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OPEN A BiLSTM model enhanced

with multi-objective arithmetic
optimization for COVID-19
diagnosis from CT images

Liang Chen?, Xin Lin?, Liangliang Ma? & Chao Wang?**

In response to the relentless mutation of the coronavirus disease, current artificial intelligence
algorithms for the automated diagnosis of COVID-19 via CT imaging exhibit suboptimal accuracy and
efficiency. This manuscript proposes a multi-objective optimization algorithm (MOAOA) to enhance the
BiLSTM model for COVID-19 automated diagnosis. The proposed approach involves configuring several
hyperparameters for the bidirectional long short-term memory (BiLSTM), optimized using the MOAOA
intelligent optimization algorithm, and subsequently validated on publicly accessible medical datasets.
Remarkably, our model achieves an impressive 95.32% accuracy and 95.09% specificity. Comparative
analysis with state-of-the-art techniques demonstrates that the proposed model significantly
enhances accuracy, efficiency, and other performance metrics, yielding superior results.
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The ongoing COVID-19 pandemic has demonstrated a swift global spread, posing a serious threat to human
health and life! . The exponential proliferation of COVID-19 has exerted significant strain on the healthcare
infrastructure, underscoring the critical importance of prompt diagnosis for effective treatment and
containment?. It is imperative to develop efficacious diagnostic modalities for COVID-19 to enable clinicians to
swiftly and accurately identify affected patients, thereby facilitating the implementation of necessary isolation
and therapeutic interventions. Despite being deemed the “gold standard” for diagnosing COVID-19, the
reverse transcription-polymerase chain reaction (RT-PCR) method of nucleic acid detection yields occasional
false negatives, and its sensitivity remains limited®>7. In real-world scenarios, it is common to miss COVID-19
patients, thus RT-PCR fails to fully satisfy the diagnostic requirements for the disease. A range of medical
imaging techniques can serve as alternative methods to RT-PCR for COVID-19 detection, such as computed
tomography (CT), chest X-ray (CXR)® and magnetic resonance imaging (MRI)®. Researchers have found that
chest CT scans can non-invasively provide comprehensive information on the lung structure of patients, offering
high accuracy in the early diagnosis of COVID-191%!!. In addition, the convenience of CT imaging enables
real-time monitoring of the patient’s condition, providing strong support for timely treatment and effective
disease control. As a result, computed tomography (CT) imaging and RT-PCR have been adopted as an ancillary
diagnostic tool and have proven its utility and efficacy'>!3. While CT exhibits superior sensitivity, its operational
efficiency remains suboptimal. The evaluation of each case takes a long time, even for experienced radiologists'*.
Consequently, the development and enhancement of computer-aided diagnosis (CAD) systems is crucial'>16.
This progression will facilitate faster and more efficient COVID-19 diagnosis, thereby alleviating the burden on
healthcare systems.

Amidst the swift advancements in artificial intelligence (AI) technology, deep learning methodologies have
demonstrated significant potential in the evolution of computer-aided diagnosis (CAD) systems'”!%. Deep
learning methodologies are capable of comprehensively and automatically extracting feature information from
data, efficiently processing and analyzing large-scale datasets, significantly reducing human errors. Through
continuous self-optimization, deep learning improves prediction and analytics accuracy'. In the field of medical
imaging, deep learning excels in image classification and segmentation, automatically identifying different
types of lesions, which enhances treatment effectiveness and precision?’. Among deep learning methods, deep
bidirectional long short-term memory (BiLSTM) is widely applied in the classification and diagnosis of medical
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images?!. The BiLSTM architecture, comprising numerous forward and backward LSTM layers, mitigates the
limitations inherent in the individual LSTM units®?, its two-way learning mechanism enables it to efficiently
capture both forward and backward information in sequence data, thereby comprehensively understanding
the relationships between image features. BILSTM not only reduces network variance but also accelerates
the computation of network weights and biases, thus enhancing the model stability. In addition, the BILSTM
network has better classification and generalization performance. Currently, BILSTM have been extensively
applied in the field of medical imaging diagnosis, thereby providing robust support for the advancement of
personalized medicine. Yang et al.> established a whale optimization algorithm-bidirectional long short-term
memory model, which demonstrates high accuracy in predicting the number of COVID-19 infections. This
model is beneficial in helping epidemic control authorities in formulating effective containment measures.
Alkhodari et al.** appiled a deep learning model based on smartphone breathing sounds to differentiate
between COVID-19 infected individuals (including asymptomatic cases) and healthy individuals, which was
experimentally demonstrated to have high accuracy. Aslan et al.?> proposed two deep learning models for the
automatic detection of COVID-19 positive cases using chest CT X-ray images, the experiments demonstrated
that both models achieved satisfactory results. Although the BIiLSTM network model has many advantages, it
contains a large number of hyperparameters?. These parameters have an important impact on the efficiency of
the BiLSTM architecture. Manually adjusting these parameters is cumbersome and time-consuming, In order to
solve the above problems, we integrated an optimization algorithm into the construction of the BiLSTM model
to perform multi-objective optimization of its hyperparameters in this paper, thereby reducing errors associated
with suboptimal hyperparameter settings.

