Table 2 The results of different methods with different number of neurons in the hidden layer.

From: A novel SVD-UKFNN algorithm for predicting current efficiency of aluminum electrolysis

Model

Number of neurons in the hidden layer

Max

Min

Mean

MAE

MSE

SSE

\(r^2\)

BPNN

6

4.249

− 3.143

0.099

0.477

0.544

819.224

0.97185

9

3.500

− 2.888

− 0.160

0.452

0.508

765.076

0.97371

12

3.216

− 2.719

− 0.125

0.402

0.441

663.037

0.97722

SVD-UKFNN

6

3.438

− 2.335

0.012

0.057

0.028

42.643

0.99853

9

2.931

− 1.356

0.014

0.052

0.020

29.860

0.99897

12

2.472

− 1.927

0.015

0.054

0.019

28.850

0.99901

NSVD-UKFNN

6

0.207

− 0.718

0.026

0.027

0.001

1.955

0.99993

9

0.275

− 0.419

0.024

0.025

0.001

1.343

0.99995

12

0.343

− 0.331

0.021

0.022

0.001

1.140

0.99996