding Layer: Node features are transformed into embeddings, linearly and non-linearly activat-
ing node characteristics.

	3.	� Attention Mechanism: The architecture relies on attention mechanisms to determine the relevance and com-
pute attention weights for nodes and edges. These weights, learned through parameters, signify the impor-
tance of one node or edge relative to others.

	4.	� Graph Convolution: Attention convolutions utilize the computed attention weights on edges connecting 
neighboring nodes, influencing how each node aggregates information. This process enables comprehensive 
circulation and integration of information throughout the graph.

	5.	� Pooling and Aggregation: Following multiple graph convolution layers, pooling and aggregation techniques 
summarize graph information. This can involve pooling nodes or edges based on attention weights or aggre-
gating data using sum and mean operations.

	6.	� Output Layers: Fully connected layers, often including an activation function, process the aggregated data to 
solve specific tasks such as node classification, edge prediction, or graph classification. The structure of these 
output layers varies depending on the nature of the task.

GAT has proven effective in various graph-related tasks, making it a popular choice in graph representation 
learning.

RNN-CNN architecture
The RNN-CNN architecture integrates the strengths of Recurrent Neural Networks (RNNs) and Convolutional 
Neural Networks (CNNs), offering a robust framework for processing sequential data. It begins with an input 
layer that handles data sequences, such as text or time-series information, where vectors like word embeddings 
in text data represent each element.

Overview of RNN-CNN architecture:

	1.	� Input Layer: The model takes in data sequences, with each element represented as vectors (e.g., word embed-
dings for text).

	2.	� Convolutional Layer: A 1D convolutional layer filters the input sequences to capture local patterns or fea-
tures. Sliding window filters analyze sequences at different positions to extract relevant features.

	3.	� Pooling Layer: Max or average pooling layers follow the convolutional layer to reduce the dimensionality of 
the extracted features while preserving key patterns.

	4.	� Recurrent Layer: Pooled features are fed into a recurrent layer such as LSTM (Long Short-Term Memory) or 
GRU (Gated Recurrent Unit). This layer maintains an internal state to process sequences and capture tempo-
ral dependencies and contextual information.

	5.	� Output Layers: The final output from the recurrent layer is processed through task-specific layers. For tasks 
like sentiment analysis, a fully connected layer with a softmax activation function can estimate sentiment 
based on the processed sequence data.

The RNN-CNN architecture excels in tasks that require both local pattern extraction and understanding of 
contextual dependencies, such as sentiment analysis, text classification, and speech recognition. Its effectiveness 
in handling sequence-based data has made it popular in natural language processing and sequence modeling 
applications.
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Table 1 shows the hyperparameter tuning of three models.
This table presents hyperparameters and configurations for three machine learning models: TRANSFORMERS, 

GAT, and RNN-CNN. Each model has CUDA enabled for GPU acceleration, a random seed of 43, and 4 worker 
threads for data loading. The models have two classes in the classification task, a k-mer size of 3, and no specific 
sequence for heatmap generation. The mode of operation is “train-test,” and the data type is “prot” (likely 
protein data). The model architecture is specified by TRANSFORMERS, GAT, and RNN-CNN, with a data 
type of “userprovide.” The learning rate is 1.00E-05, while GAT and RNN-CNN use 0.0001. The regularization 
parameter is set to 0.0025, and the maximum sequence length is 35, GAT 207, and RNN-CNN. The embedding 
layer dimension is 32, and the mini mode mode suggests a model comparison.

Results
Transformer, RNN-CNN, and GAT architectures were employed to extract latent features and weights from 
FASTA-formatted protein sequences. Subsequently, the model was fine-tuned using backpropagation algorithms 
with the ADAM optimizer over 50 iterations.

