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In response to the relentless mutation of the coronavirus disease, current artificial intelligence 
algorithms for the automated diagnosis of COVID-19 via CT imaging exhibit suboptimal accuracy and 
efficiency. This manuscript proposes a multi-objective optimization algorithm (MOAOA) to enhance the 
BiLSTM model for COVID-19 automated diagnosis. The proposed approach involves configuring several 
hyperparameters for the bidirectional long short-term memory (BiLSTM), optimized using the MOAOA 
intelligent optimization algorithm, and subsequently validated on publicly accessible medical datasets. 
Remarkably, our model achieves an impressive 95.32% accuracy and 95.09% specificity. Comparative 
analysis with state-of-the-art techniques demonstrates that the proposed model significantly 
enhances accuracy, efficiency, and other performance metrics, yielding superior results.
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The ongoing COVID-19 pandemic has demonstrated a swift global spread, posing a serious threat to human 
health and life1–3. The exponential proliferation of COVID-19 has exerted significant strain on the healthcare 
infrastructure, underscoring the critical importance of prompt diagnosis for effective treatment and 
containment4. It is imperative to develop efficacious diagnostic modalities for COVID-19 to enable clinicians to 
swiftly and accurately identify affected patients, thereby facilitating the implementation of necessary isolation 
and therapeutic interventions. Despite being deemed the “gold standard” for diagnosing COVID-19, the 
reverse transcription-polymerase chain reaction (RT-PCR) method of nucleic acid detection yields occasional 
false negatives, and its sensitivity remains limited5–7. In real-world scenarios, it is common to miss COVID-19 
patients, thus RT-PCR fails to fully satisfy the diagnostic requirements for the disease. A range of medical 
imaging techniques can serve as alternative methods to RT-PCR for COVID-19 detection, such as computed 
tomography (CT), chest X-ray (CXR)8 and magnetic resonance imaging (MRI)9. Researchers have found that 
chest CT scans can non-invasively provide comprehensive information on the lung structure of patients, offering 
high accuracy in the early diagnosis of COVID-1910,11. In addition, the convenience of CT imaging enables 
real-time monitoring of the patient’s condition, providing strong support for timely treatment and effective 
disease control. As a result, computed tomography (CT) imaging and RT-PCR have been adopted as an ancillary 
diagnostic tool and have proven its utility and efficacy12,13. While CT exhibits superior sensitivity, its operational 
efficiency remains suboptimal. The evaluation of each case takes a long time, even for experienced radiologists14. 
Consequently, the development and enhancement of computer-aided diagnosis (CAD) systems is crucial15,16. 
This progression will facilitate faster and more efficient COVID-19 diagnosis, thereby alleviating the burden on 
healthcare systems.

Amidst the swift advancements in artificial intelligence (AI) technology, deep learning methodologies have 
demonstrated significant potential in the evolution of computer-aided diagnosis (CAD) systems17,18. Deep 
learning methodologies are capable of comprehensively and automatically extracting feature information from 
data, efficiently processing and analyzing large-scale datasets, significantly reducing human errors. Through 
continuous self-optimization, deep learning improves prediction and analytics accuracy19. In the field of medical 
imaging, deep learning excels in image classification and segmentation, automatically identifying different 
types of lesions, which enhances treatment effectiveness and precision20. Among deep learning methods, deep 
bidirectional long short-term memory (BiLSTM) is widely applied in the classification and diagnosis of medical 
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images21. The BiLSTM architecture, comprising numerous forward and backward LSTM layers, mitigates the 
limitations inherent in the individual LSTM units22, its two-way learning mechanism enables it to efficiently 
capture both forward and backward information in sequence data, thereby comprehensively understanding 
the relationships between image features. BiLSTM not only reduces network variance but also accelerates 
the computation of network weights and biases, thus enhancing the model stability. In addition, the BiLSTM 
network has better classification and generalization performance. Currently, BiLSTM have been extensively 
applied in the field of medical imaging diagnosis, thereby providing robust support for the advancement of 
personalized medicine. Yang et al.23 established a whale optimization algorithm-bidirectional long short-term 
memory model, which demonstrates high accuracy in predicting the number of COVID-19 infections. This 
model is beneficial in helping epidemic control authorities in formulating effective containment measures. 
Alkhodari et al.24 appiled a deep learning model based on smartphone breathing sounds to differentiate 
between COVID-19 infected individuals (including asymptomatic cases) and healthy individuals, which was 
experimentally demonstrated to have high accuracy. Aslan et al.25 proposed two deep learning models for the 
automatic detection of COVID-19 positive cases using chest CT X-ray images, the experiments demonstrated 
that both models achieved satisfactory results. Although the BiLSTM network model has many advantages, it 
contains a large number of hyperparameters26. These parameters have an important impact on the efficiency of 
the BiLSTM architecture. Manually adjusting these parameters is cumbersome and time-consuming, In order to 
solve the above problems, we integrated an optimization algorithm into the construction of the BiLSTM model 
to perform multi-objective optimization of its hyperparameters in this paper, thereby reducing errors associated 
with suboptimal hyperparameter settings.

