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Modern agriculture relies more on technology to boost food production. It aims to improve 
both the quality and quantity of food. This paper introduces a novel TCRM (Transformative Crop 
Recommendation Model). It uses advanced machine learning and cloud platforms to give personalized 
crop recommendations. Unlike traditional methods, TCRM uses real-time data. It includes 
environmental and agronomic factors to optimize recommendations. The system has SMS alerts for 
remote farmers. It outperforms baseline algorithms like Logistic Regression, KNN(k-nearest neighbor), 
and AdaBoost. TCRM empowers farmers with actionable insights, reducing resource wastage while 
boosting yield. By offering region-specific recommendations, it enhances profitability and promotes 
sustainable agricultural practices. The model has 94% accuracy, 94.46% precision, and 94% recall. Its 
F1 score is 93.97%. The fivefold cross-validation score is 97.67%. These findings show that the model 
can improve precision farming. It can make agriculture more sustainable and efficient.
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One of the first pillars of human civilization, agriculture has changed a lot over the years. As the earth’s population 
explodes, demand for this vital sector has soared. Agriculture is now a tech-driven industry. It focuses on data-
based innovations and decisions. Manufacturers can help meet the urgent need for more food in agriculture. In 
recent years, many new technologies have emerged since the agricultural revolution. It aims to equip farmers 
for modern farming1,2. A quickening transformation in the agriculture sector is being driven by the growth of 
Internet of Things (IoT) technology3. The need for food production is growing quickly because it is predicted 
that by 2050 there will be 9.7 billion people on the planet4. Agriculture is now a tech-driven industry. It focuses 
on innovations and data-based decisions. Manufacturers must use these to meet the urgent need for food5. These 
technologies are key to high, sustainable agricultural yields to ensure efficient farming. At the heart of this overhaul 
is the use of data. Researchers collect it with care from various sources and analyze it. This data will inform 
decisions with high accuracy and speed6. A novel, cloud-based crop recommendation platform for precision 
farming is being designed. At the heart of precision farming is a mantra. It says that we can optimize farming 
by making it site-specific to each field’s uniqueness. Using machine learning7 algorithms such as decision trees, 
random forests, extra trees, logistic regression, SVM (support vector machines), KNN (k-nearest neighbor), DT 
(decision tree), XGBoost (extreme gradient boosting), Gaussian naive Bayes, AdaBoost, and bagging classifiers. 
It aggregates and preprocesses raw data to combine several datasets from multiple sources. The researchers want 
to find the best algorithm. It should give farmers personalized crop suggestions. The recommendations come 
from a vast database. It includes environmental factors, agronomic variables, and past farm performance data. 
It is hoped to provide farmers with the information they need. This will help them make timely, data-driven 
decisions. 8 proposed a rise in using advanced ensemble learning in precision agriculture. This was especially 
true for crop recommendation systems. Traditional machine learning often fails with complex, high-dimensional 
agricultural data. New methods, like stacking, an ensemble of ensembles, and federated learning, are now strong 
alternatives. It offers better accuracy, adaptability, and scalability. These methods use diverse models. Methods 
aim to improve predictions and reduce bias. It also tackles issues like data diversity and privacy. Combining these 
ensemble techniques with user-friendly platforms like Streamlit boosts their use. It enables efficient, interactive 
decision-making for sustainable agriculture. 9 discussed the lack of labeled data in crop recommendations. It 
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noted that generative models like VAEs and GANs could help. These models create synthetic data that mimics 
real-world crop data. This improves the training and performance of agricultural recommendation systems.

10 proposed a cloud-based crop recommendation platform. It would provide a wealth of real-time 
recommendations. It has an SMS alert system. It will keep farmers, especially in remote areas. This new 
technology could revolutionize agriculture. It would improve efficiency and sustainability. Farmers can thus 
be equipped with actionable, data-based, real-time insights. It can use resources better to boost crop yields. It 
supports a global goal of safe food for future generations11. The next posts will cover the why, how, and lessons 
learned from a paradigm-shifting approach to modern agriculture. The growing human population raises the 
demand for farming. It poses a global food security challenge. With the human population expected to rise by 
9.7% in a few decades, our agricultural systems face immense pressure. Arab Spring, a need to feed people, and 
a youth surge in fast-growing regions. However, we will need new farming methods to feed them. They must 
produce sustainable food for future generations.

12 explored using Explainable AI (XAI) in crop recommendation systems. It highlighted XAI’s potential to 
make AI-driven recommendations transparent and reliable. XAI methods, like SHAPE and LIME, can help. 
These methods improve the interpretability of machine learning models in agriculture. These approaches enable 
farmers to comprehend and trust AI-generated insights, thereby improving decision-making. Also, studies 
stress the importance of feature importance and visualization techniques, like dependency and summary plots, 
in explaining model behaviors. Counterfactual explanations, integrated gradients, and layer-wise relevance 
propagation methods boost these systems’ explanatory power. The reviewed literature shows a need for 
transparent AI tools. They can promote sustainable agriculture and build trust among stakeholders. People must 
use precision agriculture technology to boost food security. It can optimize crop yields and resource use through 
data. This paper’s focus on a cloud-based TCRM for precision agriculture is very relevant to supercomputing. 
Advanced machine learning (ML) algorithms and data-driven insights use large, diverse datasets. These 
algorithms contain environmental and agronomic factors. The Transformative Crop Recommendation Model 
(TCRM) fills gaps in existing systems. It uses advanced machine and deep learning to provide accurate, tailored 
crop recommendations. It has a 94% accuracy rate. It can scale for real-time, cloud-based, SMS-enabled farmer 
assistance. It connects traditional agronomy and modern data-driven insights. It ensures sustainable, context-
specific farming practices. To address the challenges and opportunities highlighted, this study proposes the 
Transformative Crop Recommendation Model (TCRM), designed to bridge gaps in traditional farming with 
data-driven precision agriculture.

Motivation and contribution
The Transformative Crop Recommendation Model (TCRM) is a novel model that is proposed in this paper. 
It aims to boost sustainability and productivity in Punjab, India. The region faces soil degradation, water 
scarcity, and population pressures. Traditional farming and modern solutions, like GMOs(genetically modified 
organism) and new irrigation, can’t meet the demands of food security, climate change, and resource scarcity. 
The Transformative Crop Recommendation Model (TCRM) uses advanced machine learning and a cloud-
based system. It gives real-time, data-driven crop recommendations based on environmental and agronomic 
factors. TCRM uses IoT sensors, live data, and an SMS alert system. It enables precision agriculture by giving 
remote farmers insights. It can optimize yields, conserve resources, and promote sustainability. This work helps 
develop a precision agriculture solution. It uses AI(Artificial Intelligence), IoT(Internet of Things), and cloud 
computing. The aim is to boost productivity, support sustainable farming, and benefit all in the agricultural 
value chain. Figure 1 demonstrates the general steps in precision farming, from data collection via IoT sensors to 
tasks executed by agricultural robots using understandings of the analyzed data. Table 1 sheds light on machine 
learning algorithms.

Aims and objectives
Empowering precision farming: To empower farmers with data-driven recommendations that enhance the 
efficiency, sustainability, and productivity of their agricultural practices.

Evaluation of machine learning algorithms: To thoroughly evaluate and compare the effectiveness of machine 
learning methods for making correct crop recommendations, such as logistic regression, KNN, AdaBoost, and 
the transformative crop recommendation model (proposed).

Development of a cloud-based crop recommendation platform: To plan and build a cloud-enabled agricultural 
recommendation tool for farmers.

Integration of real-time data and alerts: To integrate SMS alert generation technology and real-time data 
sources into the platform to facilitate prompt decision-making.