The Arithmetic Optimization Algorithm (AOA) proposed by Abdullah et al.>” in 2021, is a novel optimization
algorithm inspired by basic arithmetic operations. By simulating the characteristics of these operations, AOA
performs the search process and optimizes complex problems.Compared with other methods, the AOA has
the advantages of high computational efficiency, low resource consumption, strong global search capability
and dynamic adjustment. Currently, AOA has been widely applied in fields such as machine learning, image
processing, engineering optimization, medical diagnosis, and financial analysis?®-*!. Additionally, AOA can be
combined with existing methods to address various complex problems, such as hybrid AOA, adaptive AOA,
and multi-objective AOA. A novel multi-objective arithmetic optimization algorithm (MOAOA) is initially
proposed, and a sophisticated deep BiLSTM model is developed to facilitate the automatic recognition of
COVID-19 from CT images in this paper. The MOAOA is employed to optimize the hyperparameters of the
deep BiLSTM network. This approach autonomously extracts salient features from patient lung CT images
and conducts classification diagnosis. The core innovation of this study is the introduction of the MOAOA
algorithm to tune the hyperparameters of the deep Bi-LSTM model. This initiative effectively avoids the
problem of misdiagnosis caused by improper parameter settings. The dynamic tuning mechanism of MOAOA
algorithm can effectively prevent the model from falling into local optimal solutions. It occupies low medical
resources while meeting the high accuracy requirements of COVID-19 for CT image diagnosis. The MOAOA
optimization technique meticulously adjusts the network’s hyperparameters and optimizes diagnostic metrics to
achieve optimal accuracy, sensitivity, specificity, and F1 score.

The main contributions of this work are summarized as follows.

o We propose a improved multi-objective arithmetic optimization method and verify its optimization perfor-
mance by four benchmark functions.

o An effective MOAOA-BiLSTM model for autonomous diagnosis of COVID-19 CT images is proposed.

o The performance of BiLSTM networks largely depends on the selection of hyperparameters. Improper selec-
tion of hyperparameters in BiLSTM networks may lead to more false negatives. Effectively utilize MOAOA to
optimize the BiLSTM network with hyperparameters.

o We conduct a number of experiments using a COVID-19 dataset of chest CT images to compare the perfor-
mance of our proposed model with existing methods for classifying COVID-19 patients. Our study provides
a viable solution for early diagnosis and surveillance of COVID-19 and has potential clinical applications.

This study primarily concentrates on the development and testing of the proposed MOAOA-BiLSTM for automatic
diagnostics. The paper is structured as follows. Section “Related work” provides an overview of the existing
research. Section “Methodology” introduces the COVID-19 automatic diagnosis model and its calculation
process based on the MOAOA algorithm optimized BiLSTM. Section “Multi-objective arithmetic optimization
algorithm” evaluates and analyzes the performance of multi-objective algorithm optimization algorithm. Section
“Experimental examples of COVID-19 CT classification” presents a comprehensive comparison between the
proposed method and existing approaches, followed by a detailed discussion of the experimental results. Finally,
Section “Conclusion” describes the key conclusions and prospects.

Related work

The integration of deep learning methodologies in detecting and identifying COVID-19 has exhibited exceptional
efficiency and resilience®?. This section comprehensively reviews current deep learning-based methodologies
employed in the classification and diagnosis of pulmonary diseases using CXR (chest X-ray) and CT imaging
modalities.

Zhao et al.’® established a publicly available COVID-CT dataset, which includes 275 confirmed positive
CT scan samples for COVID-19, with the intent of advancing research and development in deep learning
methodologies. Kaur extit et al. proposed a COVID-19 diagnosis methodology predicated on transfer learning
techniques, utilizing architectures such as ResNet50 and MobileNetv2. Loey et al.* utilized a conditional
generative adversarial network built upon a deep transfer learning model to enhance the precision of COVID-19
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classification. Soares et al.* established a publicly available CT scan data set for the type 2 SARS coronavirus

and achieved good results using deep learning methods to analyze whether a person was infected with SARS-
CoV-2. Abbas et al.?’. utilized a deep Cellular Neural Network (CNN), built on the principles of decomposition,
transmission, and synthesis, to categorize COVID-19 chest radiographs. Lins et al.*® presented a deep learning-
based approach to assess the presence of COVID-19-related findings on CT images, as a supportive diagnostic
mechanism.

Conventional deep learning techniques, when applied to chest CT scan analysis, exhibit overfitting due to
the use of an extensive array of features for categorization®*. Consequently, the scalability of these approaches to
larger datasets remains questionable®’. Another problem with traditional deep learning solutions is that when
considering supervised learning and using backpropagation to update the connection weights of neural networks,
gradient disappearance and explosions are serious obstacles to successfully training recurrent neural networks*!.
The popular LSTM provides forgetting gates and memory gates to prevent or reduce gradient disappearance
or explosion, effectively overcoming gradient vanishing problems in long-term sequences of recurrent neural
networks in traditional deep learning.

Hochreiter et al.*? used the recurrent neural networks (RNNs) of LSTM memory units to solve the problem
that backpropagation learning takes a long time to store information at long intervals. Persio et al. emphasized
the significance of carefully selecting and preprocessing input features for learning algorithms in their proposal
of a method to predict stock market indices using Artificial Neural Networks*®. Felder et al.** appiled LSTM to
predict the time probability distribution of the power output, successfully performed a 48-hour power forecast
using historical data from wind farms and compared it with multi-layer perceptrons and baseline predictors.
Edward et al.*> developed an artificial intelligence doctor called “Doctor AI”, which used LSTM time models to
cover observed medical conditions and drug use. Maknickiené et al.* demonstrated through statistical analysis
that the improved algorithm significantly improves the reliability of prediction results based on evolutionary
recurrent neural networks for LSTM. LSTM is a one-way recurrent network that only uses the content in the
previous text and cannot consider the information of the “following text™®’. It has disadvantages in parallel
processing, long running time, and low efficiency®.