The Arithmetic Optimization Algorithm (AOA) proposed by Abdullah et al.27 in 2021, is a novel optimization 
algorithm inspired by basic arithmetic operations. By simulating the characteristics of these operations, AOA 
performs the search process and optimizes complex problems.Compared with other methods, the AOA has 
the advantages of high computational efficiency, low resource consumption, strong global search capability 
and dynamic adjustment. Currently, AOA has been widely applied in fields such as machine learning, image 
processing, engineering optimization, medical diagnosis, and financial analysis28–31. Additionally, AOA can be 
combined with existing methods to address various complex problems, such as hybrid AOA, adaptive AOA, 
and multi-objective AOA. A novel multi-objective arithmetic optimization algorithm (MOAOA) is initially 
proposed, and a sophisticated deep BiLSTM model is developed to facilitate the automatic recognition of 
COVID-19 from CT images in this paper. The MOAOA is employed to optimize the hyperparameters of the 
deep BiLSTM network. This approach autonomously extracts salient features from patient lung CT images 
and conducts classification diagnosis. The core innovation of this study is the introduction of the MOAOA 
algorithm to tune the hyperparameters of the deep Bi-LSTM model. This initiative effectively avoids the 
problem of misdiagnosis caused by improper parameter settings. The dynamic tuning mechanism of MOAOA 
algorithm can effectively prevent the model from falling into local optimal solutions. It occupies low medical 
resources while meeting the high accuracy requirements of COVID-19 for CT image diagnosis. The MOAOA 
optimization technique meticulously adjusts the network’s hyperparameters and optimizes diagnostic metrics to 
achieve optimal accuracy, sensitivity, specificity, and F1 score.

The main contributions of this work are summarized as follows.

•	 We propose a improved multi-objective arithmetic optimization method and verify its optimization perfor-
mance by four benchmark functions.

•	 An effective MOAOA-BiLSTM model for autonomous diagnosis of COVID-19 CT images is proposed.
•	 The performance of BiLSTM networks largely depends on the selection of hyperparameters. Improper selec-

tion of hyperparameters in BiLSTM networks may lead to more false negatives. Effectively utilize MOAOA to 
optimize the BiLSTM network with hyperparameters.

•	 We conduct a number of experiments using a COVID-19 dataset of chest CT images to compare the perfor-
mance of our proposed model with existing methods for classifying COVID-19 patients. Our study provides 
a viable solution for early diagnosis and surveillance of COVID-19 and has potential clinical applications.

This study primarily concentrates on the development and testing of the proposed MOAOA-BiLSTM for automatic 
diagnostics. The paper is structured as follows. Section “Related work” provides an overview of the existing 
research. Section “Methodology” introduces the COVID-19 automatic diagnosis model and its calculation 
process based on the MOAOA algorithm optimized BiLSTM. Section “Multi-objective arithmetic optimization 
algorithm” evaluates and analyzes the performance of multi-objective algorithm optimization algorithm. Section 
“Experimental examples of COVID-19 CT classification” presents a comprehensive comparison between the 
proposed method and existing approaches, followed by a detailed discussion of the experimental results. Finally, 
Section “Conclusion” describes the key conclusions and prospects.

Related work
The integration of deep learning methodologies in detecting and identifying COVID-19 has exhibited exceptional 
efficiency and resilience32. This section comprehensively reviews current deep learning-based methodologies 
employed in the classification and diagnosis of pulmonary diseases using CXR (chest X-ray) and CT imaging 
modalities.

Zhao et al.33 established a publicly available COVID-CT dataset, which includes 275 confirmed positive 
CT scan samples for COVID-19, with the intent of advancing research and development in deep learning 
methodologies. Kaur extit et al.34 proposed a COVID-19 diagnosis methodology predicated on transfer learning 
techniques, utilizing architectures such as ResNet50 and MobileNetv2. Loey et al.35 utilized a conditional 
generative adversarial network built upon a deep transfer learning model to enhance the precision of COVID-19 
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classification. Soares et al.36 established a publicly available CT scan data set for the type 2 SARS coronavirus 
and achieved good results using deep learning methods to analyze whether a person was infected with SARS-
CoV-2. Abbas et al.37. utilized a deep Cellular Neural Network (CNN), built on the principles of decomposition, 
transmission, and synthesis, to categorize COVID-19 chest radiographs. Lins et al.38 presented a deep learning-
based approach to assess the presence of COVID-19-related findings on CT images, as a supportive diagnostic 
mechanism.

Conventional deep learning techniques, when applied to chest CT scan analysis, exhibit overfitting due to 
the use of an extensive array of features for categorization39. Consequently, the scalability of these approaches to 
larger datasets remains questionable40. Another problem with traditional deep learning solutions is that when 
considering supervised learning and using backpropagation to update the connection weights of neural networks, 
gradient disappearance and explosions are serious obstacles to successfully training recurrent neural networks41. 
The popular LSTM provides forgetting gates and memory gates to prevent or reduce gradient disappearance 
or explosion, effectively overcoming gradient vanishing problems in long-term sequences of recurrent neural 
networks in traditional deep learning.

Hochreiter et al.42 used the recurrent neural networks (RNNs) of LSTM memory units to solve the problem 
that backpropagation learning takes a long time to store information at long intervals. Persio et al. emphasized 
the significance of carefully selecting and preprocessing input features for learning algorithms in their proposal 
of a method to predict stock market indices using Artificial Neural Networks43. Felder et al.44 appiled LSTM to 
predict the time probability distribution of the power output, successfully performed a 48-hour power forecast 
using historical data from wind farms and compared it with multi-layer perceptrons and baseline predictors. 
Edward et al.45 developed an artificial intelligence doctor called “Doctor AI”, which used LSTM time models to 
cover observed medical conditions and drug use. Maknickienė et al.46 demonstrated through statistical analysis 
that the improved algorithm significantly improves the reliability of prediction results based on evolutionary 
recurrent neural networks for LSTM. LSTM is a one-way recurrent network that only uses the content in the 
previous text and cannot consider the information of the “following text”47. It has disadvantages in parallel 
processing, long running time, and low efficiency48.