With these objectives as a guiding framework, the organization of this paper lays out the methodology, 
results, and discussions systematically to ensure clarity and focus.

Organization of paper
The paper introduces the Transformative Crop Recommendation Model (TCRM). It’s a cloud-based platform 
to improve precision agriculture using machine learning. The study reviews the role of IoT and ML in precision 
farming. It emphasizes the need for tailored crop recommendations. It then details the methodology. This 
includes data collection, preprocessing, feature engineering, and model selection. It shows that the TCRM 
outperforms traditional algorithms on key metrics. The results show TCRM’s high accuracy and scalability. It can 
send personalized SMS alerts, especially to resource-limited areas. Finally, the paper discusses the implications 
for sustainable agriculture. It outlines future improvements that includes using IoT data and explainable AI 
for transparency and adoption. Table 2 sheds light on related work in the context of description, methodology, 
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findings, benefits, and gaps. The following section delves into the existing body of work, highlighting recent 
advancements and identifying gaps that this study seeks to address.

Related work
Building upon these findings, this paper introduces a robust methodology for implementing a cloud-based crop 
recommendation system powered by TCRM.

Role of machine learning in internet of things and precision agriculture in crop 
recommendation
Machine Learning is key to IoT and precision agriculture. One use case is crop recommendation28. Machine 
learning provides a single interface to aggregate data from tens of thousands of IoT devices and sensors in 
remote farms. 29 The devices measure many variables, such as soil moisture, temperature, and humidity, as well 
as crop health. With their integration, ML algorithms help organizations fully understand their data. Feature 
selection is one of the few machine learning skills. It can identify the key factors that most affect crop yield. 
They cause the largest variations in changes to gateway-destined crops. Machine learning clears these paths. It 
helps only with the strongest variables to make recommendations and evaluations. ML algorithms encourage 
each farmer to decide what crop is to be picked by analyzing previous data related to soil nutrients, climate, and 
agricultural practices. Recommendations are then adapted to fit local information, like soil type and crop yield 
potential30. Such algorithms use data on past pest and disease outbreaks, bad weather, and market shifts. This 
data analysis can help the farmer. It can aid in better, more informed decisions about risks and losses.

A key feature is that ML models can adapt to changing conditions. It is seasonal to provide you some and 
modify its suggestions. In a dry time, it may suggest drought-tolerant crops or it may recommend crop rotation 
to improve soil fertility31. The model also turns and returns on recommendation systems based on machine 
learning. The system itself honed its algorithms as farmers then iterated based upon what really happened versus 
what the original recommendation was. This feedback loop of learning helps to make future suggestions more 
accurate and relevant. ML-powered crop recommendation systems32 own the traits of scalability and accessibility. 
This leverages extremely well on its deployable solutions and opens up farmers over the world to the tools2. This 
democratization also allows smaller farmers to have access to data-driven recommendations. Not only this, ML 
also helps in sustainability and environmentally friendly farming practices. 33 recommended crop rotation, cover 
cropping, and soil improvement to manage watersheds. This helps to save resources and reduce environmental 
impact. The above discussion, a brief intro of machine learning and IoT, is revolutionizing precision agriculture 
by providing advanced crop recommendations. The ML model gives farmers personalized, context-aware 
recommendations. It helps them make data-driven decisions. This increases crop yields and reduces risks. It 
also contributes to global agricultural sustainability34. Future food systems could be more resilient, effective, and 
sustainable due to this tech convergence.

Materials and methods
To enhance crop recommendation accuracy, a cloud-based TCRM (Transformative Crop Recommendation 
Model) with SMS alert generation system framework is designed and proposed by integrating state-of-the-art 
deep learning and traditional machine learning algorithms together. TCRM development and application target 
context-specific, sound predictions and recommendations for agricultural needs. TCRM architecture fuses tree-

Fig. 1.  Steps involved in precision agriculture10.
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based machine learning algorithms (i.e., random forests and extra trees) with deep learning layers implemented 
via TensorFlow and Keras. This deep learning component includes layers such as dense layers, normalization 
layers, multi-head attention mechanisms, and custom to capture these complicated relationships in the data. By 
utilizing multi-head attention, the model is able to attend to important interactions and dependencies between 
features, which improves predictive power.

All the parameters are tuned using all the folds of TCRM, which gets better performance and best accuracy 
for our model. Training-specific hyper-parameters such as the number of epochs, which are usually set to 200, 
and the batch size of 32, 64, and 128 represent how many training examples to work through before updating the 
model parameters in iterations. Learning rate is the most well-known hyperparameter that balances oscillations 
and convergence, typically set at 0.001 or 0.01. In the case of deep learning layers, it may be set to 0.2 or 0.5 
because the dropout is used, which randomly sets a fraction of input units to zero. This is done at training time 
in order to prevent overfitting.

Activation functions like ReLU (Rectified Linear Unit), Sigmoid, and Softmax help in transforming the outputs 
of each neuron, and optimizers such as Adam, SGD (Stochastic Gradient Descent), and RMSprop minimize loss 
during training. Tree-based algorithms such as random forests and extra trees have hyperparameters that are 
fine-tuned. For example, the number of estimators (trees) in a model is commonly between 100 and 500, the 
maximum depth of trees will be set at 10, 20, or none, and the minimum samples required to split a node can 
often accept values such as 2, 5, or even 10. In attention-based models, you can mention the number of heads, 
e.g., 4 or 8. It can also modify the architecture of the model by specifying a few layers (between three and five is 
common) to represent complex relationships within our data.

Together, these parameters ensure the robust functioning of the TCRM, enabling accurate and tailored 
crop recommendations. Figure  2 sheds light on a cloud-based transformative crop recommendation model 
(TCRM), showcasing four phases: data acquisition, preprocessing & analysis, feature engineering & modeling 
(including tree-based and deep learning models), and deployment & alerting through cloud integration and 
SMS notifications to farmers.

Ref

Machine 
learning 
algorithm Description Applications Advantages Limitations

13 Decision tree
A tree-like model applied to regression 
and classification issues. It splits data 
into branches based on criteria to 
make decisions

Customer churn prediction
Fraud detection
Medical diagnosis
Feature selection

Interpretability
Handles both categorical and 
numerical data
Minimal data pre-processing

Overemphasis on certain ML models like 
Random Forest, with less focus on ensemble 
approaches
Narrow dataset coverage, focusing primarily 
on Indian crops

14 Random 
forest

An ensemble learning method that 
combines different decision trees to 
improve predicting accuracy and 
reduce overfitting

Image classification
Anomaly detection
Recommender systems
Credit scoring

High accuracy
Robust to outliers
Reduces overfitting

Limited coverage of real-world implementation 
of IoT solutions for smart farming
Lack of evaluation metrics for energy and 
resource savings claimed in the framework

15

Support 
vector 
machine 
(SVM)

A binary classification algorithm that 
determines the best hyperplane for 
classifying data points

Text classification
Image recognition
Bioinformatics
Financial forecasting

Works well in high-
dimensional spaces
Uses kernel functions to 
handle non-linear data
Classification based on 
margins

High computational complexity due to the use 
of advanced algorithms like KELM and RF
Absence of a comparison with simpler and 
faster baseline models for practical usability

16
K-nearest 
neighbors 
(KNN)

A straightforward classification 
technique that labels features in 
the feature space according to the 
dominant class among its k-nearest 
neighbors

Handwriting recognition
Collaborative filtering
Anomaly detection
Pattern recognition

Easy to implement
No model training required
Non-parametric approach

Overfitting in gradient boosting and random 
forest algorithms
Absence of comprehensive testing across 
diverse farm machinery types and 
environments​

