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Traffic sign detection, as a critical branch of object detection, plays an essential role in both assisted 
driving and autonomous driving technologies. In this paper, we propose MASG-Net, a lightweight 
detection network designed to improve the accuracy and efficiency of traffic sign detection. First, 
we introduce a channel attention mechanism into MobileNetV3 to create a novel E-block structure 
and design E-mobilenet, a lightweight backbone network, to replace the backbone in YOLOv4-tiny, 
significantly enhancing feature extraction while reducing parameters. Second, we propose a multi-
scale dilated convolution spatial pyramid pooling (MDSPP) module to expand the receptive field of 
feature maps, enabling the network to capture multi-scale contextual information effectively. Finally, 
a semantic information guidance (SIG) module is introduced to leverage deep semantic information to 
guide shallow feature layers, improving the detection of small traffic signs and enhancing robustness 
against cluttered backgrounds. Experimental results on the CCTSDB, GTSDB and TT100K datasets 
demonstrate that MASG-Net achieves superior detection performance, particularly for small and 
challenging traffic signs, while maintaining high efficiency with an inference speed of 203.6 FPS. These 
results highlight MASG-Net’s potential for real-time traffic sign detection in practical applications.
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With the rapid development of smart cities, safe and reliable intelligent transportation systems have become 
an urgent demand. Intelligent transportation systems can provide real-time traffic information and signage to 
help drivers avoid accidents and dangerous situations. In addition, the development of autonomous driving 
technology will also reduce accidents caused by human driving in the future. As a branch of object detection, 
traffic sign detection is an indispensable part of automatic driving technology in intelligent transportation 
systems1–4. It has great practical value for ensuring safe vehicle driving, alleviating traffic congestion, and 
building smart cities5–7. Despite significant progress in object detection techniques, traffic sign detection 
remains a challenging task due to several factors. First, traffic signs are often small in size and may appear blurry 
or dim, particularly in low-light conditions or adverse weather. This makes it difficult for detection models to 
extract sufficient features for accurate recognition. Second, traffic signs are frequently surrounded by cluttered 
backgrounds, such as trees, buildings, or other road elements, which can confuse detection models and lead 
to false positives. Third, achieving a balance between high detection accuracy and computational efficiency 
is a persistent challenge, especially for real-time applications in resource-constrained environments, such as 
embedded systems in vehicles.

Nowadays, traffic sign detection8 are mainly divided into one-stage and two-stage algorithms. The principles 
of the two algorithms are different. The two-stage detector generally classifies the candidate regions, whereas the 
one-stage detector uses a regression method, which can directly give the detection results for the input image. 
R-CNN9–11 series are the classic representative two-stage detectors and have achieved very good detection 
results. However, traffic sign recognition requires the network to have high detection accuracy and fast detection 
speed12–15. The detection speed of this series of algorithms is slow and is not suitable for detecting traffic signs. 
The one-stage algorithms represented by the SSD16 and YOLO series17–23 have a faster detection speed and lower 
complexity of the network model, allowing real-time target detection with a higher detection speed and better 
accuracy24,25. Compared with the R-CNN series algorithm, the YOLO series algorithm can detect objects more 
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efficiently in the way of single-stage detection. However, in some complex scenes or small target detection, the 
YOLO series algorithm may have a certain performance loss26–28.

Compared to high-precision detectors, YOLOv4-tiny may have slightly lower detection accuracy, but it 
performs well in terms of training efficiency and detection speed and is suitable for applications requiring real-
time target detection, such as real-time video analysis, traffic monitoring, face recognition, etc29–32. It can perform 
object detection in images or videos in a relatively short period of time, providing immediate feedback. Thus, 
this paper conducts in-depth research on traffic sign detection using YOLOv4-tiny and finds three problems as 
follows: (1) In YOLOv4-tiny, the backbone network struggles to automatically prioritize important features and 
suppress irrelevant ones, leading to a gradual decline in the model’s discrimination ability when interference 
persists. (2) YOLOv4-tiny mainly uses single-branch ordinary convolution with a fixed kernel size, leading to 
a uniform receptive field. This restricts the extracted features, making complex detection tasks difficult due to 
the absence of multi-scale capabilities. (3) When using YOLOv4-tiny to identify traffic signs, the accuracy is 
hindered by the relatively small size of the signs, low resolution, unclear features, and other objective factors. 
This often results in missed detections and false positives, reducing the effectiveness of small target recognition.

Addressing the aforementioned issues, we introduce MASG-Net, an end-to-end lightweight detection 
approach, grounded in multi-scale awareness and semantic guidance. First, we introduce an ultra-lightweight 
channel attention mechanism into MobileNetV3 to create a novel E-block structure. Based on this structure, 
we design E-mobilenet, a lightweight backbone network that significantly improves feature extraction while 
reducing the number of parameters, making it suitable for real-time applications. To address the limitations 
of small feature maps in capturing sufficient information for small targets, we propose the multi-scale dilated 
convolution spatial pyramid pooling (MDSPP) module. This module expands the receptive field of the feature 
map, enabling the network to capture global and local context information more effectively. Further, we 
introduce the semantic information guidance (SIG) module, which leverages deep semantic information to 
guide the shallow feature layer. This design enhances the distinction between traffic signs and their backgrounds, 
reducing the negative impact of cluttered environments and improving detection performance for small and 
blurry signs. The ablation study indicates that the integrated application of E-mobilenet, MDSPP and SIG tends 
to outperform their independent usage. In contrast to many mainstream traffic sign detection algorithms, the 
main innovations of this paper are detailed as follows:

	(1)	� A new backbone feature extraction network, E-mobilenet, is designed by enhancing MobileNetV3’s light-
weight cell structure with a channel attention mechanism. This backbone replaces YOLOv4-tiny’s back-
bone, improving feature extraction efficiency while maintaining a lightweight design.