In response to the above issues and the long-term co-existence and continuous mutation of the COVID-19 
virus with humans, we choose BiLSTM as the autonomous diagnostic model for COVID-19 CT images. BiLSTM 
is a bidirectional LSTM that combines information from input sequences in both forward and backward 
directions, effectively utilizing hardware resources and improving work efficiency49,50. The BiLSTM network 
model encompasses an extensive array of hyperparameters, the selection of which significantly impacts the 
accuracy and efficiency of COVID-19 CT image autonomous diagnosis. The examination of relevant literatures 
reveals the development of numerous strategies and techniques dedicated to the automatic generation of neural 
network structures. The use of optimization and evolution techniques to optimize connections and topology has 
been proven to have significant advantages51–53, among which the most commonly used is based on optimization 
algorithms54. Some famous algorithms include Particle Swarm Optimizer (PSO)55, Genetic Algorithm (GA)56, 
Artificial Be Colony Algorithm (ABC)57, Cultural Algorithm (CA)58, Fire Algorithm (FA)59, etc., which have 
been successfully applied to COVID-19 CT image classification and diagnosis. In order to improve the accuracy 
and computational efficiency, several improved optimization algorithms and hybrid optimization algorithms 
have also proved the progressiveness of this field. For example, Accelerated Gravitational Search (AGS)60, 
Improved Grey Wolf Optimizer (IGWO)61, Particle Swarm Optimization and Cultural Hybrid Algorithm (CA-
PSO)62 Electromagnetic Firefly Algorithm (EFA)63, and so on. Although the improved optimization algorithm 
mentioned above can effectively improve the accuracy of classical algorithms, its accuracy and effectiveness are 
still relatively low, and the complexity of the algorithm also increases accordingly.

A recently developed metaheuristic algorithm, known as the arithmetic optimization algorithm (AOA), 
leverages the distribution characteristics of principal arithmetic operators in mathematics. It displays 
commendable performance in solving optimization issues, a claim proven in diverse fields such as mathematics, 
physics, and medicine as cited in references64–67. Due to the simple structure and high optimization efficiency 
of AOA, various modified AOA have been developed68. Dieu et al.66, integrate Differential Evolution (DE) 
with AOA to enhance the precision of the truss optimization design. Stankovic et al.69 demonstrated that the 
proposed hybrid algorithm optimization algorithm had superior performance compared to standard AOA, and 
the optimized structure could assist medical personnel in early diagnosis. In addition, Ewees et al.70 combined 
genetic algorithm (GA) operators with traditional AOA and proposed an improved AOA optimization 
method called AOAGA feature selection method. The findings suggest that this approach has identified novel 
optimal solutions for numerous test cases, yielding results that are superior to those of alternative methods. 
The above work shows that AOA and improved AOA optimization algorithms have been applied in various 
fields and achieved outstanding results. However, it is worth noting that research on multi-objective arithmetic 
optimization methods in automatic disease diagnosis has not yet been involved. This paper presents a Multi-
Objective Arithmetic Optimization Algorithm (MOAOA) to optimize the BiLSTM architecture with the goal of 
boosting computational efficiency, improving accuracy, and enhancing generalization capabilities.

Methodology
LSTM principle
The Long Short-Term Memory (LSTM) network42, a highly sophisticated development beyond traditional 
Recurrent Neural Networks (RNNs), integrates an internal cell state mechanism within its structure to control the 
circulation of extensive information. And it greatly alleviates the long-term dependency problem of traditional 
RNN models, reduces the loss of long-distance historical information, and produces more accurate prediction 
results. Figure 1 illustrates the structure of the LSTM network.
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Formally, the operations executed inside an LSTM cell can be depicted by the subsequent mathematical 
formulas71. 

	 ft = σ(wf [h(t−1), xt] + bf ) � (1a)

	 It = σ(wi[h(t−1), xt] + bi) � (1b)

	 C̃t = tanh(wc ∗ [h(t−1), xt] + bc) � (1c)

	 Ct = ftC(t−1) + It ∗ C̃t � (1d)

	 Ot = σ(wo ∗ [h(t−1), xt] + bo) � (1e)

	 ht = Ot ∗ tanh(Ct) � (1f)

 where w and b are the matrices for weight coefficients and biases respectively. The sigmoid activation function is 
denoted as σ72. Additionally, tanh represents the hyperbolic tangent activation function. Ct is the current state 
value of the unit, whereas ht is its output value. Furthermore, it, Ot, and ft signify the activation functions for 
the input gate, the output gate, and the forget gate, respectively.

BiLSTM principle
To address the limitation that LSTM units can process previous content but cannot use future content, BiLSTM 
incorporates a combined feature extraction method using forward and reverse sequences73. The two LSTM 
networks–one operating in the forward direction, the other in reverse–process the input sequence to distill 
features. The output vectors (i.e., extracted feature vectors) produced by the two LSTM networks are conflated 
into a single word vector, which stands as the ultimate representation of the word’s distinct features. Compared 
to a single LSTM structure, the BiLSTM demonstrates higher efficiency and performance in extracting local 
features, as shown in Fig. 2.

The calculation method of the reverse layer LSTM is similar to that of the forward layer LSTM, where the 
direction is reversed to obtain subsequent information, i.e.,

	 hf =f(wf1xt + wf2ht−1) � (2)

	 hb =f(wb1xt + wb2ht+1) � (3)

where hf  denotes the output value of the forward LSTM network, hb symbolizes the output value from the 
backward LSTM network. The final output result of the hidden layer is calculated by

	 yi = g(wo1hf + wo2hb)� (4)

Fig. 1.  LSTM network cell structure..
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BiLSTM is employed to deal with the problem of high variance in deep neural network training in this paper. 
The parallel training of numerous neural networks for classification or diagnostic functions not only decreases 
network variance but also bolsters the generalization competence of the neural network. The implementation 
of BiLSTM necessitates the calibration of the network’s weights and biases. Critical hyperparameters, including 
batch size, learning rate, momentum, number of epochs, and regularization coefficients, exert a significant 
influence on the efficacy of gradient descent optimization. Therefore, the fine-tuning of these hyperparameters 
is imperative to enhance the performance of BiLSTM neural networks.

