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Despite the significant advancements made by deep visual networks in detecting surface defects at 
a regional level, the challenge of achieving high-quality pixel-wise defect detection persists due to 
the varied appearances of defects and the limited availability of data. To address the over-reliance on 
defect appearance and enhance the accuracy of defect segmentation, we proposed a Transformer-
based Siamese network with change awareness, which formulates the defect segmentation under 
a complex background as change detection to mimic the human inspection process. Specifically, we 
introduced a novel multi-class balanced contrastive loss to guide the Transformer-based encoder, 
enabling it to encode diverse categories of defects as a unified, class-agnostic difference between 
defective and defect-free images. This difference is represented through a distance map, which is then 
skip-connected to the change-aware decoder, assisting in localizing pixel-wise defects. Additionally, 
we developed a synthetic dataset featuring multi-class liquid crystal display (LCD) defects set within 
a complex and disjointed background context. In evaluations using our proposed and two public 
datasets, our model outperforms leading semantic segmentation methods while maintaining a 
relatively compact model size. Furthermore, our model achieves a new state-of-the-art performance 
compared to semi-supervised approaches across various supervision settings. Our code and dataset are 
available at https://github.com/HATFormer/CADNet.
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Surface defect inspection is crucial in manufacturing to prevent potential quality issues, economic loss, and 
even safety hazards. These defects can manifest in various forms, such as dirt, spots, and fractures. They are 
commonly found across various industrial products, encompassing steel1,2, LED3, and magnetic tile4. Unlike 
semantic objects, the surface defects generally do not have a regular shape, clear interpretation, or continuous 
context with the background, which complicates the application of empirically designed methods5. To facilitate 
the automation of defect inspection, deep learning-based approaches have been widely applied in multi-level 
defect detection. (1) Image-level classification in earlier works focus on classifying whether an image contains 
defects or not, without giving a specific pixel-wise location6–8. In SegNet1 and its variants9,10, pixel-level 
annotations are introduced as auxiliary information to the network yet ultimately output the binary classification 
results. (2) Defect localization at fuzzy level refers to obtaining a relatively fine-grained output without pixel-wise 
supervision. For instance, the class activation map11 refers to a technique that enables the visualization of the 
regions within an image that a convolutional neural network (CNN) focuses on when making a classification 
decision. It is utilized for locating the blurry LED defects3 and industrial anomalies12 with image-level 
supervision. The methods based on non-defective sample modeling13–15, focus on modeling the distribution 
of defect-free data in the training phase, and subsequently assess the deviations in the distribution between 
anomaly and normal samples. Reconstruction-based anomaly detection approaches16–18 aim to reconstruct 
normal data instances based on similarity metrics and then locate and identify anomalies through pixel-level 
differences between the anomalous and reconstructed data19.

While these methods do not necessitate a substantial volume of training data, the absence of meticulous 
supervision results in imprecise pixel-level predictions. (3) Fine-grained segmentation has been increasingly 
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applied for defect detection2,20–23. There exists a paradox between striving for zero defect manufacturing24 
and the availability of sufficient defective samples. To alleviate the shortage of pixel-label annotations, various 
studies have introduced additional priors, including visual saliency25, repeat pattern analysis26, and interactive 
click22. Additionally, these studies have embraced semi-supervised techniques such as pseudo labeling5,27 and 
consistency regularization28, to enhance their approaches further.

