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To address the challenge of grasping multi-target objects with uncertain shape, attitude, scale, and 
stacking, this study proposes a high-performance planar pixel-level grasping network called random 
sub-path grasp fusion network (RSPFG-Net). The paper introduces the agile grasping representation 
(AGR) strategy for dexterous grasping of target objects and constructs a Multi-objects Grasping 
Dataset (NEU-MGD). Secondly, the article introduces the Multi-Scale random sub-path fusion 
(MSRSPF) module. This module effectively prevents overfitting and improves the robustness of the 
grasping network in unstructured scenes. The MSRSPF module is connected with the DeepLab v3 
network to form the RSPFG-Net for pixel-level grasping and multi-target high-performance grasp 
detection. Finally, the experiments conducted with RSPFG-Net on publicly available Cornell, Jacquard, 
and NEU-MGD datasets resulted in an average grasping detection accuracy of 97.85%. In real-world 
scenarios, the robot achieved an average grasping success rate of 94.31%. These results demonstrate 
the excellent performance and robustness of RSPFG-Net when it comes to multi-target grasping 
problems.
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Robot vision grasping technology based on depth vision is a current key direction of research in the robotics 
industry. It is widely used in application scenarios such as assembly, grasping, and palletizing1,2. However, due 
to the uncertainty of multi-target object categories, sizes, shapes, poses, and stacks, it poses challenges to the 
stability and accuracy of robot grasping. Obtaining the appropriate grasping attitude and position for reliable 
sensing information in multi-target grasping is a challenging task. Deep visual grasping is a widely researched 
topic in robotics, and the methods used can be summarized as analytical and empirical. The objective of multi-
target grasping detection is to identify a stable position and attitude for the manipulator to grasp the target in 
different scenes based on visual information. There are two main types of grasping methods: analytical and 
empirical. Analytical methods use mathematical and physical models of geometry, kinematics, and dynamics to 
calculate stable grasping parameters3,4. Geometric model for grasping objects often struggle to perform well in 
real-world scenarios due to the challenge of accurately modeling the physical interactions between the robot arm 
and the target object. Empirical methods, on the other hand, do not rely on 3D models of objects. Instead, they 
train a grasping model using a known object and apply this model to detect the grasping pose of an unknown 
object. In recent years, deep learning methods have been developed to detect a planar grasping representation 
and map the object to a grasping pose in the world coordinate system. These methods typically outperform 
traditional empirical methods. In recent years, for the problem of grasp detection, research on deep learning 
methods using two-dimensional images as input has achieved fruitful theoretical and practical results. Research 
on methods related to deep visual grasping has made significant progress, which has been demonstrated in many 
kinds of literature. In their publication, Fang et al.5 introduces the GraspNet - 1 billion benchmark test, which 
includes a variety of real-world cluttered scenes and detailed annotations. The dataset comprises 97,280 RGB-D 
images, each with over 1 billion grasping poses. A total of 190 clutter scenes were collected, with 100 serving as 
training sets and 90 as test sets. Furthermore,  Wang et al.6 introduced a new model called the Oriented Arrow 
Representation Model (OAR-model) to represent gripper configurations for both parallel jaws and three-finger 
grippers. This model enhances the applicability of the gripper to different types of grippers to some extent. 
However,  Kumra et al.7 proposes a new Generative Residual Convolutional Neural Network (GR-ConvNet) 
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model that solves the problem of generating and executing an enantiomorphic robot grasping unknown objects 
from n-channel scene images. Additionally, Ribeiro et al.8 proposes a multimodal hierarchical generative 
grasping CNN (MMH-GGCNN) with a small number of parameters based on the lightweight network GG-
CNN. This approach aims to improve grasping performance by utilizing the multimodal and hierarchical nature 
of grasping components. However, these algorithms are ineffective for predicting grasping of multi-scale stacked 
targets, and accurately predicting the grasping attributes of targets remains a challenge. The size of the gripper 
jaw is set empirically in the rectangular representation, which can cause issues for neural network detection 
performance. Previous research papers mostly focused on predicting only the width of the mechanical jaws’ 
spread, which may result in missing some actual gripping positions. Both the publicly available Cornell and 
Jacquard fetching datasets focus on single-target fetching tasks. The multi-objective Graspnet-1 billion and 
Acronym datasets achieve grasping robustness through point cloud processing, and obtain grasping gestures 
from 6D attitude projection scenes of objects. It takes a lot of computing resources and time to train the model, 
which cannot be deployed in embedded system environment. There is a lack of relevant research on how to 
quickly deploy and effectively deal with multi-object stacking scenarios in real scenarios. In view of this, this 
paper proposes a high-performance grasping detection method called RSPFG-Net, which generates pixel-level 
grasping information data using randomized sub-paths. The method consists of four parts: AGR-strategy, NEU-
MGD dataset, MSRSPF module, and RSPFG-Net network. The summary of our research contributions is as 
follows. 