Table 2 presents accuracy results for the Transformer, RNN-CNN, and GAT models, achieving 84%, 64%, 
and 86% accuracy, respectively, along with class accuracy values of 85%, 76%, and 80%. These metrics evaluate 
peptide sequence prediction methods, showing the Transformer model with the highest overall accuracy at 84%, 
followed by GAT at 86% and RNN-CNN at 64%, indicating superior prediction capabilities of Transformer and 
GAT over RNN-CNN. Class accuracy values reveal the Transformer model’s dominance across peptide classes 
with an average of 85%, followed by GAT at 80% and RNN-CNN at 76%. Sensitivity (T.P. / (T.P. + F.N.)) and 

Model Name ACC Sensitivity Specificity AUC MCC

Transformer 0.84 0.85 0.83 0.891 0.68

RNN_CNN 0.64 0.76 0.52 0.655 0.288

GAT 0.865 0.8 0.93 0.923 0.736

Table 2.  The accuracy results for the transformer, RNN-CNN, and GAT models.

 

Cuda TRUE TRUE2 TRUE3

Seed 43 43 43

num_workers 4 4 4

num_class 2 2 2

Kmer 3 3 3

heatmap_seq

save_figure_type png png png

Mode train-test train-test train-test

Type prot prot prot

Model TRANSFORMERS GAT RNN-CNN

datatype userprovide userprovide userprovide

interval_log 10 10 10

interval_valid 1 1 1

interval_test 1 1 1

Epoch 50 50 50

Optimizer Adam Adam Adam

loss_func C.E. C.E. C.E.

batch_size 4 8 32

L.R. 1.00E-05 0.0001 0.0001

Reg 0.0025 0.0025 0.0025

Gamma 2 2 2

Alpha 0.25 0.25 0.25

max_len 35 207 52

dim_embedding 32 32 32

minimode modelCompare modelCompare modelCompare

if_use_FL 0 0 0

if_data_aug 0 0 0

if_data_enh 0 0 0

CDHit [‘1’] [‘1’] [‘1’]

Table 1.  Hyperparameter tuning.
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specificity (T.N. / (T.N. + F.P.)) metrics further demonstrate model performance: Transformer has a sensitivity 
of 0.85 and specificity of 0.83, RNN-CNN has a sensitivity of 0.76 and specificity of 0.52. At the same time, 
GAT shows a sensitivity of 0.80 and a specificity of 0.80. These findings underscore the Transformer model’s 
effectiveness in peptide sequence prediction tasks, both overall and across specific peptide classes.

Figure  2 compares True Positive Rate (TPR) and False Positive Rate (FPR) across various thresholds. 
The Precision-Recall Curve graphically illustrates the balance between precision and recall as classification 
thresholds vary. Starting at a precision of 1 and a recall of 0, indicating all predictions are correct. Still, no 
true positives. The curve shows that lowering the threshold identifies more true positives and increases false 
positives, thereby reducing precision. The curve progresses to a precision of 0 and a recall of 1, indicating all 
true positives are identified with numerous false positives. Higher precision values across different recall levels 
signify a model’s ability to detect true positives while minimizing false positives accurately. The Area Under the 
ROC Curve (AUC-ROC) summarizes overall model performance. The Transformer model achieves an AUC 
of 0.891, indicating good performance, whereas the GAT model slightly outperforms with an AUC of 0.923, 
suggesting superior classification capability for the dataset. Additionally, the Transformer model exhibits an 
Average Precision (A.P.) of 0.851, while the GAT model achieves 0.922, indicating a stronger balance between 
precision and recall. Both metrics in Fig. 1 highlight the GAT model’s superiority over the Transformer model in 
terms of ROC AUC and Precision-Recall AP, underscoring its potential suitability for the task.

Figure 3 displays three SHAP value plots corresponding to the Transformer, RNN-CNN, and GAT models. 
SHAP (Shapley Additive explanations) values utilize cooperative game theory to explain predictions made by 
machine learning models. They assign importance to individual features, accounting for their interactions and 
dependencies. Known for their properties, such as local accuracy, consistency, and handling of missing data, 
SHAP values decompose model predictions into the contributions of each feature, offering insights into key 
drivers and specific instances. Analyzing SHAP values aids in understanding the decision-making processes 
of models and validating their predictions. Higher SHAP values positively influence the Transformer model’s 
outputs, whereas lower values exert a negative impact. The SHAP values for the RNN-CNN model illustrate how 
each feature influences predictions, with the spread indicating variability. Color coding indicates the correlation 
between feature values and their impact on predictions. These SHAP plots are essential for interpreting model 
behavior, ensuring fairness, and enhancing transparency in machine learning applications.