17 Naive Bayes
A Bayes’ theorem-based probabilistic 
method that predicts class labels by 
calculating conditional probabilities

Spam email detection
Sentiment analysis
Document classification
Medical diagnosis

Works well with text data 
is effective with high-
dimensional data
Needs less training data

Insufficient validation of the system in different 
geographical and climatic conditions
Limited exploration of real-time decision-
making mechanisms for farmers​

18 Gradient 
boosting

A method of ensemble learning 
that combines weak learners (often 
decision trees) to gradually create a 
powerful predictive model

Ranking in search engines 
-click-through rate prediction
Anomaly detection
Object detection

High predictive accuracy
Handles imbalanced datasets
Reduces bias and variance

Lack of integration with real-time 
environmental sensors for continuous 
monitoring
Limited exploration of economic factors in 
crop recommendation​

19

Neural 
networks 
(deep 
learning)

A complex brain-inspired model made 
up of interconnected nodes (neurons) 
arranged in layers. Deep learning 
models have multiple hidden layers

Image recognition
Natural language processing
Speech recognition
Autonomous vehicles

Excellent work in challenging 
assignments
Acquires knowledge of 
hierarchical structures
Big data scalable

Dependency on high-quality and diverse 
datasets for achieving accuracy in ML models
Limited application in smaller farming setups 
compared to large-scale operations

20

Extreme 
learning 
machine 
(ELM)

A learning method for single-hidden 
layer feedforward neural networks 
(SLFN) that provides fast training and 
effective performance. Weights are 
assigned analytically without iterative 
tuning

Crop selection
Yield prediction
Soil fertility assessment
Irrigation management
Disease detection
Price forecasting
Smart automation
Climate impact analysis

Precision farming
Data-driven decisions
Scalability
Sustainability
Adaptability
Economic benefits

Limited adoption by farmers
Data dependency challenges
Overfitting in models
Complex algorithm design
High computational cost
Insufficient real-time data
Accuracy vs. explainability trade-off
Scalability issues in implementation
Dependence on environmental variables
Skill gap for technology utilization

Table 1.  Machine Learning Algorithms with their Applications and Benefits.
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The proposed work is a cloud-based crop recommendation system based on ML algorithms to solve these 
problems. The platform aggregates, integrates, and analyzes various data streams, such as soil characteristics, 
climate records, and past crop behavior to recommend the most precise crop for a specific field. The system 
determines the best-suited crops for particular areas and growing conditions, maximizing their yield potential 
while minimizing waste. In addition, there is an SMS alert system for real-time recommendations. Farmers 
can receive timelier data-driven insights even in the remotest places. This feature maintains scalability and 
continuous updating and development of its predictive capacity as a cloud-based web platform. This solution 
combines precision agriculture techniques with modern technologies. It does not just help in better utilization 
of resources and aids sustainable agriculture, but it is also able to continue the production of major staples like 
wheat, rice, and maize that are crucial for livelihoods in the region. Getting down to Punjab also enables a 
regionalized approach to data gathering and analysis, which is de facto in the case of actual precision agriculture 
solutions. By providing information in a localized area, this approach generates valuable data that can be 
replicated in similar regions of the world to establish a model for sustainable agriculture in densely farmed and 
resource-limited areas. Algorithm 1 pseudocode provides a concise summary of the methodology adopted in 
developing the Transformative Crop Recommendation Model (TCRM), detailing the steps from data collection 
to deployment and continuous improvement.

Analysis of data and methodology
The database collection process, methodologies, and computing tools are covered in the data analysis and 
methodology. 35 designed to accomplish the study’s stated objectives (see Fig. 2).

Data gathering
Sources of data used for the purpose and research include the FAO, USDA NASS, and the World Bank data 
repository36 seeking to carry out the objectives of this study. ESA Data Archives, World Bank Sustainable 
Development Metrics, NASA Earth Data Archives, CIAT, and GODAN databases are specifically where the 
properties of the dataset come from. Additionally, reliable data source websites, including Data.gov, UN 
Comtrade, and Kaggle, were used to acquire data37.

Citation Description Methodology Key findings Benefits Gaps

15

Multimodal 
ML for crop 
recommendation 
and yield 
prediction

Used equilibrium optimizer (EO), kernel 
extreme learning machine (KELM), and random 
forest (RF). Simulations and benchmark 
evaluations were conducted

Achieved 97.91% accuracy in reliable wireless 
environments. Highlights ML potential in 
improving crop management and yield

High accuracy and 
suitability for reliable 
wireless environments

Requires testing in 
resource-limited 
or real-world 
agricultural 
scenarios

21 Crop prediction 
using IoT and ML

Analyzed data from IoT architectures with 
2200 cases and 8 attributes. Utilized decision 
table classifiers and multilayer perceptron for 
classification

Achieved 98.22% accuracy. Demonstrated 
robust model for precision farming using IoT 
and ML for crop prediction

Effective integration 
of IoT for crop 
prediction and fertilizer 
recommendations

Limited scalability to 
larger datasets and 
field conditions

10
ML-based cloud 
platform for crop 
recommendation

Compared KNN, DT, RF, XGBoost, and SVM 
for building a cloud-based recommendation 
engine

Proposed a cost-free, open-source platform 
for precision farming technologies to enhance 
acceptance in agriculture

Provides a scalable and 
accessible cloud-based 
solution for farmers

Limited discussion 
on real-time 
implementation and 
adoption barriers

18

Deep learning 
for crop and 
water quality 
assessment

Proposed a deep learning model considering 
solar exposure, humidity, soil pH, and water 
quality. Compared with SVM

Achieved 97% and 96% accuracy for crop 
and water quality predictions. Demonstrated 
ML potential in advancing agricultural 
productivity

High accuracy for 
water and crop quality 
assessment with multi-
feature inputs

Lacks exploration of 
real-time or dynamic 
environmental 
changes

22 Time-series crop 
yield modeling

Used datasets across fields and years with 
auxiliary data (e.g., soil conductivity, rainfall, 
MODIS images). Random Forest models 
developed for different growth stages

Predicted crop yields using spatially 
distributed data. Highlighted benefits of 
integrating time-series data for improving 
predictive models

Demonstrates the use 
of spatial and temporal 
data integration for yield 
prediction

Limited application 
to specific crop types 
and regions

23

IoT-based 
NPK sensor for 
soil nutrient 
monitoring

Designed NPK sensor with fuzzy logic for 
nutrient deficiency detection. Integrated data 
into Google Cloud database with a Raspberry Pi 
3 prototype

Demonstrated effective nutrient monitoring 
with alerts for farmers. Highlighted 
IoT-based solutions for improving soil 
management practices

Affordable and portable 
solution for real-time 
nutrient monitoring

Needs scalability 
for larger fields and 
better integration 
with other 
agronomic data

24 Hybrid ML for 
yield prediction

Proposed a two-tier ML model with adaptive 
k-Nearest Centroid Neighbor Classifier 
(aKNCN) and Extreme Learning Machine 
(ELM). Used metrics like RMSE, R2, and MAE

Improved accuracy and error reduction 
using hybrid ML models. Showcased IoT’s 
role in data-driven decisions for agricultural 
profitability

Combines feature 
selection and ML 
techniques for improved 
prediction accuracy

Lack of validation 
across diverse 
geographic or 
climatic conditions

25
Nutrient profiling 
of mulberry leaf 
plantations

Employed Extreme Learning Method (ELM) 
with alternative activation functions. Classified 
soil traits like potassium, phosphorus, and 
boron across zones

