Table 1 Selected mathematical modeling to demonstrate the NTS drying process.
No | Model name | Model equation* | References |
---|---|---|---|
1 | Newton (Lewis) | \(MR = exp\left( { - kt} \right)\) | |
2 | Page | \(MR = exp\left( { - kt^{n} } \right)\) | |
3 | Combined Two-term and Page | \(MR = a exp\left( { - kt^{n} } \right) + b exp\left( { - ht^{n} } \right)\) | |
4 | Modified Henderson and Pabis | \(MR = a\exp \left( { - kt} \right) + b exp\left( { - gt} \right) + c exp\left( { - ht} \right)\) | |
5 | Modified Midilli II | \(MR = a exp\left( { - kt^{n} } \right) + b\) | |
6 | Modified Page III | \(MR = k {\text{exp}}\left( { - \frac{t}{{d^{2} }}} \right)^{n}\) | |
7 | Modified Two Term III | \(MR = a {\text{exp}}\left( { - kt} \right) + \left( {1 - a} \right) exp\left( { - kat} \right)\) | |
8 | Logistics | \(MR = \frac{b}{{1 + a\exp \left( {kt} \right) }}\) | |
9 | Simplified Ficks Diffusion | \(MR = a\exp \left( { - c\left( {\frac{t}{{L^{2} }}} \right)} \right)\) | |
10 | Approximation diffusion | \(MR = a\exp \left( { - kt} \right) + \left( {1 - a} \right)exp\left( { - kbt} \right)\) | |
11 | Parabolic model | \(MR = a + bt + ct^{2}\) |