A review of existing literature reveals that most defect detection methods remain focused on image-level 
classification6–8 and fuzzy-level localization3,11,12, primarily due to the difficulty of obtaining pixel-wise labels 
in real-world production environments. Some studies have attempted to develop fine-grained segmentation 
methods using semi-supervised techniques5,22,26,27. However, defect segmentation in industrial products such 
as LCD screens, PCBs, and printed materials remains challenging due to complex backgrounds, irregular 
defect shapes, and a lack of sufficient labeled samples. The appearance prior refers to pre-existing knowledge 
or assumptions about the visual characteristics of defects30. This typically involves relying on specific patterns, 
shapes, textures, or other visual cues learned from training data to locate and classify defects. However, these 
aforementioned defect segmentation methods that locate defects based on appearance priors are not reliable 
due to the inherent contradiction between data scarcity and the diverse appearance of defects (see Fig. 1 (d)(e)). 
Limited defect samples can yield a skewed representation of the actual data distribution, subsequently leading 
to deteriorated generalization performance in these appearance-based methods5. It should be emphasized 
that locating defects based on their visual characteristics in industrial products, such as printed circuit boards 
(PCBs), liquid crystal displays (LCDs), and printed publications, presents a substantial challenge. The complex 
and occasionally ambiguous patterns of the background can obscure these defects, consequently increasing the 
complexity of their detection (see Fig. 1 (a)(b)(c)).

Our motivation to transform defect detection into a change detection problem is based on two self-evident 
facts: (1) Obtaining defect-free samples is considerably easier than acquiring defect images. (2) Defect regions 
essentially correspond to the differences between defect-free and defective samples. Identifying defective 
regions proves challenging without a clean reference, even for human observers. In this regard, we propose an 
accurate defect segmentation method based on data simulation and change feature modeling. This approach is 
particularly effective for surface defects with relatively steady but complex background patterns, such as PCB, 
LCD, and printed publications.

Several research gaps persist in current studies. First, there is a lack of sufficient labeled samples for training 
fully-supervised models that can achieve high-accuracy defect segmentation. Second, achieving high-accuracy 
segmentation with limited labeled data remains challenging due to the appearance-based nature of most 
segmentation methods. Third, the fundamental concept that defect detection is primarily based on sample 
comparison has not been fully acknowledged. As mentioned earlier, there is a need to design a method that 
leverages easily obtainable defect-free samples and performs defect segmentation based on a change detection 
mechanism. Additionally, label efficiency and computational efficiency are key considerations when designing 
the model. Addressing these issues is crucial to meet the requirements of real-world production environments 
and to bridge the gaps in current research. To this end, we propose a defect segmentation method that enables 
deep feature differencing between defective and defect-free industrial images. This method is characterized 
by the parallel modeling of defective and defect-free images, contrastive feature learning, and change-aware 
decoding. Specifically, we propose a novel change-aware Siamese network with a change attention mechanism 
to solve pixel-wise defect detection. In the encoding stage, a Transformer-based Siamese network constrained 
by multi-class balanced contrastive loss (BCL) is employed to extract the difference features between the defect-
free and the defective samples. Then, the hierarchical Siamese feature pairs are fused by multi-stage subtraction 
and upsampled to a high resolution. In the decoding stage, the feature distance map is skip-connected to the 
decoder and acts as a change region attention to assist in locating the pixel-wise defects. In contrast to directly 
modeling the defect appearance, our proposed method models the defects as differences between defect-free 

Fig. 1.  The examples illustrate how our change-based and appearance-based methods have segmented defects 
in fully-supervised, semi-supervised, and unsupervised settings. The results in column (d) are derived from 
SegFormer29. The outcomes in column (e) originate from UAPS5. In the prediction maps, green signifies 
missed detections, and red indicates erroneous detections. The term “Err” quantifies the total of these errors. 
Our model outperforms semi-supervised methods and achieves competitive outcomes using only 10% of the 
training samples compared to the fully-supervised model.
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and defective images. Interestingly, we find that this structure exhibits considerable generalization with limited 
labeled samples, as shown in Fig. 1 (f)(g). This can be attributed to our method of learning the deep feature 
difference shown in Fig. 1 (h). For comparison, Fig. 1 (i) shows the noisy results of directly performing image 
subtraction.