	(2)	� The proposed MDSPP module incorporates multi-scale dilated convolutions to provide rich multi-scale 
receptive field information. This design addresses the problem of information loss caused by large-scale 
pooling operations, enhancing the network’s ability to capture global context.

	(3)	� The introduction of the SIG module enhances the detection of small traffic signs by leveraging deep seman-
tic information to guide the shallow feature layer. This module improves the model’s resistance to cluttered 
backgrounds and preserves critical semantic information for small target detection.

The overall structure of this paper is as follows. We first introduce the research work related to this experiment, 
and then detail the innovations in this paper in the MASG-Net section. The “Experiments” section provides 
comparative experiments, as well as qualitative and quantitative analysis of test results. Finally, the work of this 
paper is summarized.

Related work
Two-stage detectors
The two-stage detectors are to generate target candidate boxes by a regional proposal network (RPN), and then 
classify and regression these candidate boxes to get the final detection results.

In 2014, Girschick proposed the R-CNN, which surpassed YannLecun’s contemporaneous end-to -end 
OverFeat33 in terms of performance. In 2015, SPP-Net34 added a spatial pyramid pool structure35 between the 
convolutional layer and the fully connected layer, which not only ensured performance, but also greatly improved 
detection speed. In 2016, Fast R-CNN algorithm is proposed. The algorithm scales each feature matrix by ROI-
Pooling36 layer to a 7×7 feature map, and then flattens the feature map through a series of fully connected layers 
to get the prediction result. In addition, Kaiming He and Girshick of Microsoft Research proposed Faster R-CNN 
algorithm and proposed RPN, which can share the feature information extracted by a convolutional neural 
network throughout the network process, saving computing costs and solving the problem of slow generation 
of positive and negative sample candidate frames by Fast R-CNN algorithm37 The Mask R-CNN38 algorithm 
added a branch fully convolutional network (FCN)39 layer on the basis of border recognition for semantic mask 
recognition.

The main difference between the two-stage detectors lies in the specific structure and optimization mode 
of RPN and the target classification regression network40,41. The two-stage detector usually has high detection 
accuracy, but the detection speed is relatively slow42. Thus, it is suitable for scenarios that require high detection 
accuracy, such as medical image analysis and security checks.

One-stage detectors
The one-stage detector extracts the advanced features of the image through the convolutional network, and then 
fuses the feature map to complete the object detection and classification43. Currently, one-stage detectors mainly 
include the YOLO series, SSD, RefineDet44, etc.
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The SSD algorithm used the weighted sum of data enhancement, positioning, and confidence losses to train 
the model, which was faster, but the training was difficult, resulting in low algorithm accuracy. Shifeng Zhang 
et al. proposed the RefineDet detection method, which uses two-stage regression to improve detection accuracy 
and realized end-to-end multi-task training. The YOLO series includes multiple one-stage detection algorithms. 
YOLOv117 is the first algorithm in the YOLO series, and YOLOv420 combined various performance enhancing 
modules, making it one of the models with better detection performance in the YOLO series. YOLOX21 conducted 
classification and regression separately, which increased the complexity of the model. YOLOv622 introduced 
the new frame regression loss function of SIoU45 to improve the training speed and regression accuracy. The 
YOLOv723 network adopted a feature pyramid network and an improved backbone network to achieve more 
accurate and faster target detection, but with higher requirements for device performance.

YOLO-NAS46 is the latest algorithm in the YOLO series, which employs the neural architecture search to 
achieve a balance between accuracy and computational complexity. However, YOLO-NAS is still in the research 
stage and has not been widely applied and verified. The YOLO tiny series are the lightweight versions of YOLO, 
featuring a smaller model size and faster detection speed, suitable for real-time detection on mobile terminals 
and other scenarios with limited computing resources47–50. YOLO tiny series includes YOLOv3-tiny51, YOLOv4-
tiny52, and YOLOv7-tiny23 three versions. Although YOLOv3-tiny has a very fast inference speed, the detection 
accuracy is relatively low. YOLOv7-tiny is the latest YOLO-tiny series and introduces several improvements 
over YOLOv7. These changes optimize its detection speed and model size, but may also result in a slight 
loss in detection accuracy. For example, when the intersection over union is larger, the detection accuracy of 
the YOLOv7-tiny network is lower. Therefore, among these three models, YOLOv4-tiny is the most mature 
lightweight model, which has the advantages of small model size and high detection accuracy.