SHAP values evaluate the predictive power of three machine learning models: Transformer, RNN-CNN, 
and GAT. These values use cooperative game theory to assign importance scores to individual features, allowing 
for a comprehensive understanding of their impact on predictions. They are characterized by local accuracy, 
consistency, and the ability to manage missing data. Higher SHAP values indicate a greater positive influence 
on the model’s outputs, while lower values indicate negative impacts. SHAP plots enhance interpretation and 
transparency, ensuring fairness and accountability in machine learning applications. Exploring SHAP values can 
help uncover the biological significance of high-importance features, particularly in inflammatory responses.

Figure 4 shows an epoch plot, a graphical representation of a machine learning model’s training progress over 
multiple iterations known as epochs. It shows how the model’s performance changes, indicating improvement 
or degradation. Epoch plots are commonly used in deep learning to understand the model’s learning process, 
make informed decisions about further training, and track overfitting, underfitting, and other issues during 

Fig. 2.  Comparison of True Positive Rate (TPR) and False Positive Rate (FPR) across different thresholds.
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the training process by comparing the performance of three different algorithms: Transformer, RNN_CNN, 
and GAT. Transformer starts with lower accuracy but increases steadily, surpassing RNN_CNN and nearly 
approaching GAT’s performance. GAT exhibits the highest accuracy, while RNN_CNN starts higher but doesn’t 
improve much. The test loss curve shows lower loss values, with Transformer showing better performance and 
GAT showing the lowest loss.

Figure  5 presents a Venn diagram depicting the classification outcomes of a model, where overlapping 
circles illustrate instances classified as both positive and negative. The size of each circle indicates the number of 

Fig. 3.  Three SHAP value plots for Transformer, RNN_CNN, and GAT models.

 

Scientific Reports |         (2025) 15:8733 7| https://doi.org/10.1038/s41598-025-93409-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


predictions falling into each category, while the intersection reveals the proportion of ambiguous or overlapping 
predictions. This diagram visually represents the model’s classification performance, highlighting its ability 
to distinguish between positive and negative classes and identifying cases where predictions overlap or are 
uncertain.

Figure 6 depicts a UMAP plot, a visualization technique used in data analysis and machine learning to project 
high-dimensional data onto a lower-dimensional space while preserving local and global structures. This plot 
visualizes relationships and patterns in the data by representing each data point as a dot or marker. UMAP 

Fig. 5.  Venn diagram of positive and negative classification.

 

Fig. 4.  Epoch plot.
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plots are valuable for visualizing complex datasets, identifying clusters, exploring data structure, and providing 
insights for further analysis or modelling. The figure compares the clustering of data points generated by three 
algorithms: Transformer, RNN-CNN, and GAT. It illustrates how each algorithm groups data points, revealing 
similarities or differences in their interpretations. Transformer clusters may exhibit distinct patterns, whereas 
RNN-CNN clusters might vary in density or separation. GAT’s clusters could display unique patterns, with 
overlaps indicating shared interpretations. The UMAP plot aids in comprehending each algorithm’s strengths 
and weaknesses in handling the dataset effectively.

Discussion
Inflammasomes are intracellular complexes crucial for activating caspase-1 in response to various signals, 
producing interleukin-1β and interleukin-181,20,21. Their role in periodontal disease and potential therapeutic 
applications are actively under investigation. Evidence supports their involvement in inflammatory disorders, 
including periodontitis, with clinical and preclinical data linking inflammasomes to periodontal and comorbid 
diseases and ongoing research exploring potential therapies targeting inflammasomes. Multiple proteins and 
processes regulate inflammasomes, such as PYD-only proteins, CARD-only proteins, TRIMs, autophagy, and 
interferons9. Studies indicate that NLRP3 and AIM2 inflammasomes play roles in periodontal disease, with 
observed upregulation of inflammasomes and downregulation of inflammasome regulator proteins in this 
context. IL-1β, produced as pro-IL-1β in response to PAMPs and DAMPs binding to PRRs on cell membranes, 
is cleaved into its active form by the inflammasome complex, comprising a PRR, an adaptor protein (ASC), 
and active caspase-1. Various types of inflammasomes, including NLRP1, NLRP2, NLRP3, NLRP6, NLRP12, 
NLRC4, IPAF, NLRC5, PYHINS, AIM2, and Ifi-16, have been identified. For instance, NLRP1 is activated by 
a lethal toxin from Bacillus anthracis. Previous studies have examined the expression of NLRP3 and AIM2 
inflammasomes, caspase-1, and IL-1β in peri-implantitis biopsies, revealing associations with increased 
inflammation, probing depth, biofilm presence, and bleeding on probing9. Moreover, another study measured 
salivary levels of DNA sensing inflammasomes (AIM2, IFI16, IL18) in individuals with periodontitis, diabetes, 
and healthy controls, showing correlations with periodontal clinical parameters and predictors such as glycated 
hemoglobin, gingival index, PISA, and CAL6,22–24.