	(1)	 This paper presents an intelligent robotic system that introduces an AGR strategy based on the directional 
arrow model and adaptively represents the grasping attributes of the objects to resolve angle conflicts dur-
ing training.

	(2)	 A multi-target NEU-MGD was established based on this, which includes single-target, discrete multi-tar-
get, and stacked multi-target. The NEU-MGD dataset built in this paper has been open source, and the 
download addresses of related datasets are shared: https://github.com/SimonZhaoBin/NEU-MGD

	(3)	 A method called multi-scale randomized sub-path fusion (MSRSPF) is proposed. It combines sub paths of 
different lengths to allow the network to select the most suitable set of sub paths, thus enhancing robustness 
in unstructured scenes.

	(4)	 The RSPFG-Net is formed by connecting the MSRSPF module with the DeepLab v3 network in sequence. 
This helps to prevent missing grasping poses and reduces the required number of calculations. RSPFG-Net 
is used for pixel-level grasping of multi-target high-performance grasping detection. Its architecture can 
predict suitable grasping configurations for multi-target objects in visual scenes. The article uses the rele-
vant open-source code as the reference: https://github.com/dougsm/ggcnn

Our approach
The aim of grasp detection is to predict an appropriate grasping pose in various scenarios by utilizing information 
about the target obtained from the intelligent camera. The manipulator can then accurately and stably grasp the 
target with closed fingers9–15.

A. Multi target grasping system
Related studies have demonstrated that scholars have effectively enhanced robot vision-based task performance 
by combining RGB vision and thermal imaging in unstructured environments16,17. Relying solely on RGB vision, 
however, proves insufficient for the precise grasping of objects at varying heights or in stacked configurations, as 
RGB images lack sufficient depth information to distinguish the relative positions of the targets. Moreover, due 
to its inability to detect material differences between targets, thermal imaging technology significantly impacts 
grasping accuracy when differentiating objects of the same material. Given this, this paper uses the RGB-D camera 
to obtain image information. RGB-D cameras provide more accurate grasp height identification through depth 
information in multi-target stacking tasks, improving task execution precision. This paper analyzes the technical 
difficulties of multi-object visual grasping,  and establishes the depth vision grasping system used in this paper, as 
shown in Fig. 118–21. Grasping system comprises two main modules: the grasping target information prediction 
module and the robot grasping control module. 

	(1)	 The module for predicting target grasping information acquires RGB and depth images of the scene from 
the RGB-D camera. Based on the graphical information, it deduces the appropriate bit position of Kinova’s 
grasping object in the camera’s field of view, and adopts the AGR strategy of the directional arrow model for 
target grasping, where the robot’s robotic arm approaches the target and closes its jaws.

	(2)	 The grab control module of the robot utilizes the grab information generated by the RSPFG-Net. This infor-
mation is then communicated to the robot using trajectory planning and the ROS interface of the controller 
to execute the desired actions. The network model recognizes the grasping information to control the robot 
and plan and adjust the position and attitude of the grasping target in real-time.