In response to the above issues and the long-term co-existence and continuous mutation of the COVID-19
virus with humans, we choose BiLSTM as the autonomous diagnostic model for COVID-19 CT images. BILSTM
is a bidirectional LSTM that combines information from input sequences in both forward and backward
directions, effectively utilizing hardware resources and improving work efficiency***’. The BiLSTM network
model encompasses an extensive array of hyperparameters, the selection of which significantly impacts the
accuracy and efficiency of COVID-19 CT image autonomous diagnosis. The examination of relevant literatures
reveals the development of numerous strategies and techniques dedicated to the automatic generation of neural
network structures. The use of optimization and evolution techniques to optimize connections and topology has
been proven to have significant advantages®'~>%, among which the most commonly used is based on optimization
algorithms®%. Some famous algorithms include Particle Swarm Optimizer (PSO)%°, Genetic Algorithm (GA),
Artificial Be Colony Algorithm (ABC)*’, Cultural Algorithm (CA)®, Fire Algorithm (FA)*’, etc., which have
been successfully applied to COVID-19 CT image classification and diagnosis. In order to improve the accuracy
and computational efficiency, several improved optimization algorithms and hybrid optimization algorithms
have also proved the progressiveness of this field. For example, Accelerated Gravitational Search (AGS)®,
Improved Grey Wolf Optimizer (IGWO)®!, Particle Swarm Optimization and Cultural Hybrid Algorithm (CA-
PSO)%2 Electromagnetic Firefly Algorithm (EFA)®, and so on. Although the improved optimization algorithm
mentioned above can effectively improve the accuracy of classical algorithms, its accuracy and effectiveness are
still relatively low, and the complexity of the algorithm also increases accordingly.

A recently developed metaheuristic algorithm, known as the arithmetic optimization algorithm (AOA),
leverages the distribution characteristics of principal arithmetic operators in mathematics. It displays
commendable performance in solving optimization issues, a claim proven in diverse fields such as mathematics,
physics, and medicine as cited in references®*-*’. Due to the simple structure and high optimization efficiency
of AOA, various modified AOA have been developed®®. Dieu et al.®®, integrate Differential Evolution (DE)
with AOA to enhance the precision of the truss optimization design. Stankovic et al.*” demonstrated that the
proposed hybrid algorithm optimization algorithm had superior performance compared to standard AOA, and
the optimized structure could assist medical personnel in early diagnosis. In addition, Ewees et al.”® combined
genetic algorithm (GA) operators with traditional AOA and proposed an improved AOA optimization
method called AOAGA feature selection method. The findings suggest that this approach has identified novel
optimal solutions for numerous test cases, yielding results that are superior to those of alternative methods.
The above work shows that AOA and improved AOA optimization algorithms have been applied in various
fields and achieved outstanding results. However, it is worth noting that research on multi-objective arithmetic
optimization methods in automatic disease diagnosis has not yet been involved. This paper presents a Multi-
Objective Arithmetic Optimization Algorithm (MOAOA) to optimize the BiLSTM architecture with the goal of
boosting computational efficiency, improving accuracy, and enhancing generalization capabilities.

Methodology

LSTM principle

The Long Short-Term Memory (LSTM) network?, a highly sophisticated development beyond traditional
Recurrent Neural Networks (RNNs), integrates an internal cell state mechanism within its structure to control the
circulation of extensive information. And it greatly alleviates the long-term dependency problem of traditional
RNN models, reduces the loss of long-distance historical information, and produces more accurate prediction
results. Figure 1 illustrates the structure of the LSTM network.
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Fig. 1. LSTM network cell structure..

Formally, the operations executed inside an LSTM cell can be depicted by the subsequent mathematical
formulas”.

fr = o(wglh—1), ze] + by) (1a)

Iy = o(wilh—1), me] + bi) (1b)

C: = tanh(we * [h_1y, @] + be) (1o)
Ci = f:Cru_r)+ I % C; (1d)

O¢ = o(wo * [h(t—1), Tt] + bo) (le)
hy = Oy * tanh(C}) (1f)

where w and b are the matrices for weight coefficients and biases respectively. The sigmoid activation function is
denoted as 072. Additionally, tanh represents the hyperbolic tangent activation function. C is the current state
value of the unit, whereas h; is its output value. Furthermore, i;, O¢, and f; signify the activation functions for
the input gate, the output gate, and the forget gate, respectively.

BiLSTM principle
To address the limitation that LSTM units can process previous content but cannot use future content, BiILSTM
incorporates a combined feature extraction method using forward and reverse sequences’®. The two LSTM
networks—one operating in the forward direction, the other in reverse—process the input sequence to distill
features. The output vectors (i.e., extracted feature vectors) produced by the two LSTM networks are conflated
into a single word vector, which stands as the ultimate representation of the word’s distinct features. Compared
to a single LSTM structure, the BILSTM demonstrates higher efficiency and performance in extracting local
features, as shown in Fig. 2.

The calculation method of the reverse layer LSTM is similar to that of the forward layer LSTM, where the
direction is reversed to obtain subsequent information, i.e.,

hy =f(wpize + wpahi—1) )
hy =f(wp1ze + we2hit1) (3)

where hy denotes the output value of the forward LSTM network, hy symbolizes the output value from the
backward LSTM network. The final output result of the hidden layer is calculated by

yi = g(worhy + wozhs) 4)
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Fig. 2. BiLSTM structure diagram.