Provided key insights into soil fertility 
and nutrient dynamics in Tamil Nadu, 
contributing to sustainable agricultural 
management

Highlights regional 
nutrient dynamics for 
sustainable agriculture

Limited scalability to 
non-mulberry crops 
and other regions

26
Smart irrigation 
and IoT in 
agriculture

Developed a smart irrigation system using 
Agriculture 4.0 concepts, incorporating soil and 
climate data for decision-making

Presented a cost-effective urban agriculture 
solution for localized climate monitoring and 
decision support

Cost-effective system 
for urban agricultural 
monitoring

Needs validation 
in large-scale and 
rural agricultural 
environments

27

CNN-RNN 
framework 
for crop yield 
prediction

Combined CNN and RNN for multimodal 
deep learning. Applied to decades of maize and 
soybean yields in the USA

Achieved better performance than Random 
Forest and other models. Demonstrated 
deep learning’s capability in large-scale yield 
prediction

Shows the strength of 
combining CNN and 
RNN for yield prediction 
in large datasets

Limited applicability 
for smaller farms 
and non-cereal crops

Table 2.  Summary of related work on machine learning and IoT applications in precision agriculture.
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Data pre-processing
Data received from multiple sources is first combined. The integration of the information makes it easier to 
manage it effectively and to accomplish the study’s stated goals, which include examining the relationships 
between the crop recommendation indicators. Filtration is part of the preprocessing of data. Many times 
filtration and purification of data are done as part of cleaning and transforming the data. This process can be 
applied to the data set, and removing the outliers becomes easier38. Real-world data is sporadic, inconsistent, 
and scarce. This results in wrong data collection, which in turn leads to making incorrect models using the data. 
Data preparation tasks are used to resolve these problems by data mining and configure the information in a way 
that makes it more familiar. As part of the cleaning phase, it tackles data outliers, consistency issues, noisy data 
standardization, and the missing values restoration. Faulty, insufficient, or wrong data can potentially lead to the 
validity of study findings at risk. So, it is a necessary step in the data preparation process39. It prepares our data 
in two different ways before starting further research.

The dataset used in this study comprises 3000 rows and 8 columns, representing soil and environmental 
factors relevant to crop recommendations. The features include nitrogen (N), phosphorus (P), and potassium 
(K) content in the soil, along with temperature (°C), humidity (%), soil pH level, annual rainfall (mm), and the 
target variable such as crop type (label). The dataset contains no missing values, ensuring completeness and 
reliability for analysis. All features are numeric, except for the categorical crop type column.

To prepare the dataset for machine learning, several preprocessing steps were undertaken. A thorough data 
quality check confirmed the absence of missing values and validated the consistency of data types. Features 
were scaled and normalized to standardize their ranges, enhancing model compatibility. The categorical label 
column was encoded to numeric format using label or one-hot encoding, depending on the model requirements. 
Outlier detection and handling were performed to ensure robustness, while imbalances in crop type distribution 
were addressed through resampling techniques such as oversampling or undersampling. Additionally, derived 
features like nutrient ratios were considered for feature engineering to improve the model’s predictive power. 
These preprocessing steps ensured the dataset’s quality and representativeness, laying a strong foundation 
for effective machine learning analysis. As indicated in Table 3, the gathered information is divided into the 
following indicators (I1 to I8).

Handling the missing values
The elimination of missing values is one of the pivotal steps in data preprocessing, particularly during 
mathematical and statistical analysis. Data with missing values can cause bias, errors in results accuracy, and 
degradation of a model’s performance. There are lots of mathematical equations and methods to deal with this 

Fig. 2.  Cloud-based transformative crop recommendation model.
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issue. Imputation is one of the common methods to work with missing values39. The numbers are substituted 
with the predicted values based on available data.

Mean imputation is a very simple method of missing variable imputation. The mean imputation equation is 
given below:

	
� (1)

In Eq. (1):
x̂i represents the corresponding imputed value for the omitted data point xi. n is the total number of data 

points with non-missing values. xj represents the values of the known data.
Mean imputation simply assigns the mean (average score) of all the available values for each missing item. 

While this method is fast and conceptually simple, it is not always the most accurate due to the non-uniform 
distribution of data. It might want to consider median imputation when the data distribution is skewed or has 
outliers.

Algorithm 1.  Pseudocode representation of the methodology for developing the transformative crop 
recommendation model (TCRM).
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	 � (2)

In this case, the imputed value will be the median of the data.
Salgado et al.40 use regression imputation, where missing values are imputed by fitting a regression model 

with other variables as predictors. The mathematical formula for regression imputation will vary depending on 
the type of regression model used (e.g., linear regression, multiple regression).

The way in which the data are to be utilized and how imputation may affect the study must both be 
carefully considered. 41 proposed a helpful approach, but it should be used judiciously and there should be an 
understanding of its constraints. Sometimes more complex imputation techniques such as multiple imputation, 
K-nearest neighbor, or machine learning models may yield better results and accurate imputations.

Data normalization
A key step in preprocessing is data normalization, which tries to bring all the data into some common range42. 
This kind of strategy is mostly necessary while working with or dealing with several unit types and distribution 
magnitudes. Normalization creates balance in all features so one feature does not dominate the analysis. Standard 
Scaler is a preferred type of data normalization that scales down the values of the different features, often values 
being between 0 and 143. The Min–Max scaling formula is given below:

	 � (3)

In Eq. (3):
Xnormalized represents the normalized value of the data point X. X is the original data point. X min is the 

minimum value of the feature in the dataset. X max is the maximum value of the feature in the dataset.
Scaling the original data points to a range of 0 to 1 makes the smallest size in the dataset represent 0 and the 

largest size present as 1. This transformation standardizes the data and makes it easier to compare and analyze 
the values because all data points will be on the same appreciable scale. Other normalization techniques include 
Z-score normalization (standardization). This method normalizes the features. The normalized data have a zero 
mean and unit variance.

The mathematical equation for Z-score normalization is:

	 � (4)

Here: The standardized (normalized) value is denoted by Z. The initial data point is x. The feature’s mean 
(average) in the dataset is µ. The feature’s standard deviation within the dataset is σ. When the data distribution 
is substantially normal, Z-score normalization is helpful.

The normalization method is based on the criteria for the analysis and features of the data. These methods 
assist in preventing the biases or distortions from being introduced into the data after preprocessing and help the 
data fuel different machine learning algorithms and statistical analysis.

Exploratory data analysis (EDA)
In the process of data analysis, a key step is exploratory data analysis (EDA), where the aim is to understand 
and summarize the main features of a dataset. The mean is a key ingredient of centrally tended measures and 
is an important mathematical relation involved in EDA44, although this fact is mostly obvious with the use of 
visualizations and descriptive statistics. The mean ( μ ) of a dataset is:

Indicators Crop recommendation Description

I1 N
Shows how much nitrogen is present in the soil. Nitrogen is a crucial nutrient for plant growth since it affects the growth 
of leaves, the synthesis of proteins, and the general health of plants. Crop recommendations and nitrogen-based fertilizer 
recommendations are influenced by soil nitrogen levels

I2 P Reflects the presence of phosphorus in the soil. Phosphorus is vital for root development, energy transfer, and flowering. 
Understanding soil phosphorus content informs crop selection and phosphorous-specific fertilization recommendations

I3 K Represents the concentration of potassium in the soil. Potassium is critical for enzyme activation, water uptake, and stress 
resistance in plants. Soil potassium content guides crop selection and potassium fertilizer applications

I4 Temperature Describes the prevailing temperature conditions in the area, impacting crop growth stages, flowering, and fruiting. Temperature 
data helps identify crops suitable for specific temperature ranges

I5 Humidity Indicates the amount of moisture in the atmosphere. Humidity affects crop transpiration rates, disease susceptibility, and water 
requirements. It plays a role in recommending crops adapted to local humidity conditions

I6 pH Reflects the acidity or alkalinity of the soil. Soil pH influences nutrient availability to plants, affecting nutrient uptake and 
utilization. pH data informs crop selection and soil pH adjustment recommendations

I7 Rainfall
The amount of rain that has fallen per unit of time. Crop irrigation and moisture requirements are met by sufficient rainfall. 
Rainfall is key to recommending crops appropriate for local precipitation patterns. At last, the final advice for the crop type that 
suits the place most suitable. This is a consequence of an integrated assessment of all indications, such as soil nutrients, climate, 
and environmental conditions. For the available data, it tries to suggest the best crop in terms of breeding and resource efficiency

I8 Label
This is the super recommendation regarding the advisable type of crop that might be compatible with the certain region. It 
is a combination of all indicators, including soil nutrients, climate conditions, and environmental factors. According to the 
information given, can an ideal crop be suggested that optimizes resource needs?