Furthermore, the community dedicated to surface defect detection requires a challenging dataset. The 
predominance of smaller datasets obstructs the thorough evaluation of current models. For instance, the 
average precision for commonly utilized datasets such as KolektorSSD10, DAGM20079, and Severstal-Steel10 
has attained the levels of 100%, 100%, and 98.7%, respectively. Given the rapid ascension of LCDs as a leading 
display technology with extensive use in computers and mobile phones, we introduce a novel dataset aimed at 
enhancing LCD defect detection. To summarize, our contributions are as follows:

•	 We propose a change-aware Siamese network for defect segmentation. The modeling mechanism relies on 
changing features between clean and defective images instead of defect appearance, enabling synthetic data 
supervision and unseen class generalization.

•	 To simulate stable but complex background surface defects and to further benefit the field of LCD defect 
detection, we introduce a synthetic LCD defect dataset named SynLCD, which is utilized as a benchmark for 
comparison with other segmentation methods.

•	 The experiments conducted on the SynLCD, PKU-Market-PCB31, and MvTec-AD16 datasets show that our 
network outperforms the current mainstream appearance-based segmentation methods. Additionally, a com-
parison with five state-of-the-art (SOTA) semi-supervised segmentation methods underscores our model’s 
superiority across various supervision levels.

Related works
In this section, we introduce surface defect detection at various levels of detection granularity, along with 
change detection methods. The work most relevant to our study involves anomaly detection methods based 
on reconstruction and differencing. These methods identify the approximate location of general surface defects 
using a differencing process between reconstructed and input images. In contrast, we employ deep feature 
change detection instead of simple differencing in the image space. Our focus is on precise segmentation in 
scenarios where defects can be subtle and potentially obscured during the reconstruction process. This focus is 
crucial to maintaining our primary emphasis on the core issue.

Surface defect detection
Image-label detection. Masci et al.6 applied CNN to steel surface defect detection, highlighting CNN’s 
superiority over manual features. Faghih-Roohi et al.7 explored the impact of network complexity on defect 
detection performance. Racki et al.8 introduced a compact CNN for detecting synthetic textured anomalies by 
incorporating auxiliary segmentation labels alongside the classification task. SegNet1 refined this approach by 
merging the distinct stages of segmentation and classification into an end-to-end training framework. Božič 
et al.10 embarked on an exploration of the impact of varying levels of supervision, from weak to full, on the 
accuracy of defect classification. Moreover, the general principles of feature extraction and handling complex 
data distributions in32 may offer valuable insights in collecting labeled training data efficiently and at a lower 
cost for defect classification. The work on33 emphasized the power of combining multiple models to improve 
accuracy, including preprocessing, feature extraction with multiple feature descriptors, and classification using 
various classifiers. Despite these advancements, early deep learning-based research primarily focused on image-
level defect detection, with limited attention to pixel-wise defect localization.

Fuzzy and region-level detection. Limited by the pixel-wise annotations in the anomaly detection task, 
some studies seek to consult the weak-supervised3,12 and unsupervised learning19. A class activation map11 
is widely used to indicate the potential anomalous regions within an image with only image-level hints3,12. 
However, this merely eases annotation labor but fails to address the fundamental issue of data scarcity. On the 
other hand, the wealth of defect-free data significantly prompts the advancement of non-defective modeling 
and reconstruction-based methods. The non-defective modeling focuses on building an embedding model of 
normal samples and identifying the anomaly instances by measuring their deviation from the latent space. 
Defects are fuzzily spotted by patch-wise representation (e.g., PatchCore13 and ReconPatch14), receptive field 
upsampling34, and gradient back-propagation in a normalizing-flow-based model15. The reconstruction-based 
model is typically trained to reconstruct defect-free samples and identify anomalies, while it fails to generate 
instances. The autoencoder16 and generative-adversarial network (GAN)17 are commonly employed in the 
reconstruction process. A straightforward differencing process between the input and reconstructed samples is 
applied to obtain defect regions, such as the element-wise square distance in EfficientAD18. However, a common 
issue is the occurrence of false-positive detections triggered by imprecise reconstructions of normal images. To 
sum up, due to the absence of pixel-wise annotations for these methods, it remains unclear which image points 
are anomalies, leading to indistinct detection results.

