Table 1 Selected mathematical modeling to demonstrate the NTS drying process.

From: Drying characteristics, environmental and economic analysis of a solar dryer with evacuated tube solar collector for drying Nile Tilapia slices

No

Model name

Model equation*

References

1

Newton (Lewis)

\(MR = exp\left( { - kt} \right)\)

72

2

Page

\(MR = exp\left( { - kt^{n} } \right)\)

72

3

Combined Two-term and Page

\(MR = a exp\left( { - kt^{n} } \right) + b exp\left( { - ht^{n} } \right)\)

72

4

Modified Henderson and Pabis

\(MR = a\exp \left( { - kt} \right) + b exp\left( { - gt} \right) + c exp\left( { - ht} \right)\)

72

5

Modified Midilli II

\(MR = a exp\left( { - kt^{n} } \right) + b\)

72

6

Modified Page III

\(MR = k {\text{exp}}\left( { - \frac{t}{{d^{2} }}} \right)^{n}\)

72

7

Modified Two Term III

\(MR = a {\text{exp}}\left( { - kt} \right) + \left( {1 - a} \right) exp\left( { - kat} \right)\)

72

8

Logistics

\(MR = \frac{b}{{1 + a\exp \left( {kt} \right) }}\)

72

9

Simplified Ficks Diffusion

\(MR = a\exp \left( { - c\left( {\frac{t}{{L^{2} }}} \right)} \right)\)

73

10

Approximation diffusion

\(MR = a\exp \left( { - kt} \right) + \left( {1 - a} \right)exp\left( { - kbt} \right)\)

72

11

Parabolic model

\(MR = a + bt + ct^{2}\)

72

  1. *MR is the moisture ratio, dimensionless; k is the drying constant, h−1; t is the drying time, h; L is the thickness of the samples (slab), m; a, b, c, d, g, h, and n are the models constants, dimensionless.