BiLSTM is employed to deal with the problem of high variance in deep neural network training in this paper.
The parallel training of numerous neural networks for classification or diagnostic functions not only decreases
network variance but also bolsters the generalization competence of the neural network. The implementation
of BiLSTM necessitates the calibration of the network’s weights and biases. Critical hyperparameters, including
batch size, learning rate, momentum, number of epochs, and regularization coeflicients, exert a significant
influence on the efficacy of gradient descent optimization. Therefore, the fine-tuning of these hyperparameters
is imperative to enhance the performance of BILSTM neural networks.

Multi-objective arithmetic optimization algorithm

Multi-objective optimization problems

Multi-objective optimization (MOP) refers to an optimization challenge where multiple objective functions are
evaluated concurrently in the decision-making process. The general formulation of MOP is expressed as

Minimize/Maximize F(x) = (f1(x), f2(x), ..., f&(x)) (5)
Subject to  ¢gi(x) <0, i=1,2,...,m (6)
hi(x) =0, j=1,2,...,p )

where x stands for the vector of decision variables, g;(x) and h;(x) represent the inequality and equality
constraints respectively. In contrast to single-objective optimization issues, multi-objective problems yield a
series of outcomes. These are known as Pareto optimal solutions, and the compendium of all objective space
vectors corresponding to this set is labeled as the Pareto front’.

To rigorously assess the efficacy of optimization algorithms within the context of multi-objective optimization
problems (MOP), four widely recognized evaluation metrics were employed”>7°. The metrics used in this study
to evaluate the performance of the optimization algorithm are the Inverted Generational Distance (IGD),
Spacing (SP), Hypervolume (HV), and the Diversity Metric (A). Each of these metrics is defined as follows.

Z:Z{ (di)? (8)

Npf

IGD =

where d; represents the Euclidean distance between the ith acquired candidate solution and the closest solution
among the actual Pareto solutions, n,,¢ signifies the total count of actual Pareto solutions.

Mo

1 _
Sp= noflz(di—d)Q ©)

=1

where d; denotes the minimum distance from the ith solution to the other solutions, and d is the mean of d;.
HV =6 (ul’;q‘ ei) (10)

where § represents Lebesgue measure of hypercube volume, 6; denotes hypercube volume constituted by the
corresponding reference point and the ith solution.
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dr +de +3 " d, —d
A: ! p=1 | p, ’ (11)
df +de + (no — 1)d

where d;, denotes the Euclidean distance among the acquired candidate solutions, d represents the average value
of dp, n, indicates the count of candidate solutions within the obtained Pareto solutions. The variables dy and
d. correspond to the Euclidean distances between the obtained extreme solutions and the boundary solutions,
respectively.

Arithmetic optimization algorithm

The arithmetic optimization algorithm (AOA) is a novel metaheuristic optimization algorithm that draws
inspiration from the mixed quadratic operations in arithmetic, as proposed by scholars Abualigah et al.5. To
determine the most effective optimization framework within a feasible temporal constraint, AOA integrates
a mathematical function accelerator to delineate the optimal approach. This paradigm segregates the entire
procedure into the exploration and exploitation phases, employing multiplicative and divisive operations to foster
comprehensive exploration, while harnessing additive and subtractive operations to augment local exploitation.
These two phases are systematically selected based on models that correlate with the current iteration number
tas

Tmax - 7—'min

T (12)

pt:Tmin+t><

where p; is the interpretation threshold for the P iteration M _Iter. Timax and Tiin are the maximum and
minimum values of the acceleration function, respectively. T is maximum number of iterations. In cases where
stochastic variable 71 is found to be less than p;, AOA transitions to the global exploration phase. Conversely, if
71 is greater than or equal to p;, the algorithm advances to the local exploitation phase.

In the exploration phase, the AOA operator randomly explores the search area in multiple regions and
searches for better solutions based on the two main division operators (D) and multiplication operators (M).
The next position x¢1 is given as

Toir = { Toest ~ (MOP(E) +€) X ((xu — 1) X p+ 1), ry < 0.5, (13)

Thest X MOP(t) X ((zo — x1) X pp + 1), otherwise

where Tpest represents the j-th best solution so far, u = 0.5 is the search process control coefficient’”. and z.,
and z; are the upper and lower bound of the variable respectively. r2 is a random number between 0 and 1. The
mathematical optimization probability MOP is

t\1 /o
MOP(t) = 1 — (f) (14)
T
where « stands for a sensitive parameter”’.
During the exploitation phase, AOA is subject to local refinement through additive (A) and subtractive (S)
mechanisms. These approaches are characterized by negligible dispersion and facilitate prompt convergence to
the target, thus expediting the identification of the optimal solution. The formula is given as

Ti41 = { These — MOP(t) X (2o — 20) X p+21), rz < 0.5, (15)

Thest + MOP(¢) X ((xu — x1) X o+ 7). otherwise
where r3 stands for a random number between 0 and 1.

Multi-objective arithmetic optimization algorithm

The grid method represents a prevalently utilized multi-objective optimization technique for deriving Pareto
solutions within multi-objective optimization frameworks. This methodology entails the establishment of a
regular grid within the objective space to rigorously search for and assess potential solutions, thereby attaining
equilibrium among diverse objectives75. The selection of the leader Zjcqqer from the non-dominated Pareto set
in the context of the grid method should be executed as

max f;' — minfi"

AP = -

(16)

where M is the number of grids, and F; denotes object space value for the i-th object. To expand the range of the
Pareto Front (PF), the procedure should select a non-dominated solution in the sparsest region of corresponding
objective space. This algorithm commences by partitioning the objective space of the Pareto non-dominated set
into several equal regions. Subsequently, the procedure identifies one solution as the leader on the likelihood that
inversely correlates with the density of the solution set within the restricted unit interval. The selection of leader
in division of objective space is shown in Fig. 3, The probability of selected solution in current area is

8oy

P, =e Mset (17)
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Fig. 3. The division of objective space and selection of leader in MOAOA. @ represent non-dominated
solutions, y represent the selected leader.

where k is the corner mark of current area. /3 is a parameter controlling the pressure of probability. ms, represents
number of solutions in current area and m..: denotes total number of solutions in Pareto non-dominated set.