B. AGR strategy
Unlike typical multi-finger grippers, as shown in Fig. 2, each finger of a three-finger gripper can only face towards 
the center of the gripper. To represent parallel jaw grippers and three-finger jaw grippers with one gripping 
representation, the three-finger gripper is simplified into a parallel jaw gripper with two jaws of different sizes. 
The target object is grasped by keeping the two adjacent fingers moving synchronously22,23.

The strategy for representing dexterous grasping is as follows: 
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	(1)	 The maximum unfolding width Wh and finger width Wf  for two-finger and three-finger robotic arms are 
determined. For rectangular and cylindrical objects with W0 < Wh, a symmetrical gripping method is 
used. The captured directional arrow model’s AGR strategy is represented in the blue area of the figure. 

	 S = (x, y, Θ, W )� (1)

	 
	 where (x, y) represents the grasping central point, W is the grasping width, Θ is the grasping angle. Com-

pared with Dex-Net 2.0, the grasping width of the symmetric grasping model is variable, and objects with 
different widths can be learned.

	(2)	 For spherical objects with diameter D < ωh spherical objects using circular grasp mode. The circular 
grasping model is represented as: 

	 C = (x, y, D)� (2)

	 
	 where (x, y) also represents the grasping central point, and D represents the sphere’s diameter and the 

grasping width. There is no angle set here. For a circle, the angle can be anywhere between 0 and 360. When 
predicting, an arbitrary angle value is also generated.

	(3)	 For the hollow circular cylinder, as shown in the following figure, if the outer diameter D0 < Wh, the 
circular grasping method is adopted; otherwise, when (D0 − D1) /2 < Wh and D1 > Wf , the multi-seg-
ment symmetric grasping method is adopted. It should be noted that the single finger is always located in 

Fig. 1.  Multi-target visual grasping system.
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the inner circle if it is a three-finger manipulator. The robot arm can grip hollow cylindrical objects with a 
maximum width greater than that of other objects.

C. RSPFG-Net grasp network
In deep learning, the depth of the network is often related to the performance and learning ability of the model. 
The academic community now agrees that deeper networks can learn higher-level, more abstract feature 
representations, improving the model’s ability to understand and express complex data, as long as overfitting is 
avoided. However, as the depth of the network increases, gradient disappearance and explosion may occur. These 
are common problems in deep learning networks, where the gradient can become very small or very large during 
backpropagation, making the network difficult to train.

Figure 3 illustrates the overall structure of RSPFG-Net. The directional arrow model is used to label the 
NEU-MGD multi-object data, which is then converted into pixel-level grasp detection using the AGR-strategy 
method. A random subpath grasping network, RSPFG-Net, is formed by sequentially connecting subpaths with 
the DeepLab v3 network. This allows the network to select the appropriate subpath set and quickly generate 
optimal grasping information data to guide the robot’s grasp.

This paper presents a scheme for the RSPFG-Net randomized sub-path grasping network, which consists 
of three parts: (1) DeepLab v3 network with ASPP24; (2) MSRSPF module; (3) Grasping output module. The 
RSPFG-Net will be described in the following scheme as follows. 

	(1)	 Baseline: DeepLab v3 feature extraction details have been preserved, using ResNet-101 and ASPP as the 
shared encoder backbone. ASPP Module: Atrous Spatial Pyramid Pooling (ASPP) is employed in the Back-
bone section to utilize the backbone feature extraction network to obtain shallow and deep features. The 
ASPP consists of the following five components: a 1×1 convolution; a 3×3 convolution with a dilation rate 
of 6; a 3×3 convolution with a dilation rate of 3; another 3×3 convolution with a dilation rate of 3; and 
pooling applied to the input feature layer. The multi-scale feature extraction method of DeepLab v3 can 
effectively grasp the feature information of different scales through a parallel cavity convolution module, 
improving the depth and breadth of feature extraction.