Table 3.  Indicators of crop recommendation for precision farming.
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There are a number of data points (n), and between and indicates the number of each unique data point. It gives 
the value of the average in the numbers; it works to understand the basic or core value of your data set. EDA 
uses the mean, along with different visualizations, to look for patterns, trends, and outliers within your data. In 
addition, this full cycle enables guided decisions about data preparation, feature selection, and statistical analysis 
using high-level information.

Feature selection
Feature selection in data analysis and machine learning is the process of selecting those features that are more 
informative or useful for predictive or classification tasks45. Earlier, it explored a subset of features to meet some 
criteria in ML. However, the feature selection is defined as choosing the best feature from all available features. 
Common mathematical techniques for feature selection are the Pearson correlation coefficient r (correlation 
coefficients). The formula for Pearson correlation is given below:

	

� (6)

where r is the linear correlation between x and y, μx & μy are standard deviations of variables x and y, and x ̅, y ̅ 
are averages of variables x and y, respectively. One is to make a matrix of correlation between each feature and 
other features and the target variable as well to find out which are the features that can be a major contribution 
towards my solution. Possible removal of parameters that induce multicollinearity are weakly correlated during 
feature selection. This approach is complemented by other mathematical tools, for instance, statistical analyses 
and machine learning algorithms, which allow the selection of the most useful features to enhance model 
interpretability and performance46.

Machine learning approach
This includes a systematic approach to creating and testing models for prediction, selecting the model with 
the best performance. It is a strategy that requires machine learning to reach research aims with artificial 
intelligence powers. The dataset is split into subsets of train and test, which will make it easier to evaluate the 
model. Subsequently, various machine learning algorithms are applied to develop prediction models with 
their respective parameters47. Those models need to be trained by the training dataset before they can grade 
their performance through the testing dataset. Thilakarathne et al.10 assess model efficacy with metrics such 
as accuracy, precision, recall, and F1-score as well as cross-validation scores. Researchers often play with these 
hyperparameters to maximize the prediction power of their models. Through this iterative process, the model 
delivering the best performance will eventually surface. For example, the result of selecting the best model is 
based on your own study goals while balancing characteristics of models such as complexity, interpretability, 
and performance of a model on X (functionality) to get good accuracy in function Y (target). To increase the 
accuracy of prediction, a few assembling methods like bagging and boosting48 may also account for these. In 
general, this machine learning technique49 helps in better data-driven decision-making. It helps enable making 
your research results more effective as well as act as a basis for all the insights and recommendations.

Deploy the model as a web app to a local server
Deploying a machine learning model as a web application on the local server makes the developer-friendly 
version of the same model. Step 1 is one in a chain of steps to serialize the trained model, which means converting 
it into any easy-saving and known format. Next, this web-based framework is deployed on the backbone of the 
web framework to construct a web application50. Designing the user interface for an engaging and fluid user 
experience that is created using a combination of HTML, CSS, and JavaScript. The API exposes the ML model, 
which runs serverless on AWS Lambda, using scalable and often free processing power. Finally, this deployment 
gives you the ability to go from a simple base ML algorithm configuration to an interactive live front-end tool 
able to serve predictions or knowledge in real time through a user-friendly online face, greatly enhancing their 
already accessible utility for more use-cases.

Deploy machine learning model to cloud
A machine learning model has been pushed into the cloud to provide recommendations on crops. It is a strategic 
move hinging on their Amazon Web Services to abstract the cloud’s scalability, availability, and processing 
power. This deployment process includes a few important steps: The trained model is serialized and prepared to 
be used. Then, a deployment environment has been chosen in the cloud, be it Google Cloud Platform (GCP), 
Amazon Web Services (AWS), or Microsoft Azure. The model is in such cases, shipped to the cloud server 
together with all requisite data pretreatment and post processing pipelines51. Once the model is deployed, it 
exposes a web API that consumers can use to interact with the model using other applications like web or mobile 
apps. For example, a user will input local information like soil qualities or weather conditions into the system 
and receive instant crop suggestions based on the model predictions. Some of the benefits provided by cloud 
usage include: unlimited user accommodation, security features, and opportunities for very resource-intensive 
tasks to be executed quickly and efficiently52. On the other hand, cloud-based solutions allow for a far simpler 
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update and maintenance of systems, as well as ensuring that the crop recommendation model remains correct 
through time. In common, transferring device finding out fashions into the cloud complements their availability 
and provides a better person interface that may make crop suggestions information pushed to reinforce farmers 
and different agricultural stakeholders.

SMS alert generation system
Using Twilio as a bureau to create an SMS alerting system, many applications and services gain a valuable 
notification/alert layer. One of these platforms that is providing great support for programmatically sending 
SMS messages in a cloud-based way comes from one of the most robust Twilio. 23 used Twilio’s APIs and services 
to send out SMS alerts using this system to specific recipients for various reasons or situations. This technique is 
quite flexible, as it can be applied in many scenarios and businesses. For example, to keep farmers informed about 
the weather and when their field requires watering or if a disease has broken out on the crops. For healthcare, it 
can be handled to push emergency notifications or for medication schedules and appointment reminders.

The same can be used in logistics and eCommerce to notify customers about the delivery status of packages, 
offers on promotions, or status updates related to orders53. This typically includes configuring the provider 
system that will send messages automatically with event triggers, setting up Twilio with its API and credentials 
required for authentication, as well as defining what SMS alert body you want to be sent. An SMS Alert Solution 
is stable and automated to promote communication, reduce Time-To-Action response periods And notify the 
users in real-time for a better user experience and improved operating efficiency. The methodology outlined has 
been rigorously applied to evaluate the TCRM, and the results offer valuable insights into its effectiveness and 
scalability.

Results and discussion
The different measures used to evaluate the performance of these algorithms include accuracy, precision, recall, 
f1 score, and K-fold cross-validation scores, which provide some insights on their performance and ability to 
generalize. TCRM (our proposed method) early shows good performance based on key evaluation metrics 
compared to baseline algorithms such as logistic regression, K-nearest neighbors, and AdaBoost. In particular, 
this method obtains precision, recall, and F1-score of 94.46%, 94.462%, and 93.97%, respectively. An impressive 
fivefold cross-validation score of 97.67% is also obtained. This exhibits a clear improvement over the performance 
of traditional algorithms when understood in statistics quantitatively. These metrics are compared to the 
relatively lower performance of traditional algorithms, highlighting a clear improvement. However, establishing 
true novelty in a machine learning context requires more than just superior performance. It may include unique 
data preprocessing methods, unique architecture designs, or new model improvements that set approaches apart 
from the existing ones. Moreover, the clear contrast with AdaBoost is that significantly lower scores require 
careful analysis, providing insights into why your method excels where traditional methods struggle, thereby 
further emphasizing its impact and innovative nature.