Multi-objective arithmetic optimization algorithm
Multi-objective optimization problems
Multi-objective optimization (MOP) refers to an optimization challenge where multiple objective functions are 
evaluated concurrently in the decision-making process. The general formulation of MOP is expressed as

	 Minimize/Maximize F(x) = (f1(x), f2(x), . . . , fk(x)) � (5)

	 Subject to gi(x) ≤ 0, i = 1, 2, . . . , m � (6)

	 hj(x) = 0, j = 1, 2, . . . , p � (7)

where x stands for the vector of decision variables, gi(x) and hj(x) represent the inequality and equality 
constraints respectively. In contrast to single-objective optimization issues, multi-objective problems yield a 
series of outcomes. These are known as Pareto optimal solutions, and the compendium of all objective space 
vectors corresponding to this set is labeled as the Pareto front74.

To rigorously assess the efficacy of optimization algorithms within the context of multi-objective optimization 
problems (MOP), four widely recognized evaluation metrics were employed75,76. The metrics used in this study 
to evaluate the performance of the optimization algorithm are the Inverted Generational Distance (IGD), 
Spacing (SP), Hypervolume (HV), and the Diversity Metric (∆). Each of these metrics is defined as follows.

	
IGD =

√∑npf

i=1 (di)2

npf

� (8)

where di represents the Euclidean distance between the ith acquired candidate solution and the closest solution 
among the actual Pareto solutions, npf  signifies the total count of actual Pareto solutions.

	

SP =

√√√√ 1
no − 1

no∑
i=1

(
di − d

)2� (9)

where di denotes the minimum distance from the ith solution to the other solutions, and d is the mean of di.

	
HV = δ

(
∪|no|

i=1 θi

)
� (10)

where δ represents Lebesgue measure of hypercube volume, θi denotes hypercube volume constituted by the 
corresponding reference point and the ith solution.

Fig. 2.  BiLSTM structure diagram.
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∆ =

df + de +
∑no−1

p=1

∣∣dp − d
∣∣

df + de + (no − 1)d
� (11)

where dp denotes the Euclidean distance among the acquired candidate solutions, d represents the average value 
of dp, no indicates the count of candidate solutions within the obtained Pareto solutions. The variables df  and 
de correspond to the Euclidean distances between the obtained extreme solutions and the boundary solutions, 
respectively.

Arithmetic optimization algorithm
The arithmetic optimization algorithm (AOA) is a novel metaheuristic optimization algorithm that draws 
inspiration from the mixed quadratic operations in arithmetic, as proposed by scholars Abualigah et al.64. To 
determine the most effective optimization framework within a feasible temporal constraint, AOA integrates 
a mathematical function accelerator to delineate the optimal approach. This paradigm segregates the entire 
procedure into the exploration and exploitation phases, employing multiplicative and divisive operations to foster 
comprehensive exploration, while harnessing additive and subtractive operations to augment local exploitation. 
These two phases are systematically selected based on models that correlate with the current iteration number 
t as

	
ρt = Tmin + t × Tmax − Tmin

T
� (12)

where ρt is the interpretation threshold for the tth iteration M_Iter. Tmax and Tmin are the maximum and 
minimum values of the acceleration function, respectively. T is maximum number of iterations. In cases where 
stochastic variable r1 is found to be less than ρt, AOA transitions to the global exploration phase. Conversely, if 
r1 is greater than or equal to ρt, the algorithm advances to the local exploitation phase.

In the exploration phase, the AOA operator randomly explores the search area in multiple regions and 
searches for better solutions based on the two main division operators (D) and multiplication operators (M). 
T﻿he next position xt+1 is given as

	
xt+1 =

{
xbest ÷ (MOP(t) + ε) × ((xu − xl) × µ + xl), r2 < 0.5,
xbest × MOP(t) × ((xu − xl) × µ + xl), otherwise � (13)

where xbest represents the j-th best solution so far, µ = 0.5 is the search process control coefficient77. and xu 
and xl are the upper and lower bound of the variable respectively. r2 is a random number between 0 and 1. The 
mathematical optimization probability MOP is

	
MOP(t) = 1 −

(
t

T

)1/α

� (14)

where α stands for a sensitive parameter77.
During the exploitation phase, AOA is subject to local refinement through additive (A) and subtractive (S) 

mechanisms. These approaches are characterized by negligible dispersion and facilitate prompt convergence to 
the target, thus expediting the identification of the optimal solution. The formula is given as

	
xt+1 =

{
xbest − MOP(t) × ((xu − xl) × µ + xl), r3 < 0.5,
xbest + MOP(t) × ((xu − xl) × µ + xl). otherwise � (15)

where r3 stands for a random number between 0 and 1.

Multi-objective arithmetic optimization algorithm
The grid method represents a prevalently utilized multi-objective optimization technique for deriving Pareto 
solutions within multi-objective optimization frameworks. This methodology entails the establishment of a 
regular grid within the objective space to rigorously search for and assess potential solutions, thereby attaining 
equilibrium among diverse objectives75. The selection of the leader xleader  from the non-dominated Pareto set 
in the context of the grid method should be executed as

	
△fn

i = maxfn
i − minfin

M
� (16)

where M is the number of grids, and Fi denotes object space value for the i-th object. To expand the range of the 
Pareto Front (PF), the procedure should select a non-dominated solution in the sparsest region of corresponding 
objective space. This algorithm commences by partitioning the objective space of the Pareto non-dominated set 
into several equal regions. Subsequently, the procedure identifies one solution as the leader on the likelihood that 
inversely correlates with the density of the solution set within the restricted unit interval. The selection of leader 
in division of objective space is shown in Fig. 3, The probability of selected solution in current area is

	 Pk = e
−

β · mk

mset
� (17)
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where k is the corner mark of current area. β is a parameter controlling the pressure of probability. mk  represents 
number of solutions in current area and mset denotes total number of solutions in Pareto non-dominated set.