	(2)	 The MSRSPF module: The MSRSPF allows the network to select a suitable set of sub-paths by combining 
sub-paths of different lengths. The MSRSPF module contains multilevel residual connections, HASPP and 
random path selection three functions. 1. HASPP(High Atrous Spatial Pyramid Pooling) architecture con-
sists of five main parts:1×1 convolution with an expansion rate of 6; 3×3 convolution with an expansion 
rate of 12; 3×3 convolution with an expansion rate of 18; 3×3 convolution with an expansion rate of 24; 
Pool the input feature layer. 2. The MSRSPF module introduces a path dropout strategy. Within each struc-
tural block, the local dropout strategy probabilistically discards each branch but ensures that at least one 
path from the input to the output is retained. The global dropout strategy guarantees at least one path from 
the input to the output across the entire network. In contrast, if each structural block were to apply the local 
dropout strategy, it would result in a global failure of paths across the entire network. This situation is pre-

Fig. 2.  Manipulators and grasping objects.
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vented in this network design. 3. Multilevel residual connections alleviate the issues of gradient vanishing 
and gradient explosion during the training process of deep networks by directly adding the input to the 
output through skip connections. Residual connections accelerate the convergence of training by reducing 
the difficulty of parameter updates during network training. The network not only receives information 
from the current layer but also retains the input information from the previous layer, preventing the loss of 
information as it propagates through the deeper layers of the network.

	(3)	 Grasping output module: The grasp detection problem is divided into three sub-problems: with the grab 
point R = (Rx, Ry), grab angle Θ, and grab width W. The output channels of these heads are (1, k, 1) 
(K=120 in this study). The header for the region outputs the confidence level for each pixel’s location within 
the grasp region R. The Angle head outputs the class k of the grab angle corresponding to each point. From 
this, we calculate the grab angle by θ = 2πk/K . Predicting grasping angles is a task that involves multiple 
labels within a single category. To avoid competition between categories, we normalize the output of the 
angle header using a sigmoid function. The width head outputs the grab width corresponding to each point.

Data sets and evaluation
A. Multi-objective NEU-MGD dataset production
This paper introduces the NEU-MGD Northeastern University multi-target grasping dataset, which includes 
single targets, discrete multi-targets, and stacked multi-targets. The NEU-MGD dataset contains 4000 datasets 
of various objects, including over 100 types of objects such as fruits, tools, cartons, beverage bottles, and other 
common objects in daily life. The AGR-strategy directional arrow model is used for labeling. The dataset includes 
single targets, multiple targets, and multiple stacked targets. The dataset includes pictures with sizes of 640*480 
and 1 8 objects per picture. Figure 4 shows some of the labeled samples obtained from the dataset. Grasping 
models are primarily classified into pinching grasp models and circular grasp models. The circular grasp model 
allows for grasping at any angle within a 360◦ range, providing greater flexibility. This model can adaptively 
represent the grasping attributes of objects, thereby enhancing its applicability to various types of grippers. It 
meets the criteria for a multi-objective large-scale dataset with sufficient variety and quantity. The dataset also 
avoids overfitting problems that could cause the network to be unable to learn effective features8–13.

This paper employs two methods for dividing the dataset into test and training sets: Image-wise split and 
object-wise split. The former randomly assigns the dataset into training and test sets, while the latter divides the 
dataset based on object instances. The test set in the object-wise split method consists of objects that have not 
appeared in the training set. In this paper, Image-wise split method is chosen.

B. Pre-training and evaluation indicators
This paper addresses the multi-target object grasping problem of the Kinova robotic arm. Therefore, we evaluate 
the RSPFG-Net model using the AGR-strategy model volume and optimize the RSPFG-Net network model 

Fig. 3.  Structure of the RSPFG-Net.
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using the loss. The candidate grasping position, grasping width, and grasping angle are considered valid only 
when the task loss evaluation meets the criteria. 

	(1)	 Grab region (Rx, Ry) The task at hand involves binary classification for predicting the grasping region. To 
ensure accurate results, we begin by normalizing the predictions using the sigmoid function. The loss is 
then calculated using the Binary Cross-Entropy (BCE) function. 