Attention mechanism
The attention mechanism is used to simulate human visual attention. In a deep learning model, it can automatically 
learn to assign different attention weights to different parts of the input, thereby improving the model’s ability to 
understand and express the input53–55. SENet56 pays attention to the information on the channel using adaptive 
weights, in which only a relatively small full-connection layer is introduced, so the number of parameters is 
relatively small. CBAM57 is improved and proposed to obtain useful information from both space and channel. 
However, the introduction of CBAM module will increase the complexity of the network, resulting in increased 
computing and memory requirements in the training process, and thus increasing the time cost of training. The 
coordinate attention (CA) mechanism58 is applicable to scenes with spatial dimensions. ECANet59 proposed by 
the author of this paper is a relatively efficient channel attention mechanism, which is suitable for models with 
high detection efficiency requirements. For scenes with larger feature map sizes, ECANet can consider both the 
channel dimension and the spatial dimension of attention, which is more efficient.

Shuffle attention60 that combines channel attention and spatial attention. It improves the feature representation 
capability and network performance by grouping, calculating, and applying attention to the input feature 
map. Efficient local attention (ELA)61 is a lightweight attention mechanism using 1D convolution and group-
normalized feature enhancement. The essence of scaled dot-product attention62 is to quantify the similarity 
between the query and the key through the dot product, then assign attention weights through softmax, and 
weighted sum the value vectors according to these weights to form a context-sensitive representation of each 
position in the input sequence.

In this article, we introduce the ECANet structure in the MobilenetV3 cell structure to form a new backbone 
network of the E-mobilenet. Unlike the SE block, our module uses a lightweight design that minimizes 
computational overhead, making it more suitable for real-time applications. Compared to the ECA module, 
which focuses on local channel interactions, our module incorporates a broader context to enhance feature 
extraction for small and blurry traffic signs.

Methodology
Overall structure
The network structure of the proposed MASG-Net is shown in Fig. 1, and its improvements mainly include 
three points. Firstly, we propose a new backbone feature extraction network E-mobilenet, which is based on 
the MobileNetV363 and ECANet. Secondly, we proposed a new multi-scale dilated convolution spatial pyramid 
pooling structure. Finally, we introduce a semantic information guidance (SIG) module to enhance tiny sign 
detection by leveraging deep semantic information to guide the shallow feature layer.

We find that the parameters of the backbone network CSPdarknet53_tiny account for the majority of the 
parameters of YOLOv4-tiny. Therefore, in order to reduce the model size of YOLOv4-tiny, it is necessary to 
reduce the number of parameters of its backbone network CSPdarknet53_tiny. As we know, MobileNetV3 
is an ultra-lightweight cnn model for mobile devices and has a small model size. Thus, we first replace the 
CSPdarknet53_tiny of YOLOv4-tiny with MobileNetV3.

Then, we integrate the ECANet attention mechanism into the MobileNetV3 model. ECANet overcomes the 
contradiction between performance and complexity to learn effective channel attention in a more efficient way 
by employing local cross-channel interactions that significantly reduce the complexity of the network model 
while maintaining performance. To improve the detection accuracy of the model for small targets, we propose 
to add the MDSPP module after the E-mobilenet. Because the deep feature output by the backbone network 
contains limited information for small targets due to the small size of the feature map, the receptive field size 
can be effectively enhanced to obtain more global information after the MDSPP, enabling the network to extract 
more abundant features. Taking a step further, we propose the SIG module, which enhances the semantic 
information of the shallow feature layer, improving the distinction between the target and the background and 
reducing the negative impact of complex backgrounds on detection performance. This design also significantly 
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retains important semantic information in small traffic sign targets. MASG-Net is very suitable for deployment 
on resource limited vehicle terminal devices for traffic sign recognition due to its high detection accuracy and 
real-time performance.

E-mobilenet structure
In order to carry out feature extraction of input images more efficiently on the premise of ensuring low complexity 
of the model, we design an ultra-lightweight backbone network structure E-mobilenet as shown in Table 1.

The third column represents the proportion of the number of channels in the E-block that are up-dimensioned 
and then down-dimensioned in the inverse residual structure. The fourth column represents the number of 
channels in the feature layer output after the second column of operations. The sixth column NL represents the 
type of non-linear activation function, HS and RE are the h-swish and RELU6 activation function, respectively. 
H-swish function has the characteristics of no upper bound, lower bound, smooth and non-monotonic. The 
seventh column, parameter s, represents the step size used for each convolution or E-block structure. Moreover, 
the definitions of ReLU6 and h-swish activation function are as follows:

	 ReLU6 (x) = min (max (x, 0) , 6)� (1)

	
h − swish (x) = x · ReLU6 (x + 3)

6
� (2)

The E-block, which is shown in Fig. 2, adopts a backward residual structure with a linear bottleneck and includes 
three convolution layers: 1 × 1 convolution to reduce the dimension, 3 × 3 convolution to extract features, and 
1 × 1 convolution to restore the dimension. Moreover, ECANet is integrated into the E-block to improve its 
performance.