In the MOAOA algorithm, the xleader is chosen from the external archive through the roulette wheel 
selection method, as explained in Eq. (16). Afterward, the particle’s position is updated by Eqs. (13)–(15), while 
the non-inferior solutions from the population are incorporated into the external archive.

To update the Pareto no-dominated set, the program calculates the objective function expressed in the current 
iteration. If F(x) is dominated by any objective value in the current set, the iteration value will be abandoned. 
Otherwise, the iteration value of the solution will be added into the Pareto no-dominated set and the pro-
gram will wipe out all the solutions dominated by the current solution immediately. For controlling the size 
of no-dominated set, the program will delete the solutions randomly while the element number exceeds the 
pre-set size of set. The deleting process preferentially selects the high-density solutions in the objective space 
to enhance the homogeneity of Pareto set. The deleting process preferentially selects the high-density solutions 
in the objective space to enhance the homogeneity of Pareto set. Based on the above content, Algorithm 1 
provides a pseudocode flowchart for the proposed MOAOA.

Algorithm 1.  The proposed Multi-objective arithmetic optimization algorithm.

Fig. 3.  The division of objective space and selection of leader in MOAOA.   represent non-dominated 
solutions,  represent the selected leader.
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Optimization of BiLSTM based on MOAOA for COVID-19 automatic diagnosis model
Model evaluation indicators
In our research, we implement a variety of evaluation criteria to assess the proficiency of each predictive model 
constructed using diverse supervised deep learning algorithms78. These evaluation criteria employ a confusion 
matrix to distinguish between accurate and erroneous outcomes, utilizing various classification metrics such as 
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

The accuracy of algorithm performance, an important indicator for techniques utilized both pre-processing 
and post-processing, can be evaluated through a scale composed of TP and TN. The accuracy follow as

	
Accuracy = (TP + TN)

(TP + TN + FP + FN) � (18)

Specificity quantifies the proportion of individuals who tested negative for COVID-19 out of the total population 
of uninfected individuals, and it is given as

	
Specificity = TN

(TN + FP) � (19)

Precision represents a key measure for assessing the merit of technical performance methods executed prior to 
and following algorithmic processing. The precision scale and error rate comprises TP and TN. The precision 
can be obtained as

	
Precision = TP

(TP + FP ) � (20)

Recall is a measure computed by the ratio of TP to the sum of TP and FN, serving as a critical indicator for 
quantifying correct predictions and assessing the impact of data imbalance on outcomes. Recall can be solved by

	
Recall = TP

(TP + FN) � (21)

F1 Score is considered one of the important indicators sensitive to mismatched data and affecting efficiency 
results, which is calculate computed as

	 F1 Score = 2 × Precision×Recall
Precision+Recall � (22)

Model process
This manuscript proposes a BiLSTM COVID-19 autonomous diagnostic model based on MOAOA, which 
automatically classifies CT images as Non-COVID-19, COVID-19, and pneumonia patients. The convolutional 
neural network (CNN) is used to extract 128 features from the dataset, which served as input to the BiLSTM model. 
Moreover, Cross-validation partitioned the dataset and validated it in multiple cycles, confirming the model’s 
generalization ability. The performance of the model training is significantly dependent on the appropriately 
chosen hyperparameters. The proposed MOAOA method is employed to optimize these hyperparameters. 
In addition, before model training, we perform duplicate data removal, missing value processing, and data 
normalization operations. Subsequently, we use random oversampling and undersampling to balance the 
dataset and apply data enhancement techniques such as rotation, flipping, cropping, and brightness adjustment 
to improve the diversity of the data. The flow diagram of our proposed COVID-19 diagnostic model is illustrated 
in Fig. 4.

Performance testing of multi-objective arithmetic optimization algorithms
We used a series of Zitzler-Deb-Thiele (ZDT)80 functions to validate the proposed MOAOA and compared 
it with NSGA-II81 (deb2002fast) and the original MOPSO82, the ZDT functions are shown in Table  1. The 
parameters for these algorithms are set as follows: kmax=500, N = 100, the maximum size of the archive is set 
to 200, and 30 independent runs are performed.

Figure 5 presents the Pareto frontiers generated by various algorithms, figures a, b, c, and d correspond to the 
ZD1, ZD2, ZD3, and ZD4 test problems, respectively. The MOAOA accurately captures the true Pareto Frontier 
(PF) compared to NSGA-II and MOPSO. Table 2 summarizes the statistical data for various performance metrics 
across different multi-objective optimization algorithms, the bold values are the best values for the indicator. The 
numerical experiments demonstrate that the optimization performance of MOAOA surpasses those of NSGA-II 
and MOPSO.