	
Lreg = − 1

N

N∑
n=0

[
yn

q · log
(
pn

q

)
+

(
1 − yn

q

)
· log

(
1 − pn

g
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� (3)

	 
	 where N represents the size of the output feature map, pn

q  represents the predicted probability at position n, 
and yn

q  represents the corresponding label.

	(2)	 Grab angle Θ A After normalizing the output of the angle head using a sigmoid function, the loss for the 
grasping angle is calculated using the Binary Cross-Entropy (BCE) function. 

	
Lang = − 1

N × L

N∑
n=0

L∑
l=0

[yn
l · log (pn

l ) + (1 − yn
l ) · log (1 − pn

l )]� (4)

	 
	 where pn

l  represents the probability that the predicted grasp angle within the range of position [
l
L

× 2π, l+1
L

× 2π
]

, and yn
l  is the corresponding label.

	(3)	 Grabbing width W Predicting grab width is a regression task. The loss of the grab width branch is computed 
using the BCE function. 

	
Lwid = − 1

N

N∑
n=0

[yn
w · log (pn

w) + (1 − yn
w) · log (1 − pn

w)]� (5)

	 
	 The width of the predicted crawl for the first n positions is represented by pn

w, while the corresponding label 
is yn

w.

Fig. 4.  Example of NEU-MGD grab dataset.
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	(4)	 Multitasking LOSS To achieve balance between the losses in each branch, the final multitasking loss is de-
fined as: 

	 LOSS = γ1 × Lreg + γ2 × Lang + γ3 × Lwid� (6)

	 
	 The loss has weighting coefficients, γ1,γ2 and γ3. In this study, we set the coefficients to γ1=0.7, γ2=0.2, and 

γ3=0.1.

	(5)	 Accuracy The number of objects that can be successfully grabbed out of the total number of all grab poses 
predicted by the algorithm during the grab. Grasp prediction accuracy measures the accuracy of the algo-
rithm in predicting the grasp pose. 

	 LOSS = γ1 × Lreg + γ2 × Lang + γ3 × Lwid� (7)

Experiment
The experimental environment is as follows:

Operating system: Ubuntu MATE16.04
CPU: Intel(R) Xeon(R) CPU E5-2620 v4@2.10GHz
GPU: Titan X
Python version: 3.7.13
Torch version: 1.10.1+cu111
Torch-vision version: 0.11.2++cu111
Under the conditions of 500 epoch and 16 batch_size, training the RSPFG-Net network on the GPU 

requires 7213 MB of memory and takes approximately 6 hours. The algorithm has already been ported to the 
SIASUN robot controller, which runs on the domestic OpenEuler operating system. Techniques such as model 
compression, pruning, and quantization are typically employed to accommodate the hardware limitations of 
embedded systems. These techniques can significantly reduce the model size and computational complexity 
while maintaining high accuracy during inference.

The paper evaluates the proposed method’s performance on the publicly available Cornell and Jacquard 
datasets, as well as the NEU-MGD dataset of multi-target objects proposed in this study. The main performance 
metric is the robot grasping success rate, as it is difficult to quantitatively measure the robot grasping detection 
accuracy. Related experiment videos: https://www.bilibili.com/video/BV1vT421y7Pq/D

A. Ablation experiment
Overfitting occurs when a model performs well on training data but poorly on unseen test data. Deeper networks 
are more susceptible to overfitting. This section includes an ablation study on the proposed network to assess 
the impact of the proposed MSRSPF module score on performance. To test the MSRSPF module’s ability to 
accelerate model convergence, prevent gradient vanishing, and avoid overfitting, we plot the ACC and LOSS 
images over time for both the training and validation sets.

Figure 5 displays the ACC and LOSS images over time for RSPFG-Net without the MSRSPF module at 
approximately 300 Epochs. The plotted learning curves for the model on the training and validation sets show 
that the curve of Loss and ACC shows an unstable jump with the increase of Epoch, resulting in severe overfitting 
of RSPFG-Net. Even when monitoring the model’s performance on the validation set and stopping training 
when the performance no longer improves, the performance of the trained network remains suboptimal.

Fig. 5.  LOSS and ACC in RSPFG-Net without MSRSPF.

