Table 4 Performance of prediction models using various marker sets selected by several methods. The numbers in parentheses indicate the number of markers used in the prediction models.

From: Machine learning models for pancreatic cancer diagnosis based on microbiome markers from serum extracellular vesicles

 

Phylum

Genus

Clinical

information

Marker

selection

Prediction model

AUCMD

AUCts

Marker

selection

Prediction model

AUCMD

AUCts

Age, sex

Clinical

information

only

LR

0.599

0.545

Clinical

information

only

LR

0.599

0.545

RF

0.859

0.664

RF

0.859

0.664

SVM

0.599

0.545

SVM

0.599

0.545

DNN

0.600

0.453

DNN

0.600

0.453

Single

(2)

LR

0.970

0.964

Single

(7)

LR

1.000

0.927

RF

1.000

0.952

RF

1.000

0.938

SVM

0.984

0.957

SVM

1.000

0.913

DNN

0.910

0.954

DNN

1.000

0.988

Stepwise1

(3)

LR

0.990

0.934

Stepwise1

(3)

LR

0.996

0.955

RF

1.000

0.891

RF

1.000

0.929

SVM

0.984

0.957

SVM

0.939

0.943

DNN

0.855

0.959

DNN

0.962

0.807

Stepwise2

(3)

LR

0.955

0.915

Stepwise2

(3)

LR

0.972

0.924

RF

1.000

0.935

RF

1.000

0.921

SVM

0.931

0.947

SVM

0.968

0.929

DNN

0.858

0.937

DNN

0.910

0.868

LASSO

(10)

LR

0.936

0.818

LASSO

(11)

LR

1.000

0.896

RF

1.000

0.922

RF

1.000

0.877

SVM

1.000

0.844

SVM

1.000

0.929

DNN

0.966

0.899

DNN

1.000

0.961

Whole marker

(20)

LR

1.000

0.891

Whole marker

(296)

LR

1.000

0.378

RF

1.000

0.956

RF

1.000

0.957

SVM

1.000

0.889

SVM

1.000

0.980

DNN

1.000

0.848

DNN

1.000

0.998