In the MOAOA algorithm, the Zjeader is chosen from the external archive through the roulette wheel
selection method, as explained in Eq. (16). Afterward, the particle’s position is updated by Egs. (13)-(15), while
the non-inferior solutions from the population are incorporated into the external archive.

To update the Pareto no-dominated set, the program calculates the objective function expressed in the current
iteration. If F(x) is dominated by any objective value in the current set, the iteration value will be abandoned.
Otherwise, the iteration value of the solution will be added into the Pareto no-dominated set and the pro-
gram will wipe out all the solutions dominated by the current solution immediately. For controlling the size

of no-dominated set, the program will delete the solutions randomly while the element number exceeds the
pre-set size of set. The deleting process preferentially selects the high-density solutions in the objective space
to enhance the homogeneity of Pareto set. The deleting process preferentially selects the high-density solutions
in the objective space to enhance the homogeneity of Pareto set. Based on the above content, Algorithm 1
provides a pseudocode flowchart for the proposed MOAOA.

Input. The size of the whole swarms N, maximum number of iterations itermax, ¢, 1 and bounds of variables UB and LB.

Initialize a set of candidate solutions (X) and initial archive.
Initialize iter < 1
while iter < iterpax do
Calculate the value of MOA and MOP and generate random value r1, r, and r3.
Create grid of archive space and calculate the spatial density of the archive.
Sort the solutions in the archive and select the leader of the current iter.
if r; > MOA do
Exploration phase
if , <0.5do
Update the positions of i th solutions making use of the first rule in Eq. 13.
else
Update the positions of i th solutions making use of the second rule in Eq. 13.
end if
else
Exploitation phase
if 3 <0.5do
Update the positions of i th solutions making use of the first rule in Eq. 15.
else
Update the positions of i th solution making use of the second rule in Eq. 15.
end if
end if
Check the boundary limitation and calculate the cost value of the given solutions.
Determine the nondominated solutions and update the archive.
iter < iter+1
end while
Output Return the archive as Pareto solutions.

Algorithm 1. The proposed Multi-objective arithmetic optimization algorithm.
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Optimization of BiLSTM based on MOAOA for COVID-19 automatic diagnosis model
Model evaluation indicators
In our research, we implement a variety of evaluation criteria to assess the proficiency of each predictive model
constructed using diverse supervised deep learning algorithms’®. These evaluation criteria employ a confusion
matrix to distinguish between accurate and erroneous outcomes, utilizing various classification metrics such as
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

The accuracy of algorithm performance, an important indicator for techniques utilized both pre-processing
and post-processing, can be evaluated through a scale composed of TP and TN. The accuracy follow as

(TP + TN)
(TP + TN + FP + FN)

Accuracy = (18)

Specificity quantifies the proportion of individuals who tested negative for COVID-19 out of the total population
of uninfected individuals, and it is given as

TN

Specificity = m

(19)

Precision represents a key measure for assessing the merit of technical performance methods executed prior to
and following algorithmic processing. The precision scale and error rate comprises TP and TN. The precision
can be obtained as

Precision = L 20
= (TP +FP) (20)

Recall is a measure computed by the ratio of TP to the sum of TP and FN, serving as a critical indicator for
quantifying correct predictions and assessing the impact of data imbalance on outcomes. Recall can be solved by

TP
Recall = (] (21)

F1 Score is considered one of the important indicators sensitive to mismatched data and affecting efficiency
results, which is calculate computed as

_ Precision X Recall
F1 Score = 2 x Precision+Recall (22)

Model process

This manuscript proposes a BILSTM COVID-19 autonomous diagnostic model based on MOAOA, which
automatically classifies CT images as Non-COVID-19, COVID-19, and pneumonia patients. The convolutional
neural network (CNN) is used to extract 128 features from the dataset, which served as input to the BILSTM model.
Moreover, Cross-validation partitioned the dataset and validated it in multiple cycles, confirming the model’s
generalization ability. The performance of the model training is significantly dependent on the appropriately
chosen hyperparameters. The proposed MOAOA method is employed to optimize these hyperparameters.
In addition, before model training, we perform duplicate data removal, missing value processing, and data
normalization operations. Subsequently, we use random oversampling and undersampling to balance the
dataset and apply data enhancement techniques such as rotation, flipping, cropping, and brightness adjustment
to improve the diversity of the data. The flow diagram of our proposed COVID-19 diagnostic model is illustrated
in Fig. 4.

Performance testing of multi-objective arithmetic optimization algorithms

We used a series of Zitzler-Deb-Thiele (ZDT)® functions to validate the proposed MOAOA and compared
it with NSGA-II®! (deb2002fast) and the original MOPSO®?, the ZDT functions are shown in Table 1. The
parameters for these algorithms are set as follows: kmax=500, N = 100, the maximum size of the archive is set
to 200, and 30 independent runs are performed.