Input Operator(size) t out ECANet NL s

608×608×3 Conv2d, 3 × 3 – 16 – HS 2

304×304×16 E- block, 3 × 3 1 16 − RE 1

304×304×16 E- block, 3 × 3 4 24 – RE 2

152×152×24 E- block, 3 × 3 3 24 – RE 1

152×152×24 E- block, 5 × 5 3 40 ✓ RE 2

76×76×40 E- block, 5 × 5 3 40 ✓ RE 1

76×76×40 E- block, 5 × 5 3 40 ✓ RE 1

76×76×40 E- block, 3 × 3 6 80 – HS 2

38×38×80 E- block, 3 × 3 2.5 80 – HS 1

38×38×80 E- block, 3 × 3 2.3 80 – HS 1

38×38×80 E- block, 3 × 3 2.3 80 – HS 1

38×38×80 E- block, 3 × 3 6 112 ✓ HS 1

38×38×112 E- block, 3 × 3 6 112 ✓ HS 1

38×38×112 E- block, 5 × 5 6 160 ✓ HS 2

19×19×160 E- block, 5 × 5 6 160 ✓ HS 1

19×19×160 E- block, 5 × 5 6 160 ✓ HS 1

Table 1.  E-mobilenet network structure.

 

Fig. 1.  Network architecture of the MASG-Net.
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The attention mechanism in the original MobilenetV3 is implemented in the same way as SENet, which 
employs two fully connected layers to capture nonlinear cross-channel interactions. However, this mechanism 
has two defects: it cannot capture the attention in the spatial dimension and two fully connected layers will 
increase the number of network parameters. Therefore, we introduced ECANet into the MobilenetV3 cell 
structure to form a new ultra-lightweight cell structure E-block. ECANet cancels the two fully connected layers 
and the feature extraction is carried out directly through a one-dimensional convolution to obtain the weight 
of each dimension. This way can make the weight learning process more simple and direct. The convolution 
kernel size of this one-dimensional convolution is obtained by adaptive calculation and represents the coverage 
of local cross-channel interactions. The weight sharing means that each set of convolution uses exactly the same 
weight, which greatly reduces the number of parameters. Specifically, the number of parameters is reduced 
from the original SENet’s 2C2/r to k, where C is the number of channels, r is the dimensionality reduction 
hyperparameter and k is the convolution kernel size. In addition, given the channel dimension C, k can be 
adaptively determined as:

	
k =

∣∣∣∣
log2 (C)

γ
+ b

γ

∣∣∣∣
odd

� (3)

where odd indicates that the value is odd, γ is set to 2, and b is set to 1.

Multi-scale dilated convolution spatial pyramid pooling
The backbone network of YOLOv4-tiny primarily relies on single-branch ordinary convolution with a fixed 
kernel size, leading to a deterministic and uniform receptive field. This limitation results in extracted features 
with limited information, making it challenging to handle complex detection tasks due to the lack of multi-scale 
capabilities.

Based on the SPP structure, we proposed a multi-scale dilated convolution spatial pyramid pooling (MDSPP) 
structure. The SPP structure is essentially a multi-scale pooling, which extracts multi-scale pooling information 
for the same feature layer. Since the input feature layer is relatively fixed with respect to the original image 
receptive field, the enhancement of the receptive field by the structure is not obvious after the fusion of multi-
scale pooling information. In order to better enrich the receptive field scale and improve the feature extraction 
capability of the network, dilated convolutions with different hole rates are introduced in each branch of the SPP 
structure. This structure was designed to increase the receptive field of the feature map, thus helping the network 
capture context information at more scales. The specific structure is shown in Fig. 3.

Semantic information guidance
MDSPP first divides the input feature layer into three main branches for three different scales of the dilated 
convolution, each with a convolution kernel of size 3 × 3, but with dilation rates of 1, 3 and 5, respectively. By 
using dilated convolution, the MDSPP module avoids the need for multiple large kernels, which would increase 
the number of trainable parameters. This design aligns with the ultra-lightweight nature of MASG-Net, ensuring 
that the model remains compact and suitable for real-time applications in resource-constrained environments. 
Then the extracted features with different receptive fields are passed through the feature pyramid pooling layer, 
where the pooling pyramid is also divided into three branches and is articulated after the dilated convolution, 
with the maximum pooling window size of 5, 9 and 13, respectively. The output of these three branches is then 
connected to obtain the final output of the structure. Based on the pyramid pool structure, MDSPP forms a 

Fig. 2.  Improved cell structure E-block.
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feature extraction structure that can greatly enhance the receptive field. It can effectively enhance the feature 
extraction capability of the network without greatly increasing the complexity of the network model.

When using YOLOv4-tiny to identify traffic signs, the accuracy is hindered by the relatively small size of the 
signs, low resolution, unclear features, and other objective factors. This often results in missed detections and 
false positives, reducing the effectiveness of small target recognition. Drawing from recent research on defect 
detection64, we propose a SIG module that utilizes deep feature layers to guide shallow feature layers. By refining 
the semantics of the shallow feature layer, the influence of complex backgrounds on detection performance 
is reduced, and the semantic details of small traffic sign targets are effectively preserved. Additionally, traffic 
signs are typically small targets, and details about small targets are richer in shallow features due to higher 
spatial resolution in the shallow layer. Infusing semantic information into these shallow features can enhance 
and highlight the information representation of these small targets. For instance, the distinct shape and color of 
a traffic sign can be accentuated by the crucial semantic details from high-level features, aiding the network in 
accurately identifying small targets during detection.

The detailed structure of the SIG is depicted in Fig. 4. The workflow of SIG proceeds as follows. Initially, the 
deep output features undergo max pooling and average pooling. Furthermore, the output feature is represented 
as

Fig. 4.  The structure diagram of the proposed SIG module.