 

Scientific Reports |         (2025) 15:8709 7| https://doi.org/10.1038/s41598-025-93490-8

www.nature.com/scientificreports/

https://www.bilibili.com/video/BV1vT421y7Pq/
http://www.nature.com/scientificreports


To obtain a more comprehensive picture of the model’s generalization performance, Compare the preventing 
overfitting experiment of RSPFG-Net with MSRSPF and RSPFG-Net with dropout. Figure 6a shows that the 
RSPFG-Net with MSRSPF model converges more quickly at around 50 epochs, improving the accuracy and 
convergence speed of the network. Figure 6b shows that the RSPFG-Net with dropout model converges and 
stabilizes in terms of LOSS and ACC around the 130 epoch. The MSRSPF module exhibits higher accuracy and 
convergence efficiency than the dropout module. The designed MSRSPF module effectively solves the overfitting 
problem caused by a deep network. Therefore, the introduction of the MSRSPF module is practical.

B. Multi-object NEU data set grasp detection
As shown in Table 1, in over 3600 experiments involving robot grasping, the RSPFG-Net has demonstrated good 
performance in terms of ACC, LOSS, and Fps. The grasping method of RSPFG-Net has an inference speed of 45ms, 
achieving a balance between grasping accuracy and running speed.

As shown in Table 2, for the re-arrangement and combination of the target objects in the established NEU-
MGD data set, 1000 grasping experiments are carried out. The RSPFG Net network architecture achieves 97.85 
% accuracy for grasping known objects and 93.3% for grasping unknown objects in both single and multi-object 
scenarios. These results demonstrate the effectiveness of our method for grasping untrained objects.

The RSPFG-Net network is evaluated for single object grasping detection on the publicly available Cornell, 
Jacquard dataset under the same experimental conditions. As shown in Fig. 7, the RSPFG-Net model can 
effectively recognize and detect objects such as scissors, glasses, high heels, and tape while providing multiple 
grasping points for each object. This capability supports collaborative robots in executing grasping tasks in 
practical applications, and the grasping results can accurately represent the grasping characteristics of objects, 
thereby enhancing the model’s applicability across different types of grippers.

Multi-target grasp detection of the RSPFG-Net network is carried out on the NEU-MGD data set, and 
comparative evaluation is carried out under the same experimental conditions. The design and execution of the 

Gripper objects (M) success rate

Known 97.52%

Unknown 94.31%

Table 2.  Robotic grasp success rate of our method (%).

 

Network name ACC (%) LOSS Fps

RSPFG-Net 96.39 0.0175 45

SqueezeNet 74.32 0.025 14

Faster-RCNN 85.6 0.035 11

CascadeR-CNN 91.5 0.024 22

GG-CNN 73 0.0272 19

AlexNet 88 0.026 13

FCGN 97.7 0.0226 9

ResNet-50x2 89.2 0.0275 10

Table 1.  Experimental results on the NEU-MGD multi-objects data set.

 

Fig. 6.  Comparison experiments prevent overfitting.
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discrete multi-object visual grasping experiment and the stacked multi-object visual grasping experiment aim 
to evaluate the performance of the RSPFG-Net model across different grasping scenarios. These experiments 
selected various target objects with differing shapes, sizes, and materials, including scissors, building blocks, 
glasses, tools, calculators, and tape, and so on. As shown in Fig. 8, the discrete multi-object visual grasping 
experiment primarily focuses on how a collaborative robot can effectively identify and grasp multiple target 
objects when they are relatively far apart within the visual sensor’s field of view. Each object is placed at a specific 
location, and the goal is to assess whether the RSPFG-Net model can accurately detect multiple targets in such a 
dispersed configuration and generate appropriate grasping points for each object. The model provides multiple 
grasping points, enabling the collaborative robot to perform the grasping task based on these points efficiently. 

Fig. 8.  The effect of discrete NEU-MGD data set detection.

 

Fig. 7.  Cornell and Jacquard datasets grasp detection.
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The results prove that the RSPFG-Net network method can effectively predict and grasp different types of 
objects, and we use less scene information to obtain the maximum accuracy.