Figure 5 presents the Pareto frontiers generated by various algorithms, figures a, b, ¢, and d correspond to the
ZD1, ZD2, ZD3, and ZD4 test problems, respectively. The MOAOA accurately captures the true Pareto Frontier
(PF) compared to NSGA-II and MOPSO. Table 2 summarizes the statistical data for various performance metrics
across different multi-objective optimization algorithms, the bold values are the best values for the indicator. The
numerical experiments demonstrate that the optimization performance of MOAOA surpasses those of NSGA-II
and MOPSO.

Experimental examples of COVID-19 CT classification

In this section, the correctness of the MOAOA-BiLSTM model is demonstrated through two sets of real-world
datasets. The proposed MOAOA-BiLSTM model is utilized for automatic diagnosis in two image datasets, with
its performance evaluated based on accuracy, recall, precision, and F1 score metrics. The proposed method
is compared and analyzed through experiments using various diagnostic and optimization algorithms to
demonstrate its effectiveness and accuracy. The selected parameters of MOAOA are presented in Table 4,
including the learning rate, number of epochs, L2 regularization factor, and the number of hidden nodes. To
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Fig. 4. The flowchart of MOAOA-BiLSTM model for COVID-19 diagnosis.

Name | Formula and variables Optimum functions
fi=z1 m

o |27 o @i/ (m =1 0<z <1
h=1—+/f1/9 and z; =0 fori=2,...,n
m =30, xz; €[0,1]
P 0. S w m - 1)
g=1+4+9- oz (m — 0<z; <1

ZDT2 | — (f1 gf?z and z; =0 fori=2,...,n

m =30, z; €1[0,1]

0 < 1 < 0.0830

f1= 11 or 0.1822 < z1 < 0.2577
- . m . - . <z < 0.
. 1492, ,@i/(m—1) or 0.4093 < z1 < 0.4538
h=1-— f1/9 — (f1/g)sin (107 f1) or 0.6183 < z; < 0.6525
B A or 0.8233 < z; < 0.8518
m =30, =;€0,1] and z; =0 fori=2,...,n
fi=z1
— _ m 2 _ .
. g=14+10(m—1)+ Zi:2 (ml 10 cos (47Tx1)) 0 Sdml < (1) .
h=1-/Fi/g~ (f1/g)sin (10mf) and iz =0 fori=2...,n
m =10, z1 €1[0,1] and z2,...,Tme[—5, 5]

Table 1. The ZDT functions of multi-objective optimization®.
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Fig. 5. Comparison of pareto fronts of different algorithms on ZDT test problems. ‘PF’ denote the theoretical
optimal solution for the ZDT series problems.

Functions | Indicator | MOPSO NSGA-II MOAOA
IGD 0.0599/(0.0437) | 0.0395/(0.0087) | 0.0841/(0.0018)
ZDT1 SP 0.007/(0.0048) 0.1124/(0.0011) 0.0033/(0.0003)
HV 0.6714/(0.0307) 0.6741/(0.0106) 0.4251/(0.0034)
A 0.8107/(0.1343) | 0.4239/(0.0593) 0.9257/(0.0199)
IGD 0.2363/(0.0302) | 0.0266/(0.0067) 0.2696/(0.0028)
SP 0.0022/(0.0021) | 0.0032/(0.0003) 0.1616/(0.0917)
ZbT2 HV 0.5621/(0.0322) | 0.4039/(0.0100) 0.4251/(0.0034)
A 0.9543/(0.0341) | 0.4434/(0.0235) | 0.9257/(0.0593)
IGD 0.2411/(0.0207) | 0.0412/(0.0086) 0.0728/(0.0029)
ZDT3 SP 0.0041/(0.0021) | 0.0035/(0.0027) 0.0170/(0.0019)
HV 0.5091/(0.0031) | 0.5880/(0.0186) 0.4251/(0.0034)
A 0.7356/(0.0423) | 0.6845/(0.0223) 0.6536/(0.0211)
IGD 0.0599/(0.0437) | 0.5452/(0.3919) 0.0179/(0.0018)
JDT4 Sp 0.0632/(0.0043) | 0.0042/(0.0057) 0.0708/(0.0082)
HV 0.5428/(0.0342) | 0.2631/(0.2701) 0.8550/(0.0014)
A 0.7653/(0.1587) | 0.6521/(0.1284) 0.9257/(0.0593)

Table 2. Performance comparison of different algorithms on ZDT functions, the indicators’ values are the
means and the variance in brackets. Significant values are in bold.

Application | Operating System | CPU CPU Frequency
MATLAB Windows 7 Intel Core TM | 3.2GHz

Table 3. The device information for the model in this paper.
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Fig. 6. (a) The ROC of MOAOA; (b) The confusion matrix of MOAOA.

Parameters Values
Number of iterations 100
Population size 50

Archive size 100

Learning rate [0.001, 0.01]
Number of epochs [10, 100]

L2 regularization factor [0.0001, 0.001]
Number of hidden nodes | [5, 20]

Table 4. Parameters of MOAOA.

ensure fairness among the algorithms, this study tested all the algorithms in the same environment. The device
information is shown in Table 3.

Dataset 1
This study utilize publicly available CXR images of patients with Non-Covid-19 and Covid-19. The dataset
consists of 3000 images with a resolution of 224 x 224 pixels, half of which are labeled as Non-Covid-19. The
dataset 1 is available on Mendeley Data via the link https://data.mendeley.com/datasets/db4wdy7cdf/1. Before
training the model, the dataset should be provided for pre-processing, with 70% allocated for training and 30%
for testing.