 

Fig. 3.  The structure diagram of the proposed MDSPP module.
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	 f
′

= cat(φMP (fn), φAP (fn))� (4)

where cat denotes cascading operation, φMP  and φAP  refer to max pooling and average pooling operations, 
respectively. Taking a step further, we combine the features of the two branches to encompass more detailed 
global information. Following, the CBS module with a 1 × 1 convolution adjusts the channel count, while the 
CBS module with a 3 × 3 convolution enhances local context. The residual edge is then added element-wise to 
the deep feature map:

	
f

′′
= Φ(ξ

{
β

{
Conv3×3

{
ξ

{
β[Conv1×1(f

′
)]

}}}}
+ fn)� (5)

where β is the batch normalization (BN), ξ represents the SiLU activation function, and Φ is the element-wise 
sum operation. The features then pass through a CBS block with a 1 × 1 convolution and a multi-spectral 
channel attention (MSCA)65 to obtain the deep feature map’s weight, which is activated by a modified ReLU 
function:

	
Yn = τ

{
GAP

{
σ1

{
β[Conv1×1(f

′′
)]

}}}
� (6)

where τ  is the ReLU activation function, and MSCA denotes the multi-spectral channel attention operation. 
The MSCA mechanism dynamically adjusts the weights of different feature channels, enabling the network to 
focus on the most informative channels while suppressing irrelevant or redundant ones. This dynamic weighting 
process enhances the network’s ability to learn target-specific features, which is particularly important for small 
and complex objects like traffic signs.

Through the above procedures, the SIG module leverages deep semantic information from the backbone 
network to guide the shallow feature layer. This design enhances the distinction between traffic signs and 
complex backgrounds, improving the detection of small traffic signs and reducing false positives caused by 
cluttered environments. Unlike traditional feature fusion methods, the SIG module explicitly strengthens the 
semantic information in shallow layers, which is critical for detecting small and dim traffic signs.

Experiments
Settings
In order to verify the effectiveness of the proposed E-mobilenet, MDSPP, and SIG modules, several comparative 
tests are conducted in this section. The experimental environment and the parameter settings are shown in Table 2.

Moreover, during the training process, the current training weight file is saved in time after the end of each 
epoch. At the same time, the change of the loss function is observed during the network training process. The 
model is tested when the loss function tends to be stable, indicating that the model has converged. At last, in 
order to eliminate the randomness of experimental results, the average of the model weights of 20 epochs after 
stabilization is taken for validation.

Dataset and evaluation metrics
Dataset

	(1)	� CCTSDB dataset: The Chinese traffic sign database (CCTSDB)66 is produced by Zhang Jianming’s team of 
Hunan Key Laboratory of Integrated Transportation Big Data Intelligent Processing of Changsha University 
of Science and Technology. Up to now, 15,734 images have been uploaded, including nearly 40,000 traffic 
sign targets. The current labeling data is divided into three categories: Indication sign, prohibition sign, 
warning sign. In this paper, the CCTSDB data set is divided into CCTSDB_l and CCTSDB_s according to 
the size of traffic signs in the image. Among them, 11,4735 images with large traffic signs were divided into 
CCTSDB_l dataset, and the remaining 4000 images with small traffic signs constituted CCTSDB_s dataset.

	(2)	� GTSDB dataset: The German traffic sign detection benchmark (GTSDB)67 is a standard dataset for traffic 
sign detection, featuring 900 high-resolution images of 43 common German traffic sign types. It includes 

Experimental environment

Platform Cuda11.7

Framework Pytorch1.13.1

GPU NVIDIA RTX 3070Ti

Memory size 8G

Parameter settings

Input_shape 608*608

lr 1e−5

IOU 0.3

Batch_size 64

Freeze_epoch 50

Unfreeze_epoch 150

Table 2.  Experimental environment and parameter settings.
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diverse scenes with varying weather, lighting, and challenges like partial occlusion, making it ideal for test-
ing detection algorithm robustness in real-world applications. Widely used in autonomous driving and 
intelligent transportation research, GTSDB is a key benchmark in traffic sign detection.

	(3)	� TT100K dataset: The Tsinghua-Tencent 100K (TT100K)68 is a large-scale traffic sign detection and recog-
nition benchmark with over 100,000 high-resolution images and 221 types of traffic signs commonly found 
on Chinese roads. Featuring significant class imbalances and challenging scenarios like occlusion, blur, and 
lighting variations, it is widely used to assess target detection and classification algorithms, making it a key 
resource in autonomous driving and intelligent transportation research.

We divided the data set into a 7:3 ratio of training sets and validation sets, and these images contained vehicle 
information in each scene and traffic signs at each location. The authenticity and universality of the data set are 
guaranteed. In addition, in order to verify the effectiveness of the improved ultra-lightweight and high-precision 
network structure in practical applications, we use mobile phones to shoot images of real scenes inside and 
around the campus. These scenes include traffic sign images under different circumstances, covering different 
angles, different lighting conditions, and different distances. The actual application scenario is simulated more 
realistically, which is helpful in evaluating the performance of the improved network structure in a complex 
environment.

Evaluation metrics
When evaluating the target detection model, the accuracy and speed are generally measured. The accuracy 
evaluation index mainly includes four kinds:

•	 Precision (Pr): represents the proportion of samples classified as positive that are truly positive. 