Based on these results, the TCRM (proposed method) model is opted to use in our model. It has presented 
the highest level of accuracy and generalization capabilities due to disappointing results with a fivefold cross-
validation score compared to other models. It is required to deliver the most accurate and dependable crop 
recommendations to farmers. Moreover, the additional tuning or feature engineering is used. This seems to be a 
scope for performing more on the classification problem. Our deployed cloud-based platform with the TCRM 
(proposed method) model is a significant step towards the democratization of precision farming. The platform 
that connects them includes real-time access to customized crop recommendations, backed by an SMS alert 
system. These functionalities are most important in resource-limiting regions as they enable farmers to utilize 
their resources efficiently, reducing waste and increasing the yield of crops.

The transformative crop recommendation model (TCRM) was selected as the final model due to several key 
advantages that make it highly suited for agricultural datasets and real-time decision-making. TCRM showed 
an appropriate trade-off between efficiency and accuracy that looked to be well-suited for the rapid analysis 
of massive agricultural data, allowing quick turnarounds on recommendations. Models such as AdaBoost, 
K-Nearest Neighbors (KNN), & logistic regression were able to achieve comparable performance, but TCRM 
had the important benefits of speed (quick processing times are needed for an application in agriculture).

Additionally, the interpretability of TCRM makes it easy to know how different features affecting soil nutrition, 
weather data, and crop requirements lead to the final recommendations. Such interpretability is important in 
the context of agriculture since it can help provide farmers and agronomists with meaningful insights to inform 
their decisions. Moreover, due to the high performance of TCRM, it is able to outstand well with the extreme 
changes often seen in different agricultural data that reflect varying environmental conditions. The benefits of 
the crop recommendation model are speed, interpretability, and robustness. It serves precision agriculture well 
by providing accurate recommendations in a timely fashion to minimize loss of yield or nutritional quality for 
crops during their critical window between planting and harvesting, where optimal growth must be achieved.

Secondly, the non-field affect of this platform extends into developments that other parts of agriculture 
can leverage and already enables policy development. It promotes the efficient use of resources and reduces 
wastage of inputs, contributing to global food security and environmental sustainability while encouraging more 
sustainable farming by doing so. This data-driven approach has immediate socioeconomic benefits for farmers, 
providing them with better predictability on yields and policymakers the ability to work with an evidence base 
to develop sustainability-focused policies aimed at the agriculture sector.

Moreover, the system is capable of being generalized with other datasets. It has good potential as the basis 
for precision farming research in the future. This work provides applicable solutions and a lasting pathway to 
address agricultural resilience for present-day impact to farmers, scientific knowledge, as well as policymakers.
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Research Objective I: To empower farmers with data-driven recommendations that enhance the efficiency, 
sustainability, and productivity of their agricultural practices.

To achieve Research Objective I to provide farmers with data-backed recommendations for increased 
efficiency, sustainability, and productivity of their agricultural practices, the research paper uses a rich dataset 
consisting of eight important columns. The columns are nitrogen, phosphorus, potassium, temperature, 
humidity, pH, rainfall, and label. This dataset provides the basic infrastructure for our exploration, allowing us to 
reach several goals. Again, nutrient levels (N, P, and K) being presented separately in the data set acknowledges 
soil fertility as crucial to crop cultivation. Nitrogen, phosphorus, and potassium are essential major nutrients 
for plant growth. The accurate determination of these are critical to optimizing fertilizer recommendations that 
provide sufficient nutrient content in India. The distribution of features as shown in Fig. 3 in order to determine 
the type of data count per indication. The correlation matrix reflecting the correlation between various features 
on the dataset was then presented as a correlation heatmap, as seen in Fig. 4.

The correlation heatmap analysis offers valuable insights into the relationships among the various features 
within the dataset. One notable observation is the presence of strong positive correlations, where a few features 
have a correlation score that is near 1. When one increases, the other follows suit, and when one decreases, the 
other exhibits a corresponding decrease. Such strong positive correlations are indicative of a direct and often 
predictable relationship between these features.

Conversely, almost all features in the dataset have very low and negative correlations; the correlation values 
of most features are around zero or below it. Weak correlations indicate that the features are not linearly related, 
meaning changes in one do not always mean corresponding changes with another feature. Given that the 
correlations tend to be negative—that is, as one attribute grows, another seems more likely to shrink-it may lead 
you inevitably towards questions about trade-offs among these qualities.

Visualization of ease can classify the samples in less than 30 member class labels with our crop recommendation 
model confusion matrix as shown on Fig. 5. A confusion matrix is an important tool to evaluate the performance 
of a machine learning model, in particular for classification problems. To further optimize the parameters of a 
model for better predicting crop recommendations to farmers and other agricultural stakeholders, it is crucial 
that we have this data. It is a good tool to determine the performance of the model and provide direction towards 
improving its efficiency in tasks related to crop classification and recommendation. As indicated by attributes 
of this dataset, the soil N, P, and K levels assume an essential role from a biological viewpoint since they are the 
principle macronutrients that plants take amid the development stage. In general, these macronutrients have the 
greatest input into subcategories:

Fig. 3.  Count per indicator (I1 to I7) in the dataset.
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Fig. 5.  Confusion matrix.

 

Fig. 4.  Correlation matrix displaying the relationship between the dataset’s various aspects.
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N—Nitrogen promotes the growth of plant leaves.
P—Phosphorus is mostly needed for the growth of roots, flowers, and fruits.
K—Potassium is important for being able to carry out the general functions of a plant properly.

Fertilizer can supply these macronutrients, and different kinds of crops will benefit from it more depending on 
the N, P, and K concentrations in the fertilizer. In addition, a lot of N, P, and K are required for crops to grow and 
thrive, and strong, nourished plants bear more fruit. But in the absence of fertilizer, the soil might not contain 
enough nutrients to encourage healthy growth. By controlling fertilization, farmers may promote optimal plant 
development and productivity by understanding the NPK ratios that crops require. The nutrients that the soil 
needs are delivered to the soil through fertilizer. An analysis of the N, P, and K requirements for various crops 
in our dataset is shown in Fig. 6. Based on our data in the dataset, it is clear that sugarcane, potatoes, and dates 
require high nitrogen levels, apples and grapes require high phosphorus levels, and sugarcane, dates, apples, 
grapes, and litchi require high potassium levels in comparison to all other crops.

Furthermore, environmental factors such as temperature, humidity, pH levels, and rainfall play a significant 
role in determining crop suitability and performance. These all affect crop impact, disease infection, and yield. 
The research paper builds on the collection of information relating to these parameters to provide those holistic 
insights with regards to crop recommendations, ensuring that the climatic and soil conditions were in coherence 
with one another. The remaining features from this dataset are rainfall, soil pH, air temperature, and air humidity.

The pH of the soil affects the presence of microorganisms, harmful chemicals, and important nutrients. 
Plants require rainwater to survive on their nature. A plant may require different amounts of water for 
photosynthesis to occur; the air must be at a certain temperature; when the temperature rises, photosynthesis 
may also increase; and air humidity is necessary for plant transpiration. For example, when the temperature 
rises, these characteristics also help determine which crop to harvest. When considered collectively, each of these 
characteristics is crucial in deciding which crop should be harvested. As the recommended crop type based on 
the study of all the aforementioned parameters, the ‘label’ column in the dataset is of utmost significance. The 
final result of the study is this proposal which can help farmers choose the right crops, plant them, and choose 
the right management techniques. In essence, this comprehensive and multidimensional information is the 
foundation of the study, allowing for data-driven analyses and suggestions that enable farmers to improve their 
farming methods, increase crop yields, and promote sustainability in contemporary farming.