ROC and CM

The classification performance of the MOAOA-BIiLSTM model is evaluated using ROC and CM. The proposed
MOAOA-BIiLSTM model produces better accuracy in the COVID-19 (95.6%) and Non-COVID-19 (95.1%)
categories. Therefore, this MOAOA-BIiLSTM model can be used for automatic screening of COVID-19. ROC
(Receiver Operating Characteristic) and CM (Confusion Matrix) generated from the analysis are depicted in Fig.
6. The ROC curve is a performance measurement tool for classification problems that takes into account various
thresholds. The proximity of the curve to the upper left boundary of the ROC space is directly proportional to the
robustness and accuracy of the proposed model’s outcomes. Figure 6a illustrates the ROC curve of the proposed
MOAOA-BIiLSTM diagnostic model, demonstrating the successful performance of the automatic screening
model presented in this study. The confusion matrix analysis of the proposed COVID-19 disease model is shown
in Fig. 6b. The findings demonstrate that the MOAOA-BiLSTM-based diagnostic model proposed in this article
consistently outperforms in terms of true positive and true negative values. Additionally, the model exhibits
lower false negative and false positive rates.

Performance comparison of different optimizers

This section presents a performance comparison of various optimization algorithms in the BiLSTM model. PSO%,
GWO3, AOA™, NSGA-II34, MOPSO?%>, MOGWO?, and the proposed MOAOA are applied to optimize the
BiLSTM neural network. Table 5 shows the performance analysis of different optimizations, and the results show
that the AOA optimization method has the most stable performance among the single-objective optimization
(SOP) neural networks. Compared to MOP, the generalization of SOP results is better. The MOAOA-optimized
BiLSTM network outperforms other optimization algorithms, delivering the superior performance indicators
for accuracy, precision, specificity, recall, and F1 score.
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True Class

COVID-19

True Class

COVID-19

Normal

Normal

Method | Accuracy | Recall | Precision | Specificity | F1 score
PSO 0.8147 0.6633 | 0.9522 0.9666 0.7819
GWO 0.9332 0.9644 | 0.9079 0.9018 0.9353
AOA 0.9388 0.9689 | 0.9140 0.9085 0.9407
NSGA 0.9477 0.9422 | 0.9528 0.9531 0.9475
MOPSO | 0.9215 0.9400 | 0.9068 0.9030 0.9231
MOGWO | 0.9399 0.9511 | 0.9304 0.9286 0.9407
MOAOA | 0.9532 0.9556 | 0.9513 0.9509 0.9534

41

Table 5. The performance comparison of different optimizers.
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Fig. 7. Confusion matrix of different optimizers with BiLSTM.

The performance comparison of different optimization algorithms in CM and ROC is shown in Figs. 7
and 8, figures a, b, ¢, d, e, and f correspond to the results obtained using the AOA, GWO, MOGWO, PSO,
MOPSO, and NSGA algorithms, respectively.

Through analyzing and comparing Figs. 6b and 7, it is obvious that The proposed MOAOA optimized BiLSTM
model exhibits excellent performance, achieving a maximum accuracy of 95.32%, an accuracy of 95.13%, a recall
of 95.56%, and an F1 score of 95.34%. Compared to other optimization algorithm models, the BILSTM model
optimized by MOAOA demonstrates superior accuracy and performance.

Figure 8 compares the ROC curve of existing optimization models. The efficiency of the MOAOA optimization
model is demonstrated by displaying nearest ROC curve in the upper left corner. By analyzing and comparing
all the curves in Figs. 6a, 8, the MOAOA optimization model demonstrates superior accuracy and generalization
compared to others.

Performance analysis with different neural networks

In this section, we utilize six established deep neural networks for the purpose of image classification and
diagnostic analysis: Extreme Learning Machines (ELM)¥, Radial Basis Function Neural Network (RBFNN)38,
CNN®, Random Forest (RF)*°, LSTM?!, and BiLSTM of the proposed MOAOA optimization algorithm. The
performance comparison indicators of these networks include accuracy, specificity, sensitivity, precision, and F1
score, as shown in Table 6. The statistical results show the comparison between this study and recent studies. In
terms of accuracy, the RBFNN network performs the worst with a result of 0.9031, while the BILSTM method
achieves the highest accuracy at 0.9532. Regarding Recall, the Random Forest method is the best, with a Recall
value of 0.9778, followed by the BiLSTM method at 0.9556. In terms of Precision and Specificity, the BILSTM
method outperforms all others, with corresponding values of 0.9513 and 0.9509, respectively. These comparisons
indicate that the optimized BiLSTM model demonstrates superior accuracy, specificity, sensitivity, and F1 score
compared to other deep learning networks, highlighting its high efficiency and generalization capabilities.
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Fig. 8. ROC of different optimizers with BiLSTM.
Method Accuracy | Recall | Precision | Specificity | F1 score
ELM 0.9131 0.9533 | 0.8827 0.8728 0.9167
Random forest | 0.9444 0.9778 | 0.9278 0.8713 0.9215
RBFNN 0.9031 0.9156 | 0.8937 0.8906 0.9045
CNN 0.9254 0.9444 | 0.9101 0.9062 0.9269
LSTM 0.9465 0.9511 | 0.9427 0.9420 0.9469
BiLSTM 0.9532 0.9556 | 0.9513 0.9509 0.9534

Table 6. Performance comparison of different neural networks with MOAOA.