	
P r = T P

T P + F P
.� (7)

•	 Recall (Re): represents the proportion of samples that are correctly classified as positive in the true positive 
category. 

	
Re = T P

T P + F N
.� (8)

•	 F1 score (F): the accuracy rate and recall rate are considered comprehensively, and it is the harmonic average 
of the two. 

	
F = 2 × P r × Re

P r + Re
,� (9)

 where TP, FP and FN are true positive examples, false positive examples and false negative examples, respectively.

•	 mAP: represents the average of the accuracy rates for all classes. In addition, AP represents the average ac-
curacy of a single class, corresponding to the area under the precision recall curve, and mAP represents the 
average accuracy across all categories. The size of the mAP must be in the range [0,1], and the larger the better. 

	
AP =

∫ 1

0
P (R) dR, � (10)

	
mAP = 1

C

C∑
i=1

APi, � (11)

 where P, R, P(R), C and APi represent the accuracy rate, the recall rate, the precision recall curve, the total 
number of classes and the AP value of class i, respectively.

•	 Frame per second (FPS): which represents how many images are recognized per second.

Results and analysis
Quantitative comparison with state-of-the-arts
In order to comprehensively compare the performance of MASG-Net and the other current mainstream 
networks, Table 3 shows their results of mAP and FPS on CCTSDB_s and their model size. Compared with the 
large complex network SSD_512 and YOLOv4, MASG-Net still has a certain gap in detection accuracy but is 
significantly ahead in terms of detection speed and model size. The YOLOv4-tiny+AFPN+RFB network72 is built 
by adding adaptive feature pyramid networks (AFPN) and receptive field block (RFB) modules to YOLOv4-tiny. 
Compared to YOLOv4-tiny+AFPN+RFB, MASG-Net reduces the number of model parameters and improves 
the detection accuracy and speed. Compared to the latest YOLOv7-tiny, the detection accuracy of the network 
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is similar, but MASG-Net uses a lightweight backbone network and still leads in model size. In addition, we can 
also see that lightweight models, such as MASG-Net and YOLOv4-tiny, have significantly faster detection speed 
than complex models, such as SSD and YOLO. Therefore, the proposed MASG-Net has superior comprehensive 
performance for traffic sign detection applications.

In GTSDB, we have compared MASG-Net with several state-of-the-art methods published in recent years, 
including both lightweight and high-accuracy detection networks commonly used for traffic sign detection 
tasks. The comparison models includes YOLOv4-tiny, Ren et al.69, Tang et al.70, Zhang et al.71 and Yao et al.72. 
From the detection results in Table 4, it can be seen that MASG-Net has achieved suboptimal performance in 
multiple indicators, and the mAP has reached 90.8%. In GTSDB dataset, the scale and angle of traffic signs in 
the image may change due to the shooting distance, camera angle of view or the installation position of the sign, 
especially the detection of small targets at long distances or oblique angles. To address this challenge, MASG-
Net introduces a global-local perception module that can simultaneously capture long-distance dependent 
global information and fine-grained local features. This module enhances the model’s understanding of the 
macroscopic structure and microscopic features of traffic signs, thereby improving detection accuracy. MASG-
Net achieves 203.4 FPS, combining high detection accuracy with impressive inference speed.

To further assess the effectiveness of the proposed algorithm, it is compared with five target detection models 
SSD, YOLOv4-tiny, YOLOv7-tiny, and YOLOv8n73 on the TT100K dataset. Table 5 presents the results, where 
Params indicates the total parameters needed for model training, and mAP evaluates overall detection accuracy 
across all categories, reflecting the model’s performance. Experimental results show that our algorithm achieves 
the second highest mAP among all compared models, reaching 68.6%, which is superior to most other models 
in detection accuracy. From the specific data in Table 5, it can be seen that the proposed algorithm performs best 
in the io and pl50 detection tasks, with detection accuracies reaching 83.8% and 68.4% respectively, achieving 

Networks mAP(%) Params(M)

AP(%)

i5 io p11 p140 p150 pn pne po

SSD_512 68.3 24.7 81.5 74.4 65.8 72.1 70.1 70.7 84.3 44.3

YOLOv4-tiny 58.8 6.1 88.7 74.6 53.1 61.1 63.1 69.4 86.7 39.1

YOLOv7-tiny 54.9 6.2 90.0 70.2 64.7 38.4 49.1 90.0 89.8 38.6

YOLOv8n 70.4 3.1 89.4 81.3 78.5 67.2 65.5 86.6 89.5 60.0

MASG-Net 68.6 5.6 88.0 83.8 71.3 63.4 68.4 84.3 89.4 53.0

Table 5.  The performance comparisons of various models on the TT100K dataset.

 

Network Precision (%) Recall (%) F1-score (%) mAP (%) FPS

YOLOv4-tiny 91.7 74.2 82.0 80.2 197.3

MobileNetV3* 89.6 72.4 80.1 78.9 192.1

E-mobilenet* 93.6 83.3 88.2 85.4 223.9

E-mobilenet*+SPP 94.1 83.8 88.7 86.5 221.4

E-mobilenet*+MDSPP 94.5 87.7 91.0 89.8 215.7

Ren et al.69 83.6 77.3 80.3 81.5 61

Tang et al.70 87.3 84.1 85.6 84.4 22.3

Zhang et al.71 98.7 90.5 94.4 92.7 29.6

Yao et al.72 93.5 82.4 87.6 86.8 145.7

MASG-Net 95.1 90.3 92.6 90.8 203.4

Table 4.  The performance comparisons of various models on the GTSDB dataset. *indicates to highlight 
architectural modifications and their impact on performance metrics.