As shown in Fig. 9, the stacked multi-object visual grasping experiment further validates the RSPFG-Net 
algorithm’s performance in more complex scenarios, where multiple target objects are stacked together. This 
type of scene imposes higher demands on grasping algorithms, as the relative positions of the target objects 
are more compact, and some objects may be occluded or overlapped by others. The experiment demonstrates 
that, when facing stacked objects, the RSPFG-Net is capable of identifying suitable grasp points and successfully 
grasping the target objects, providing appropriate grasp points for each object. Despite the overlap or occlusion 
between objects, the model can still effectively predict the grasp points, allowing the collaborative robot to 
perform accurate grasps based on this information. In cases where occlusion between objects is severe, the 
RSPFG-Net successfully avoids mis grasping or grasp failure through precise grasp point optimization strategies.

C. Grasping detection in real scenarios
To assess grasping detection performance in a real-world setting, we conducted an experiment using conditions 
similar to those found in an actual project. The RealSense D435i depth camera grasps multiple objects from real 
scenes, while RSPFG-Net receives RGB images as input. The detection and recognition process outputs the grasping 
results of the target object with the highest confidence. As illustrated in Fig. 10, take hold of the target object and 
place it randomly within the workspace. Specifically, the human operator samples the randomized pose of the 
object by shaking the object in the box and placing it upside down in the workspace.

As shown in Fig. 11, The grasping success rate in multi-object scenes is slightly lower than in single-
object scenarios. This phenomenon can be attributed to the complexity of object stacking in multi-object 
environments, which leads to increased depth missing values and errors. The white target objects are more likely 
to be misclassified as background, making distinguishing them from objects with similar background colors 
difficult. Furthermore, the closer proximity between multi-target objects increases the likelihood of collisions 
during the robotic arm’s grasping process, which may cause the objects to scatter and result in grasping failure. 
Experiment 11 shows the three main types of RSPFG Net grabbing detection failures: (1) The gripper is blocked 
by other objects when approaching the object, causing some relative sliding and deviation from the original 
position. (2) White target objects are often misidentified as backgrounds due to errors in grasping information 
recognition. (3) In chaotic scenes, the three-finger gripper is more likely to be blocked by other objects, leading 
to grasping failure.

In contrast to point cloud-based approaches, our method circumvents the need to collect numerous point 
clouds for network training and eliminates the need to learn the disparity between simulation and reality.

Conclusion
To address the challenge of grasping objects with uncertain shape, attitude, scale, and stacking, this paper presents a 
NEU-MGD multi-target dataset of common objects in daily life. Additionally, we propose a new AGR-strategy that 
utilizes a directed arrow model to characterize the objects to be grasped for strategy decision-making. Directional 

Fig.  9.  Stacked multi-object data grasp detection.
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arrows model object grasping attributes, resolving possible angle conflicts in training and avoiding the complex 
pixel-level labeling process. Additionally, a MSRSPF method with DeepLab v3 network sequential connection of 
subpaths is proposed to form the RSPFG-Net network. RSPFG-Net predicts pixel-level grasping information data 
of RGB images to achieve high-performance detection, overcoming limitations of current deep learning grasping 
techniques for grasping candidate objects through discrete sampling and excessive computation time. Experiments 
were conducted on publicly available datasets, including Cornell and Jacquard, as well as the NEU-MGD dataset of 
multi-target objects proposed in this study. This text demonstrates the strong performance and robustness of our 
method in addressing the multi-target grasping problem. Compared with the point cloud-based approach, it avoids 
collecting a large number of point clouds and 6D gestures to train the network. The proposed method for grasping 
detection is currently limited to implementation in a two-dimensional plane. Future research will extend this 
approach to three-dimensional stacked multi-pose and multi-object grasping detection. It has important research 
significance for improving the performance of the object-grasping method.
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Fig. 11.  Examples of grasping detection failures.

 

Fig. 10.  Robot grasping experiment in real scenes.
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