Furthermore, genetic studies have identified frequent genotypes in AIM2 and Pycard genes in patients 
with periodontitis and atherosclerosis coronary heart disease, highlighting their pivotal roles in inflammatory 
diseases8. Exploring peptide sequences is crucial for targeting inflammasome proteins like AIM-2 in periodontal 
diseases. AI-driven peptide sequence prediction enhances research efficiency across drug discovery, immunology, 
protein engineering, diagnostics, and peptide synthesis, advancing therapeutics and personalized medicine. 
This study utilizes advanced algorithms such as transformers, GAT, and RNN-CNN to predict AIM-2 peptide 
sequences, aiming to enhance the understanding and treatment of periodontal diseases through precision 
medicine approaches.

Transformers are renowned for their effectiveness in natural language processing and ability to capture 
intricate dependencies over long distances23–25. Given that peptide sequences can be seen as analogous to linguistic 
information, the Transformer’s ability to grasp complex relationships across sequences likely contributes to its 
superior accuracy in peptide sequence prediction, akin to machine learning models predicting TCR-pMHC 
interactions using amino acid sequences of TCR CDR3 and peptides, achieving competitive performance on 
benchmark and external datasets26,27. The Transformer model associates neural network weights with protein 
structural properties, aiding in molecular recognition, as exemplified by PiTE, a two-step pipeline for predicting 
TCR-epitope binding affinity using a pre-trained amino acid embedding model and a Transformer-like sequence 
encoder to enhance prediction accuracy by capturing contextual information between amino acids. Graph 
Attention Networks (GAT), incorporating attention mechanisms28,29, also demonstrate high accuracy due to 
their ability to capture intricate amino acid interactions in peptide sequences through graph-based models. In 
contrast, the RNN-CNN model exhibits lower accuracy and class accuracy, indicating limitations in capturing 

Fig. 6.  UMAP plot.
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complex peptide sequence patterns and correlations despite combining RNNs and CNNs to capture temporal 
and local information. Overall, Transformers and GAT outperform RNN-CNN in peptide sequence prediction 
and class accuracy, highlighting their adeptness in capturing peptide sequence connections and dependencies, 
as supported by experimental results demonstrating sAMPpred-GAT’s superiority in AUC and other metrics 
across multiple test datasets30. Specifically, the Transformer model excels in predicting AIM-2 peptide sequences 
with 84% overall accuracy and 85% class accuracy, while the RNN-CNN model shows lower overall accuracy 
(64%) but comparatively higher-class accuracy (76%). The GAT model achieves the highest overall accuracy 
(86%) and class accuracy (80%) by effectively capturing the graph structure and linkages in AIM-2 peptide 
sequences, leveraging its attention mechanism to prioritize relevant amino acids for improved prediction. It’s 
important to note that model performance depends upon dataset quality and size, as detailed in Table 2; Figs. 2, 
3, 4, 5 and 6.