 

Network mAP (%) Total params (M) FPS

SSD_512 96.5 24.7 38.4

YOLOv4 95.9 64.0 39.1

YOLOv4-tiny 91.4 6.1 197.3

YOLOv4-tiny+AFPN+RFB 93.2 9.1 145.7

YOLOv7-tiny 94.1 6.2 256.0

MASG-Net 94.2 5.6 203.6

Table 3.  The performance comparisons of various models on the CCTSDB_s dataset. Significant values are in 
bold.
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the best results. At the same time, MASG-Net achieved the second best performance on the p11, pl40 and 
po detection tasks. In addition, for the detection of other traffic sign categories, the proposed algorithm also 
maintained a high accuracy and achieved the second overall ranking of the mAP indicator.

To better show the lightweight and effectiveness of the proposed method, we draw a figure in which an 
x-axis indicates the number of parameters and the y-axis is the performance of different methods. In Fig. 5, we 
compare the performance of MASG-Net with preceding algorithms, including SSD, YOLOv4-tiny, YOLOv4, 
YOLOv7-tiny, and YOLOv4-tiny+AFPN+RFB. As shown in Fig. 5, the MASG-Net achieves a superior balance 
between lightweight design and high accuracy, outperforming other models with fewer parameters. This result 
shows that the proposed algorithm can achieve superior detection performance while reducing the number 
of parameters, fully reflecting the balance between computational efficiency and accuracy, and showing high 
practical application value.

Qualitative results
We visualize the detection effects in specific scenarios of different methods on the CCTSDB dataset, as shown 
in Fig. 6. YOLOv4, YOLOv4-tiny, YOLOv7-tiny and MASG-Net are respectively used to detect the public data 
set. It can be seen that the proposed MASG-Net achieves high detection accuracy. This is because MASG-
Net accurately identifies traffic signs by capturing fine-grained features and memorizing long-term contexts. 
Additionally, it includes MDSSP and SIG modules to minimize external interference and ambiguous detections. 
The visual comparisons clearly illustrate MASG-Net’s superior ability to detect small and difficult-to-recognize 
traffic signs while maintaining fewer false positives in cluttered backgrounds.

To better verify the generalizability of MASG-Net, we use mobile devices to photograph real scenes such as 
traffic signs and surrounding roads on campus, as shown in Fig. 7. YOLOv4, YOLOv4-tiny, YOLOv7-tiny and 
MASG-Net are, respectively, used to detect the random scene. By observing the detection results of the network 
model, the improved model not only effectively improves the probability of judging the prediction box as a 
certain type, but also the position of the prediction box is more accurate than that given by YOLOv4, YOLOv4-
tiny and YOLOv7-tiny, and the center point of the prediction box basically coincides with the center point of 
the traffic sign. On the whole, MASG-Net has achieved significant improvement in the detection effect of small 
targets and dim and fuzzy traffic sign pictures with insufficient light. The practicability and robustness of MASG-
Net have been verified by testing the environmental pictures of traffic signs around the campus taken by mobile 
phones. It is proved that MASG-Net has strong generalization ability in real road environment scene.

On the TT100K dataset, we have performed a visual comparative analysis of the baseline models YOLOv4-
tiny, YOLOv7-tiny, and the proposed algorithm MASG-Net, as shown in Fig. 8. These results showcase detection 
outputs for various challenging scenarios, such as small, blurry, and occluded traffic signs, as well as signs in low-
light environments. The comparison results show that the proposed algorithm outperforms the YOLOv4-tiny 
and YOLOv7-tiny models in detecting various types of traffic signs, including i5, io, p11, pl40, pl50 and pn. The 
prediction box generated by the proposed MASG-Net has a higher degree of match with the actual sign area, 
especially in the case of complex background, partial occlusion, aging, defacement and other reasons that lead 
to missing information, showing stronger robustness.

Fig. 5.  MASG-Net and existing methods computational complexity analysis in terms of number of parameters 
and mAP. (a) and (b) show the test results using the CCTSDB_s and TT100K, respectively.
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Ablation study
In order to evaluate MASG-Net more systematically and comprehensively, its trained models on the CCTSDB 
dataset and its subset CCTSDB_s and CCTSDB_l were used for ablation experimental tests, and the final results 
are shown in Table 6.

From the performance in Table 6 on CCTSDB_s, it can be seen that the performance of MASG-Net have been 
significantly improved compared with the original network. The new backbone network E-mobilenet brings 
obvious accuracy improvement, and the average accuracy index mAP is increased from 91.4 to 92.4%. This 

Fig. 6.  Visualization results of different algorithms on the CCTSDB dataset.
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verifies the feature extraction ability of the backbone network E-mobilenet. This design resolves the performance-
complexity trade-off by using local cross-channel interactions, significantly reducing network complexity while 
maintaining performance. By introducing multi-scale dilated convolution operation into SPP structure, the new 
MDSPP module improves the mAP of the model from 92.4 to 94.1%, and the precision, recall and F1 score are 
increased by 0.9%, 2.7% and 1.8%, respectively. This indicates that MDSPP can effectively enhance the ability 
of the network to extract features. Furthermore, when equipped with the proposed SIG module, it achieves 0.1 

Fig. 7.  Visualization results of different algorithms on self-shot real scenes.
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points gains on mAP, 0.7 points gains on F1 score and the recall increase from 93.2 to 93.9%. This demonstrates 
the effectiveness of our SIG module in enhancing detection performance of tiny signs.