Experimental examples of COVID-19 CT classification
In this section, the correctness of the MOAOA-BiLSTM model is demonstrated through two sets of real-world 
datasets. The proposed MOAOA-BiLSTM model is utilized for automatic diagnosis in two image datasets, with 
its performance evaluated based on accuracy, recall, precision, and F1 score metrics. The proposed method 
is compared and analyzed through experiments using various diagnostic and optimization algorithms to 
demonstrate its effectiveness and accuracy. The selected parameters of MOAOA are presented in Table  4, 
including the learning rate, number of epochs, L2 regularization factor, and the number of hidden nodes. To 
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Name Formula and variables Optimum functions

ZDT1

f1 = x1
g = 1 + 9 ·

∑m

i=2
xi/ (m − 1)

h = 1 −
√

f1/g

m = 30, xi ∈ [0, 1]

0 ≤ x1 ≤ 1
and xi = 0 for i = 2, . . . , n

ZDT2
f1 = x1
g = 1 + 9 ·

∑m

i=2
xi/ (m − 1)

h = 1 − (f1/g)2

m = 30, xi ∈ [0, 1]

0 ≤ x1 ≤ 1
and xi = 0 for i = 2, . . . , n

ZDT3

f1 = x1
g = 1 + 9 ·

∑m

i=2
xi/ (m − 1)

h = 1 −
√

f1/g − (f1/g) sin (10πf1)
m = 30, xi ∈ [0, 1]

0 ≤ x1 ≤ 0.0830
or 0.1822 ≤ x1 ≤ 0.2577
or 0.4093 ≤ x1 ≤ 0.4538
or 0.6183 ≤ x1 ≤ 0.6525
or 0.8233 ≤ x1 ≤ 0.8518
and xi = 0 for i = 2, . . . , n

ZDT4

f1 = x1

g = 1 + 10 (m − 1) +
∑m

i=2

(
x2

i − 10 cos (4πxi)
)

h = 1 −
√

f1/g − (f1/g) sin (10πf1)
m = 10, x1 ∈ [0, 1] and x2, . . . , xmϵ [−5, 5]

0 ≤ x1 ≤ 1
and xi = 0 for i = 2, . . . , n

Table 1.  The ZDT functions of multi-objective optimization79.

 

Fig. 4.  The flowchart of MOAOA-BiLSTM model for COVID-19 diagnosis.
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Application Operating System CPU CPU Frequency

MATLAB Windows 7 Intel Core TM 3.2GHz

Table 3.  The device information for the model in this paper.

 

Functions Indicator MOPSO NSGA-II MOAOA

ZDT1

IGD 0.0599/(0.0437) 0.0395/(0.0087) 0.0841/(0.0018)

SP 0.007/(0.0048) 0.1124/(0.0011) 0.0033/(0.0003)

HV 0.6714/(0.0307) 0.6741/(0.0106) 0.4251/(0.0034)

∆ 0.8107/(0.1343) 0.4239/(0.0593) 0.9257/(0.0199)

ZDT2

IGD 0.2363/(0.0302) 0.0266/(0.0067) 0.2696/(0.0028)

SP 0.0022/(0.0021) 0.0032/(0.0003) 0.1616/(0.0917)

HV 0.5621/(0.0322) 0.4039/(0.0100) 0.4251/(0.0034)

∆ 0.9543/(0.0341) 0.4434/(0.0235) 0.9257/(0.0593)

ZDT3

IGD 0.2411/(0.0207) 0.0412/(0.0086) 0.0728/(0.0029)

SP 0.0041/(0.0021) 0.0035/(0.0027) 0.0170/(0.0019)

HV 0.5091/(0.0031) 0.5880/(0.0186) 0.4251/(0.0034)

∆ 0.7356/(0.0423) 0.6845/(0.0223) 0.6536/(0.0211)

ZDT4

IGD 0.0599/(0.0437) 0.5452/(0.3919) 0.0179/(0.0018)

SP 0.0632/(0.0043) 0.0042/(0.0057) 0.0708/(0.0082)

HV 0.5428/(0.0342) 0.2631/(0.2701) 0.8550/(0.0014)

∆ 0.7653/(0.1587) 0.6521/(0.1284) 0.9257/(0.0593)

Table 2.  Performance comparison of different algorithms on ZDT functions, the indicators’ values are the 
means and the variance in brackets. Significant values are in bold.

 

Fig. 5.  Comparison of pareto fronts of different algorithms on ZDT test problems. ‘PF’ denote the theoretical 
optimal solution for the ZDT series problems.

 

Scientific Reports |        (2025) 15:10841 10| https://doi.org/10.1038/s41598-025-94654-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


ensure fairness among the algorithms, this study tested all the algorithms in the same environment. The device 
information is shown in Table 3.

Dataset 1
This study utilize publicly available CXR images of patients with Non-Covid-19 and Covid-19. The dataset 
consists of 3000 images with a resolution of 224 × 224 pixels, half of which are labeled as Non-Covid-19. The 
dataset 1 is available on Mendeley Data via the link https://data.mendeley.com/datasets/db4wdy7cdf/1. Before 
training the model, the dataset should be provided for pre-processing, with 70% allocated for training and 30% 
for testing.

ROC and CM
The classification performance of the MOAOA-BiLSTM model is evaluated using ROC and CM. The proposed 
MOAOA-BiLSTM model produces better accuracy in the COVID-19 (95.6%) and Non-COVID-19 (95.1%) 
categories. Therefore, this MOAOA-BiLSTM model can be used for automatic screening of COVID-19. ROC 
(Receiver Operating Characteristic) and CM (Confusion Matrix) generated from the analysis are depicted in Fig. 
6. The ROC curve is a performance measurement tool for classification problems that takes into account various 
thresholds. The proximity of the curve to the upper left boundary of the ROC space is directly proportional to the 
robustness and accuracy of the proposed model’s outcomes. Figure 6a illustrates the ROC curve of the proposed 
MOAOA-BiLSTM diagnostic model, demonstrating the successful performance of the automatic screening 
model presented in this study. The confusion matrix analysis of the proposed COVID-19 disease model is shown 
in Fig. 6b. The findings demonstrate that the MOAOA-BiLSTM-based diagnostic model proposed in this article 
consistently outperforms in terms of true positive and true negative values. Additionally, the model exhibits 
lower false negative and false positive rates.