The Transformer, RNN-CNN, and GAT models showed high accuracy in peptide sequence prediction, with 
the GAT model achieving the highest accuracy. The transformer model maintained consistent performance 
across different peptide classes, effectively identifying specific peptide sequence types. The Transformer 
model’s high accuracy and class performance demonstrate its ability to identify complex biological sequences, 
particularly those related to the AIM-2 inflammasome’s function in periodontal inflammation, which is crucial 
for understanding immune response interactions. With an impressive 86% accuracy, the GAT model captures 
structural information within peptide sequences, effectively modelling amino acid relationships and spatial 
configurations. This performance is particularly useful in understanding the spatial arrangement of peptide 
sequences contributing to immune responses. The RNN-CNN model has lower accuracy (64%), sensitivity 
(0.76), and specificity (0.52) due to sequential data processing and vanishing gradient issues, which may hinder 
its ability to predict peptide sequences and capture long-range dependencies accurately. The Transformer and 
GAT models offer valuable insights into peptide sequences related to the AIM-2 inflammasome. In contrast, the 
limitations of the RNN-CNN model highlight the need for improved architectures to better capture biological 
sequence complexities.

The AIM-2 inflammasome, a crucial part of the innate immune system, plays a role in recognizing cytosolic 
DNA from pathogens and cellular stress signals. In periodontal inflammation, the AIM-2 inflammasome can be 
activated by microbial DNA from oral pathogens, contributing to inflammatory responses and tissue destruction. 
The evaluation of predictive models, Transformers, Graph Attention Networks (GAT), and RNN-CNN provides 
significant insights into identifying and characterizing AIM-2 inflammasome sequences associated with 
periodontal inflammation. The Transformer model has the highest predictive accuracy and class performance, 
suggesting it can effectively identify AIM-2-related sequences that play a role in periodontal inflammation. GAT 
models highlight the importance of relational and structural information in peptide sequences, which can be 
particularly relevant for AIM-2 inflammasome sequences, which often interact with other molecular players 
within the inflammatory pathways. The insights gathered from these models can guide future research toward 
enhancing predictive capabilities.

Protein language model embeddings can significantly improve the Transformer and GAT models in 
peptide sequence prediction. This is due to enhanced feature representation, improved predictive performance, 
generalization, and interpretability. These embeddings are trained on extensive protein datasets, allowing 
them to capture intricate patterns and contextual relationships in amino acid sequences. Experimental 
model performance comparisons before and after embeddings provide quantitative evidence of their impact. 
Including embeddings can also bridge the gap between training scenarios and practical applications, making the 
models more robust. SHAP analysis aids in model decision-making, providing biological insights like AIM-2 
inflammasome activation and facilitating further research, feature selection, and personalized medicine.

While the Transformer and GAT models demonstrate high accuracy in AIM-2 peptide sequence prediction, 
critical areas remain for enhancement and consideration. Factors such as dataset quality and size, training 
methodologies, feature engineering, interpretability, and model optimization significantly influence performance. 
Improving accuracy entails gathering a more extensive and varied dataset, refining hyperparameters, employing 
robust data preprocessing methods, and enhancing training protocols.

Transformer and GAT models, promising for AIM-2 peptide sequence prediction, face several limitations 
that could impact their clinical implications. Data quality, size, training methods, feature engineering, 
interpretability, model optimization, regulatory and ethical considerations, and integration into clinical 
workflows are key factors in successfully translating medical models into clinical practice. These factors can 
lead to overfitting, biased predictions, and challenges in data privacy and health disparities. Moreover, exploring 
domain-specific feature engineering strategies and integrating external biological insights could further elevate 
model effectiveness. Future research efforts should prioritize advancements in these areas to achieve enhanced 
predictive outcomes and deepen understanding of peptide sequence prediction.

Conclusions
Inflammasomes, particularly AIM-2, play a significant role in periodontal disease and other inflammatory 
conditions. AI-driven peptide sequence prediction utilizing advanced algorithms like transformers, GAT, and 
RNN-CNN shows considerable potential in accurately predicting AIM-2 peptide sequences. Transformers 
and GAT models demonstrate superior accuracy and class accuracy compared to the RNN-CNN model, 
highlighting their effectiveness in capturing peptide sequence relationships and dependencies. Nevertheless, 
further enhancements can be achieved by addressing dataset quality and size, refining training methodologies, 
optimizing feature engineering approaches, and improving model optimization. Ongoing research efforts hold 
promise for advancing peptide sequence prediction capabilities and exploring therapeutic applications in the 
context of periodontal diseases.
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