Compared with the network before the improvement, the accuracy, recall rate, F1 score and mAP of MASG-
Net are increased by 4.7%, 5.0%, 4.8% and 2.8%, respectively. It can be seen that MASG-Net effectively solves 
the problem that YOLOv4-tiny is not strong in feature extraction ability when detecting small targets of traffic 
signs. Moreover, the MASG-Net is not only suitable for detecting small traffic signs, but also for detecting large 
traffic signs. Therefore, compared to YOLOv4-tiny, the proposed MASG-Net has improved performance in the 
recognition of traffic signs of different sizes.

Dataset Network Precision (%) Recall (%) F1-score (%) mAP (%)

CCTSDB_s

YOLOv4-tiny 89.8 88.4 89.1 91.4

MobileNetV3* 90.8 87.8 89.3 90.4

E-mobilenet* 92.9 90.0 91.4 92.4

E-mobilenet*+SPP 91.5 90.7 91.3 92.6

E-mobilenet*+MDSPP 93.8 92.7 93.2 94.1

MASG-Net 94.5 93.4 93.9 94.2

CCTSDB_l

YOLOv4-tiny 91.8 89.9 90.9 92.0

MobileNetV3* 91.0 89.2 90.1 91.4

E-mobilenet* 94.5 92.3 93.4 93.7

E-mobilenet*+SPP 94.6 93.2 93.9 94.1

E-mobilenet*+MDSPP 95.2 94.3 94.8 95.4

MASG-Net 95.8 94.7 95.2 95.6

CCTSDB

YOLOv4-tiny 91.0 89.3 90.1 91.8

MobileNetV3* 91.0 88.9 90.0 91.1

E-mobilenet* 93.1 92.8 93.0 93.2

E-mobilenet*+SPP 93.7 93.2 93.5 94.0

E-mobilenet*+MDSPP 95.0 93.5 94.3 94.5

MASG-Net 95.3 93.9 94.6 94.7

Table 6.  Ablation study results on the CCTSDB dataset. *indicates to highlight architectural modifications and 
their impact on performance metrics.

 

Fig. 8.  Visualization results of different algorithms on the TT100K dataset.
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Potential limitations
Although the MDSPP module improves the receptive field and enhances the detection of small targets, the 
performance may degrade when detecting extremely small traffic signs that occupy only a few pixels in the 
image. This is due to the inherent limitations of feature extraction at such a small scale. In addition, high-speed 
motion can cause significant motion blur, which reduces the clarity of traffic signs and makes detection more 
challenging. While MASG-Net enhances the receptive field and captures global contextual information, extreme 
motion blur may still lead to missed detections or false positives. As visible, the performance of MASG-Net may 
still be affected under extreme adverse weather conditions, such as heavy rain, fog, or snow, where the visibility 
of traffic signs is significantly reduced.

Conclusion
In this paper, an ultra-lightweight and high-precision network, MASG-Net, is proposed on the basis of 
YOLOv4-Tiny network for traffic sign detection applications. Firstly, an ultra-lightweight feature extraction 
network, E-mobilenet, is designed to enhance the feature extraction capability of the network while effectively 
reducing the number of parameters. Secondly, based on SPP, the MDSPP is proposed, which greatly enhances 
the receptive field range of the feature map and enables the network to obtain more global information. 
Finally, we propose a SIG module that utilizes deep feature layers to guide shallow feature layers. By refining 
the semantics of the shallow feature layer, the influence of complex backgrounds on detection performance 
is reduced. The combination of the E-mobilenet backbone, MDSPP and SIG modules significantly improves 
the detection of small, dim, and blurry traffic signs, especially in challenging environments such as low-light 
conditions. Compared with the network before improvement, the precision, recall rate, F1 score, and mAP of 
MASG-Net are increased by 4.7%, 5.0%, 4.8% and 2.8%, respectively. It can be seen that MASG-Net effectively 
solves the problem that YOLOv4-tiny is not strong in feature extraction ability when detecting small targets 
of traffic signs. Compared to other models, it has better detection accuracy and smaller model complexity. In 
addition, the feasibility of MASG-Net to detect traffic signs in the real scene is verified by the detection of road 
environment pictures.

However, there are still some shortcomings in the research work. Vehicles driving at high speed may have an 
impact on the imaging effect, the pictures captured by the camera may have fuzzy deformation and be difficult 
to identify, and other vehicles, pedestrians or buildings may also partially block the traffic signs, affecting the 
detection effect. Subsequent detection algorithms need to be able to accurately identify these situations. To 
further validate the real-time performance of MASG-Net on devices with limited computational resources (e.g., 
automotive ECUs or edge devices), we plan to deploy the model on platforms such as NVIDIA Jetson Nano, 
Raspberry Pi, or similar hardware.

Data availability
All relevant data are within the paper.
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