Dataset 2

To further validate the accuracy and efficiency of the model constructed, we apply another dataset. The
dataset 2 is available on Mendeley Data via the link https://www.kaggle.com/datasets/francismon/curated-co
vid19-chest-xray-dataset/data. The accuracy and loss of the optimized BiLSTM model for high-dimensional
datasets are evaluated, as shown in Figs. 10 and 11. These figures compare the performance of the BiLSTM
neural network optimized using MOAOA and AOA in terms of accuracy and loss. Figure 10 illustrates that the
accuracy of training and validation increases linearly and remains stable for an extended period after a certain
point, indicating that the model is well fit (without underfitting or overfitting. Figure 11 presents the loss curve,
which shows that there are slight variations in training and validation losses. The MOAOA optimization model
achieves the highest accuracy with minimal loss compared to the AOA model. Furthermore, the optimization
model remains stable during long-term iterations. In Figs. 10 and 11, subfigures (a) and (b) represent the AOA
and MOAOA, respectively.

Figures 9b, 12 present the confusion matrices for the COVID-19 dataset (Class 3) alongside the three classes
(Class 1: normal, Class 2: pneumonia, and Class 3: COVID-19) under different optimization algorithms, which
are employed to assess the model’s sensitivity. As shown in Figs. 9b and 12, the MOAOA optimization algorithm
achieved correct prediction rates of 90.7% for normal images, 90.7% for pneumonia images, and 98% for
COVID-19 images, all surpassing 90% accuracy, demonstrating the algorithm’s high accuracy. In comparison,
the MOGWO optimization method predicted pneumonia with an accuracy of 99%, but its COVID-19 prediction
accuracy was only 85.7%. Meanwhile, the MOPSO optimization method achieved a COVID-19 prediction
accuracy of 99.7%, but its pneumonia prediction accuracy was only 76.7%, significantly below 90%. Among the
three types of predictions-normal, pneumonia, and COVID-19-the MOAOA optimization algorithm proved
to be the most stable and accurate. The ROC curves for the three classes of the BILSTM model under different
optimization methods are shown in Figs. 9a and 13. In Figs. 12 and 13, subfigures (a) to (f) represent the AOA,
GWO, MOGWO, PSO, MOPSO, and NSGA, respectively.
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Fig. 9. (a) The ROC of MOAOA; (b) The confusion matrix of MOAOA.
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The curves in Figs. 9a, 13 illustrate the trade-off between sensitivity and specificity for various optimization
model solutions. The graphs indicate that the MOAOA-optimized model delivers superior results, demonstrating
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that the network model optimized by MOAOA can be reliably utilized for real-time COVID-19 diagnosis.

To further examine the results, this study compares the performance indicators of the proposed MOAOA
optimized BiLSTM network with other state-of-the-art optimization methods. Performance indicators obtained
using the proposed method exhibit superiority over other methods, as depicted in Fig. 14. It demonstrates that
the performance indicators calculated by the MOAOA optimization method maintain the highest stability,
outperform other methods. Specifically, the model achieved an Accuracy of 95.22%, a Precision of 95.42%, a
Recall of 95.22%, and an F1 Score of 95.32%, all of which significantly surpass the results obtained by other

optimization algorithms.
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Conclusion
In this study, we propose a novel COVID-19 automatic diagnosis model, the MOAOA-BiLSTM deep network.
The proposed enhanced MOAOA algorithm can automatically optimize the hyperparameters of BILSTM deep
neural network, solving the problem of irrationality in the setting of BILSTM hyperparameters, improving the
accuracy of COVID-19 diagnosis. By testing the MOAOA optimization algorithm on multiple benchmark
functions, its strong optimization performance and robustness are demonstrated. The proposed automatic
diagnosis model is applied to two publicly available CT image datasets and evaluated using various metrics in
comparison with existing optimization algorithms and deep learning models. Compared to other diagnostic
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Fig. 14. The performance of various optimizers with BiLSTM.

methods, this approach can autonomously diagnose the etiology of the patient’s disease while achieving highly
accurate diagnostic results. This enables rapid diagnosis in the face of a large number of patients, which is
important for the prevention and control of epidemics and the treatment of patients. In addition, the dynamic
adjustment mechanism of the MOAOA algorithm increases the flexibility of the solution process and avoids
falling into the local optimal solution, which ensures the consistency and reliability of the diagnosis.

It is worth noting that the model only serves as an auxiliary tool for physicians and is intended to provide
valuable reference opinions for medical professionals, rather than replacing the professional judgment of
physicians. The model still has some limitations in relevant aspects, such as The model has certain requirements
on the quality of CT images, otherwise it will affect the diagnostic accuracy of the clinical data. Furthermore,
real-time diagnosis continues to pose significant challenges, especially in emergency situations or large-scale
screening efforts.The ability to quickly process large numbers of CT images and provide accurate diagnostic
results remains a key issue.

In the future, the MOAOA-BIiLSTM model can be deployed in internet of things and cloud-based diagnostic
tools to assist remote patients, it can be further extended into a multimodal model that combines different
data sources such as breathing sounds, blood monitoring data, etc. In addition, the MOAOA-BiLSTM model
can be applied to radiological image analysis, detecting complex abnormalities, diagnosing other image-related
diseases. Combined with XAI technologies such as SHAP and Grad-CAM, it attains more intuitive visualization
while providing accurate diagnostic recommendations. With the growing prevalence of wearable devices and
smart health monitoring systems, this model can be integrated into daily health monitoring tools, enabling
real-time monitoring and analysis of patient health data. This integration will facilitate the prevention of disease
progression and ensure patient safety by providing timely medical interventions.

Data availability

The datasets used during the current study are available at Mendeley Data and Kaggle via link https://data.me
ndeley.com/datasets/db4wdy7cdf/1 and https://www.kaggle.com/datasets/francismon/curated-covid19-chest-x
ray-dataset/data. Data and code can also be requested from corresponding author.
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