Performance comparison of different optimizers
This section presents a performance comparison of various optimization algorithms in the BiLSTM model. PSO55, 
GWO83, AOA74, NSGA-II84, MOPSO85, MOGWO86, and the proposed MOAOA are applied to optimize the 
BiLSTM neural network. Table 5 shows the performance analysis of different optimizations, and the results show 
that the AOA optimization method has the most stable performance among the single-objective optimization 
(SOP) neural networks. Compared to MOP, the generalization of SOP results is better. The MOAOA-optimized 
BiLSTM network outperforms other optimization algorithms, delivering the superior performance indicators 
for accuracy, precision, specificity, recall, and F1 score.

Parameters Values

Number of iterations 100

Population size 50

Archive size 100

Learning rate [0.001, 0.01]

Number of epochs [10, 100]

L2 regularization factor [0.0001, 0.001]

Number of hidden nodes [5, 20]

Table 4.  Parameters of MOAOA.

 

Fig. 6.  (a) The ROC of MOAOA; (b) The confusion matrix of MOAOA.
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The performance comparison of different optimization algorithms in CM and ROC is shown in Figs.   7 
and  8, figures a, b, c, d, e, and f correspond to the results obtained using the AOA, GWO, MOGWO, PSO, 
MOPSO, and NSGA algorithms, respectively.

Through analyzing and comparing Figs. 6b and 7, it is obvious that The proposed MOAOA optimized BiLSTM 
model exhibits excellent performance, achieving a maximum accuracy of 95.32%, an accuracy of 95.13%, a recall 
of 95.56%, and an F1 score of 95.34%. Compared to other optimization algorithm models, the BiLSTM model 
optimized by MOAOA demonstrates superior accuracy and performance.

Figure 8 compares the ROC curve of existing optimization models. The efficiency of the MOAOA optimization 
model is demonstrated by displaying nearest ROC curve in the upper left corner. By analyzing and comparing 
all the curves in Figs. 6a, 8, the MOAOA optimization model demonstrates superior accuracy and generalization 
compared to others.

Performance analysis with different neural networks
In this section, we utilize six established deep neural networks for the purpose of image classification and 
diagnostic analysis: Extreme Learning Machines (ELM)87, Radial Basis Function Neural Network (RBFNN)88, 
CNN89, Random Forest (RF)90, LSTM91, and BiLSTM of the proposed MOAOA optimization algorithm. The 
performance comparison indicators of these networks include accuracy, specificity, sensitivity, precision, and F1 
score, as shown in Table 6. The statistical results show the comparison between this study and recent studies. In 
terms of accuracy, the RBFNN network performs the worst with a result of 0.9031, while the BiLSTM method 
achieves the highest accuracy at 0.9532. Regarding Recall, the Random Forest method is the best, with a Recall 
value of 0.9778, followed by the BiLSTM method at 0.9556. In terms of Precision and Specificity, the BiLSTM 
method outperforms all others, with corresponding values of 0.9513 and 0.9509, respectively. These comparisons 
indicate that the optimized BiLSTM model demonstrates superior accuracy, specificity, sensitivity, and F1 score 
compared to other deep learning networks, highlighting its high efficiency and generalization capabilities.

Fig. 7.  Confusion matrix of different optimizers with BiLSTM.

 

Method Accuracy Recall Precision Specificity F1 score

PSO 0.8147 0.6633 0.9522 0.9666 0.7819

GWO 0.9332 0.9644 0.9079 0.9018 0.9353

AOA 0.9388 0.9689 0.9140 0.9085 0.9407

NSGA 0.9477 0.9422 0.9528 0.9531 0.9475

MOPSO 0.9215 0.9400 0.9068 0.9030 0.9231

MOGWO 0.9399 0.9511 0.9304 0.9286 0.9407

MOAOA 0.9532 0.9556 0.9513 0.9509 0.9534

Table 5.  The performance comparison of different optimizers.
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Dataset 2
To further validate the accuracy and efficiency of the model constructed, we apply another dataset. The 
dataset 2 is available on Mendeley Data via the link ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​f​r​a​n​c​i​s​m​o​n​/​c​u​r​a​t​e​d​-​c​o​
v​i​d​1​9​-​c​h​e​s​t​-​x​r​a​y​-​d​a​t​a​s​e​t​/​d​a​t​a​. The accuracy and loss of the optimized BiLSTM model for high-dimensional 
datasets are evaluated, as shown in Figs.  10 and  11. These figures compare the performance of the BiLSTM 
neural network optimized using MOAOA and AOA in terms of accuracy and loss. Figure 10 illustrates that the 
accuracy of training and validation increases linearly and remains stable for an extended period after a certain 
point, indicating that the model is well fit (without underfitting or overfitting. Figure 11 presents the loss curve, 
which shows that there are slight variations in training and validation losses. The MOAOA optimization model 
achieves the highest accuracy with minimal loss compared to the AOA model. Furthermore, the optimization 
model remains stable during long-term iterations. In Figs. 10 and 11, subfigures (a) and (b) represent the AOA 
and MOAOA, respectively.