Research Objective II: To thoroughly evaluate and compare the effectiveness of machine learning methods 
for making correct crop recommendations, such as logistic regression, KNN, AdaBoost, and TCRM (proposed 
model) (Table 4).

Python programming was used to develop a collection of predictive machine learning models in order to 
fulfill Research Objective II, which calls for a thorough evaluation and comparison of the efficacy of various 
machine learning algorithms for making correct crop predictions. These are the models that we built with lots 
of love on top of a large and diverse dataset consisting of parameters like N-P-K nutrient levels, temperature-
humidity-pH-rainfall values, along with the important “label” column, which tells us what crop to recommend. 
For each method, the performance was thoroughly analyzed and benchmarked with respect to several different 
parameters like scores of F1-score, recall, accuracy, precision, and fivefold cross-validation. The scores obtained 
for F1, accuracy, precision, recall, and five fold cross-validation are shown in Table 4 for easier comparison.

Figure  7 sheds light on accuracy achieved by various classifiers. The proposed transformative crop 
recommendation model (TCRM) achieved the highest accuracy among all compared classifiers, reaching an 
accuracy rate of 94%. This outperformed K-Nearest Neighbors (KNN) and Logistic Regression, which scored 
92.84% and 91.16%, respectively. AdaBoost lagged significantly behind with only an 11.50% accuracy rate, 

Fig. 6.  Comparison of NPK requirements of different crops.
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indicating that it is less suitable for this application. The high accuracy of TCRM highlights its strength in 
making precise and reliable predictions tailored to agricultural data.

In terms of precision, which measures the correctness of positive predictions. In Fig. 8, TCRM led with a score 
of 94.46%. KNN followed closely with a precision of 93.11%, and logistic regression scored 91.44%. AdaBoost 
demonstrated a much lower precision at 7.92%. The high precision of TCRM indicates its effectiveness in 
reducing false positives, which is crucial for accurate recommendations in agriculture, minimizing unnecessary 
or incorrect interventions.

Recall measures the model’s ability to identify all relevant instances correctly. Figure  9 represents recall 
achieved by various classifiers. TCRM excelled with a recall score of 94%, showing its proficiency in capturing 
true positives. KNN and Logistic Regression performed well with scores of 92.83% and 91.17%, respectively, 
but AdaBoost fell short with a recall rate of only 11.50%. TCRM’s strong recall makes it particularly effective for 
ensuring critical cases in agricultural recommendations are not missed.

For the F1-score, which balances precision and recall. Figure 10 shows TCRM emerged as the top performer 
with a score of 93.97%. KNN followed with an F1-score of 92.74%, and logistic regression scored 90.99%. The 
significantly lower F1-score of AdaBoost at 8.45% highlights its poor balance between precision and recall 
compared to the other models. The superior F1-score of TCRM further emphasizes its consistent reliability and 
balanced performance.

In Fig.  11, a fivefold cross-validation test of TCRM demonstrated its robustness and consistency with a 
score of 97.67%. This was notably higher than KNN (92.74%) and logistic regression (90.99%), while AdaBoost 
maintained a low score of 8.45%. The strong performance of TCRM across multiple folds underscores its ability 
to generalize well and maintain stability when presented with varied data, making it ideal for the dynamic 
conditions of precision agriculture. TCRM excels in all the parameters used such as accuracy, precision, recall, 
f1-score, and Cross Validation with fivefold.

Research Objective III: To design and construct a cloud-enabled platform for recommending crops to 
farmers.

This deployment of the TCRM (proposed model) was a significant step in reaching one of the research 
objectives, Research Objective III to be precise, which involves building and implementing a cloud-based 

Fig. 7.  Accuracy comparison of machine learning algorithms.

 

Algorithm Accuracy Precision Recall F1-score 5-Fold CV Score

Logistic regression 91.17% 91.44% 91.17% 90.99% 84.50%

K-nearest neighbors 92.83% 93.11% 92.83% 92.74% 83.67%

AdaBoost 11.50% 7.92% 11.50% 8.45% 95.00%

TCRM (proposed method) 94.00% 94.46% 94.00% 93.97% 97.67%

Table 4.  Scores for accuracy, precision, recall, F1-score, and fivefold cross validation. Significant values are in 
bold.
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platform for crop recommendation service personnel. This highly sophisticated predictive machine learning 
model is maintained with a strict curation process to provide accurate and robust crop recommendations. 
Figure 12 depicts the cloud-hosted crop recommendation interface. In order to provide this technology in an 
easy-to-access and user-friendly manner, the TCRM (proposed model) was deployed on a cloud architecture 
(specifically Amazon Web Services (AWS) servers). Because AWS offers a secure and flexible cloud computing 

Fig. 9.  Recall comparison of machine learning algorithms.

 

Fig. 8.  Precision comparison of machine learning algorithms.
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environment, it is an ideal platform for web application or model hosting. Figure 13 shows crop and fertilizer 
recommendations for a given crop displayed in the cloud-based crop recommendation interface. During 
deployment, the TCRM (proposed model) needed to be exposed as a web API. This especially allows farmers 
who can feed soil properties, climatic regions, location, etc. via the interface of this API into the system. The 
deployed TCRM in turn responds with a prediction that can be based on the specifics of this instance to present 
appropriate crop suggestions, again providing personalized help and solutions.

With the hosting platform provided by AWS, it ensures that this research project maintains scalability and 
availability for more users along with data inputs to be processed in our crop recommender system. That provides 

Fig. 11..  5 fold cross validation comparison of machine learning algorithms.

 

Fig. 10.  F1-score comparison of machine learning algorithms.
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farmers with an easy way to use data to make better decisions that will help drive efficiency into agriculture well 
beyond many other techniques currently in practice today.

Research Objective IV: To integrate SMS alert generation technology and real-time data sources into the 
platform to facilitate prompt decision-making.

This intends to power the functions of an agriculture platform by integrating live data sources (weather 
forecasting services) and triggering SMS alerts for real-time assistance in decision-making farm-level suggestions. 
As an important part of this objective, a system for sending SMS alerts has been added to the platform in order 
to deliver vital information straight into farmers’ mobile phones. The system is aimed at sending SMS alerts 
containing crop recommendations and fertilizer recommendations specific to the recommended crop.

Using real-time data sources like weather, soil quality, and other ecosystem factors to identify the optimal 
crop for that field as per season based on our platform algorithms. It can be made to trigger an SMS alert 
generation system to farmers about a favorable crop on their land and the type of fertilizer they need for its 
maximum yield in Fig. 14. This real-time tailored assistance provides farmers with insights that they can act 
upon, allowing for informed and rapid decision-making to adapt to changing weather phenomena and optimize 
the productivity and sustainability of their agricultural practices.

Comparison with the existing work
Table 5 highlights various methodologies, including neural networks, support vector machines, and deep learning 
architectures like CNNs. The datasets range from satellite imagery and weather data to field-specific soil reports 
and crop-specific RGB images. The studies show diverse applications, such as soybean yield forecasting, wheat 
prediction, and soil nutrient classification, with accuracies ranging from 61 to 94%, showcasing the evolution 
and advancement in precision agriculture methods.

Figure 15 visually compares the accuracy of these studies, emphasizing the performance of the proposed 
TCRM (Transformative Crop Recommendation Model), which achieved the highest accuracy of 94%. This 
indicates the robustness of TCRM in providing personalized, data-driven crop recommendations using advanced 
ML/DL approaches and real-time data integration.

Fig. 13.  Crop recommendation interface hosted in the cloud with recommendations.

 

Fig. 12.  Crop recommendation interface hosted in the cloud.
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The findings not only validate the efficacy of TCRM but also pave the way for future innovations, as discussed 
in the concluding section.

Conclusion and future scope
In this work, the Transformative Crop Recommendation Model (TCRM) is presented that combines scientific 
machine learning and deep learning to provide temporal, context-aware, and scalable crop recommendations 
in the era of precision agriculture. By deploying the model on a cloud platform and using SMS alerts to notify 
farmers regarding the content of the data-driven insights, remote farmers can be served with better information 
for their farming activities. By leveraging multi-head attention mechanisms, tree-based algorithms, and scalable 
cloud infrastructure. It not only augments predictive power but also helps in connecting traditional agronomy 
with modern data-driven approaches. By focusing on data preprocessing, normalization, and feature selection. 
It provides robustness, scalability, and generalizability to different agricultural settings and input data. TCRM 
embodies the transformative potential of precision agriculture to optimize yield efficiency and food security by 
emphasizing sustainable agronomy, resource use, and resilience to stressors such as climate change and water 
limitation. Punjab, India. The Punjab case study demonstrates the ability of TCRM-driven precision agriculture 
to enhance water and soil health, optimize crop sectors and realize yield potential under resource-constrained 
conditions.

In the future, TCRM could be improved by developing region-specific models that include climate, soil, 
and crop data on a local scale in order to increase its prediction abilities and relevance for different agricultural 
contexts. Using IoT-based monitoring devices to collect real-time data can be implemented as an extension for 
accurate and timely recommendations. The addition of proper sustainability measures, including but not limited 
to measures on water use, carbon footprint, and resource efficiency, will complement the broadband delivery 
of environmentally friendly farm practices. Multilingual interfaces and mobile applications can make the 
platform easier to use for farmers in multiple demographics. Utilization of state-of-the-art data augmentation 
strategies and steady updates to the model will enable TCRM to be proactive with respect to emerging trends 
and challenges in agriculture. A feedback loop where farmers can provide feedback on suggestions would refine 
the model even more, making it smarter and more human-centric. Working with public officials, researchers, 
and extension services can help ensure the expansion and fine-tuning of TCRM for widespread impact. The 
model can also be fortified by looking at new technologies such as blockchain for secure data sharing and AI-
based disease prediction models, ensuring it remains an invaluable instrument based on data to potentially 
revolutionize agriculture, improve food security, and promote sustainable farming globally. Future work 
could integrate explainability techniques like SHAP and LIME to make crop recommendation models more 
transparent. These methods provide insights into feature influence, fostering trust and informed decision-
making among agricultural stakeholders.

Fig. 14.  SMS sample to farmer showing crop and fertilizer recommendation.
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Ref Study Objective Methodology Dataset Key findings Accuracy

54
Satellite-based 
soybean yield 
forecast

Real-time soybean yield 
prediction in Brazil

LSTM, random forest, OLS 
regression

Satellite imagery and 
weather data

LSTM outperformed others; MAE ranged 
0.24–0.42 Mg/ha depending on timing 72.74%

55 Wheat yield 
prediction

Prediction of wheat crop yield 
using MLP neural networks

Multilayer perceptron with 
custom activation functions

Weather datasets, 
1990–2017

New activation functions improved 
prediction accuracy compared to Sigmoid 
functions

90%

56 Soil nutrient 
classification

Classification of soil fertility 
indices and pH levels

Extreme learning machine 
(ELM)

Soil test reports from 
Kerala, India

Gaussian radial basis function was the 
most effective, with accuracy for pH 
classification

90%

57 Soil mineral 
classification

Ontology-based knowledge 
base for soil mineral 
composition

Ontology mining Expert knowledge and 
soil datasets

Created structured knowledge for soil 
composition aiding crop recommendations 91%

58 Nutrient deficiency 
detection in plants

Detection and classification of 
nutrient deficiencies in tomato 
plants

Machine Learning (ANN, image 
processing) Tomato plant datasets

Proposed ANN model effectively identified 
deficiencies using leaf characteristics with 
high accuracy

88.27%

59

Classification of 
crop based on 
macronutrients and 
weather data

To classify crops (rice, 
wheat, sugarcane) based on 
macronutrients and weather 
data

Support vector machine (SVM) 
and decision tree

Chhattisgarh state data 
over 10 years including 
soil type, rainfall, and 
temperature

SVM and decision tree algorithms 
achieved high accuracy in classifying crop 
types

92%

60

Rice nitrogen 
nutrition 
estimation using 
RGB images

To estimate nitrogen nutrition 
in rice using RGB images and 
machine learning

Random forest (RF), 
backpropagation neural network 
(BPNN), and simple nonlinear 
regression (SNR)

RGB images from field 
experiments over two 
years

RF performed best with 81% accuracy 
for nitrogen accumulation estimation, 
showing strong generalization 
performance

80.47%

61
Wheat yield 
prediction using 
machine learning

To predict wheat yield using 
advanced sensing techniques

Self-organizing maps (SOMs), 
counter-propagation ANN, and 
XY-fusion networks

Data from 22 ha field 
in Bedfordshire, UK, 
including NDVI and 
soil properties

SOMs with supervised learning had 
81% overall accuracy, showing effective 
integration of soil and crop data for yield 
prediction

81.65%

62

Two-tiered 
machine learning 
model for crop 
yield prediction

To predict paddy yield using 
nutrient deficiency analysis

Neural networks and K-means 
clustering with TensorFlow

Images of paddy fields, 
classified into nutrient 
deficiencies

Achieved 76%-77% accuracy, effectively 
combining neural networks and clustering 
for yield prediction

77%

63

Deep learning 
classification of 
land cover and crop 
types using remote 
sensing data

To classify land cover and crop 
types using remote sensing data

Four-level DL architecture with 
CNNs, MLP, and RF, including 
preprocessing, supervised 
classification, and geospatial 
analysis

Landsat-8 and Sentinel-
1A images for Kyiv, 
Ukraine, 2015, with 11 
classes

2-D CNN ensemble achieved the 
highest accuracy (94.6%), with better 
discrimination of maize and soybeans

85%

17
Intelligent crop 
recommendation 
system

To assist farmers in selecting 
suitable crops based on 
environmental and economic 
factors

Random Forest, SVM, 
AdaBoost, and Neural Networks

Soil datasets, climate 
parameters, and 
economic data from 
Indian regions

Provided accurate crop recommendations 
and yield predictions, reducing farming 
risks

89.80%

64

Maize yield 
prediction under 
conservation 
agriculture

To predict maize yield in 
Eastern and Southern Africa 
under conservation agriculture

Logistic Regression, LDA, KNN, 
CART, Naive Bayes, and SVM

Seven years of maize-
legume cropping data 
across five countries

Linear models (LDA and Logistic 
Regression) outperformed nonlinear 
models in accuracy

61%

TCRM (proposed)
To provide personalized, data-
driven crop recommendations 
using a cloud-based platform

TCRM (transformative crop 
recommendation model) 
integrates machine learning 
and deep learning (e.g., 
random forest, AdaBoost, 
multi-head attention layers) 
with real-time data sources and 
an SMS alert system

Soil and 
environmental 
datasets (e.g., NPK 
levels, temperature, 
pH, rainfall) with 3000 
samples

The model achieved high accuracy 
and scalability, effectively addressing 
precision farming needs

94%

Table 5.  Comparative evaluation of research about the crop recommendation.  Significant values are in bold.
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