Figures 9b, 12 present the confusion matrices for the COVID-19 dataset (Class 3) alongside the three classes 
(Class 1: normal, Class 2: pneumonia, and Class 3: COVID-19) under different optimization algorithms, which 
are employed to assess the model’s sensitivity. As shown in Figs. 9b and 12, the MOAOA optimization algorithm 
achieved correct prediction rates of 90.7% for normal images, 90.7% for pneumonia images, and 98% for 
COVID-19 images, all surpassing 90% accuracy, demonstrating the algorithm’s high accuracy. In comparison, 
the MOGWO optimization method predicted pneumonia with an accuracy of 99%, but its COVID-19 prediction 
accuracy was only 85.7%. Meanwhile, the MOPSO optimization method achieved a COVID-19 prediction 
accuracy of 99.7%, but its pneumonia prediction accuracy was only 76.7%, significantly below 90%. Among the 
three types of predictions-normal, pneumonia, and COVID-19-the MOAOA optimization algorithm proved 
to be the most stable and accurate. The ROC curves for the three classes of the BiLSTM model under different 
optimization methods are shown in Figs. 9a and 13. In Figs. 12 and 13, subfigures (a) to (f) represent the AOA, 
GWO, MOGWO, PSO, MOPSO, and NSGA, respectively.

Method Accuracy Recall Precision Specificity F1 score

ELM 0.9131 0.9533 0.8827 0.8728 0.9167

Random forest 0.9444 0.9778 0.9278 0.8713 0.9215

RBFNN 0.9031 0.9156 0.8937 0.8906 0.9045

CNN 0.9254 0.9444 0.9101 0.9062 0.9269

LSTM 0.9465 0.9511 0.9427 0.9420 0.9469

BiLSTM 0.9532 0.9556 0.9513 0.9509 0.9534

Table 6.  Performance comparison of different neural networks with MOAOA.

 

Fig. 8.  ROC of different optimizers with BiLSTM.
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The curves in Figs. 9a, 13 illustrate the trade-off between sensitivity and specificity for various optimization 
model solutions. The graphs indicate that the MOAOA-optimized model delivers superior results, demonstrating 
that the network model optimized by MOAOA can be reliably utilized for real-time COVID-19 diagnosis.

To further examine the results, this study compares the performance indicators of the proposed MOAOA 
optimized BiLSTM network with other state-of-the-art optimization methods. Performance indicators obtained 
using the proposed method exhibit superiority over other methods, as depicted in Fig. 14. It demonstrates that 
the performance indicators calculated by the MOAOA optimization method maintain the highest stability, 
outperform other methods. Specifically, the model achieved an Accuracy of 95.22%, a Precision of 95.42%, a 
Recall of 95.22%, and an F1 Score of 95.32%, all of which significantly surpass the results obtained by other 
optimization algorithms.

Fig. 11.  The graphical illustration of loss.

 

Fig. 10.  The graphical illustration of accuracy.

 

Fig. 9.  (a) The ROC of MOAOA; (b) The confusion matrix of MOAOA.
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Conclusion
In this study, we propose a novel COVID-19 automatic diagnosis model, the MOAOA-BiLSTM deep network. 
The proposed enhanced MOAOA algorithm can automatically optimize the hyperparameters of BiLSTM deep 
neural network, solving the problem of irrationality in the setting of BiLSTM hyperparameters, improving the 
accuracy of COVID-19 diagnosis. By testing the MOAOA optimization algorithm on multiple benchmark 
functions, its strong optimization performance and robustness are demonstrated. The proposed automatic 
diagnosis model is applied to two publicly available CT image datasets and evaluated using various metrics in 
comparison with existing optimization algorithms and deep learning models. Compared to other diagnostic 

Fig. 13.  ROC of different optimizers with BiLSTM.

 

Fig. 12.  Confusion matrix of different optimizers with BiLSTM.
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methods, this approach can autonomously diagnose the etiology of the patient’s disease while achieving highly 
accurate diagnostic results. This enables rapid diagnosis in the face of a large number of patients, which is 
important for the prevention and control of epidemics and the treatment of patients. In addition, the dynamic 
adjustment mechanism of the MOAOA algorithm increases the flexibility of the solution process and avoids 
falling into the local optimal solution, which ensures the consistency and reliability of the diagnosis.

It is worth noting that the model only serves as an auxiliary tool for physicians and is intended to provide 
valuable reference opinions for medical professionals, rather than replacing the professional judgment of 
physicians. The model still has some limitations in relevant aspects, such as The model has certain requirements 
on the quality of CT images, otherwise it will affect the diagnostic accuracy of the clinical data. Furthermore, 
real-time diagnosis continues to pose significant challenges, especially in emergency situations or large-scale 
screening efforts.The ability to quickly process large numbers of CT images and provide accurate diagnostic 
results remains a key issue.

In the future, the MOAOA-BiLSTM model can be deployed in internet of things and cloud-based diagnostic 
tools to assist remote patients, it can be further extended into a multimodal model that combines different 
data sources such as breathing sounds, blood monitoring data, etc. In addition, the MOAOA-BiLSTM model 
can be applied to radiological image analysis, detecting complex abnormalities, diagnosing other image-related 
diseases. Combined with XAI technologies such as SHAP and Grad-CAM, it attains more intuitive visualization 
while providing accurate diagnostic recommendations. With the growing prevalence of wearable devices and 
smart health monitoring systems, this model can be integrated into daily health monitoring tools, enabling 
real-time monitoring and analysis of patient health data. This integration will facilitate the prevention of disease 
progression and ensure patient safety by providing timely medical interventions.

Data availability
The datasets used during the current study are available at Mendeley Data and Kaggle via link ​h​t​t​p​s​:​/​/​d​a​t​a​.​m​e​
n​d​e​l​e​y​.​c​o​m​/​d​a​t​a​s​e​t​s​/​d​b​4​w​d​y​7​c​d​f​/​1​​​​ and ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​f​​r​a​n​c​i​s​​​m​o​n​/​c​​u​r​a​​t​e​​d​-​c​o​v​​i​​d​1​9​-​c​​​h​e​s​t​​-​​x​
r​a​y​-​d​a​​t​a​s​e​t​/​d​a​t​a. Data and code can also be requested from corresponding author.
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