Pixel-wise detection. Recently, there has been a growing focus on pixel-level defect detection extended from 
semantic segmentation models. He et al.21 proposed locating wood defects by adopting the FCN architecture35. 
Huang and Xiang26 adapted the DeepLab v3+ architecture36 with minor modifications for the fabric defect 
segmentation. Du et al.37 extended the U-Net38 into a two-stream structure for segmenting defects in X-ray 
images. More recently, attention mechanisms have been employed for modeling local and global contextual 
dependencies. Dong et al.23 proposed segmenting steel surface defects with global context attention. Yeung et 
al.39 refined SegFormer40 with a boundary-aware module for Transformer-based defect segmentation. The work 
on41 integrated self-attention with dual encoder-decoder for biomedical segmentation with a noisy background. 
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The importance of multi-scale feature learning was emphasized in42 for improving segmentation accuracy. Defect 
segmentation enhances understanding of defective samples but is constrained by the cost of fine-grained labels.

Therefore, some recent studies resort to semi-supervised techniques such as pseudo labeling5,27 and 
consistency regularization28. Pseudo-labeling methods43,44 generate pseudo-labels for unlabeled samples via a 
pre-trained network, potentially enhancing model performance with these additional training signals. However, 
the predictive noise in unlabeled samples can compromise pseudo-label quality, thereby constraining their 
utility. Consistency regularization posits that model predictions for unlabeled samples should remain consistent 
under controlled perturbations, aiming to minimize prediction discrepancies in different scenarios. Various 
heuristics have been introduced for consistency regularization, such as co-training45, mean teacher46, and multi-
head prediction uncertainty5. Additionally, the active learning techniques explored in47 also share a similar 
philosophy of minimizing annotation costs while improving model performance. We provide a comparison 
between these semi-supervised methods and our change-modeling architecture given limited labeled samples 
in Table 6.

Change detection
Image change detection is designed to identify pre-defined differences between the images captured at 
different times48. The primary challenge in change detection lies in differentiating semantic changes from 
noisy alterations, including variations in illumination, saturation changes, and disturbances from irrelevant 
backgrounds.49. It is widely applied in handwritten signature verification50, street scene51, and remote sensing 
change detection48. In ChangChip52, surface defects in PCB are identified through manual image registration 
and comparison. However, it entails prolonged preprocessing times and necessitates hyperparameter fine-tuning 
for image subtraction. Zagoruyko et al.53 pioneered the application of CNN for image comparison. Daudt et 
al.54 further developed an FCN-based Siamese architecture to enable arbitrary-sized image change detection. 
Several studies51,55 have concentrated on introducing contrastive loss56, a pivotal aspect for minimizing the 
distance of unchanged feature pairs while maximizing the distance of changed feature pairs. However, these 
contrastive approaches are primarily designed for binary changes and cause imbalance attention for different 
change categories, as illustrated in Fig. 7.

In our research context, the most relevant studies are background reconstruction methods57,58. These 
innovative works reconstruct flawless images from unlabeled data and employ a differential mapping technique 
between the original and reconstructed images to obtain the final segmentation map. However, the quality of the 
reconstructed image and image-level differencing becomes their bottlenecks.

Method
Problem definition: appearance-modeling vs. change-modeling
Industrial materials like LCD, PCB, and printed products (e.g., books, drawings, and trademarks) exhibit 
relatively consistent appearances and surface patterns when they are defect-free. Based on this observation, we 
simplify the formation process of surface defect images, represented as xng  (where “ng” stands for “not good”). 
This involves overlaying a standard clean image xok, with xdefect in a specific manner, followed by a global 
nonlinear transformation. This process can be formulated as:

	 xng = σ(xok ⊞ xdefect),� (1)

where σ represents a nonlinear global transformation (e.g., material batch differences, aging, lighting, and 
imaging distortion), ⊞ indicates a specific overlaying way (e.g., corrosion, breakage, mixing, and direct covering). 
For the classical segmentation paradigms, the model f ′ identifies defect objects based on their appearance and 
context, which can be formulated according to the assumption of equation (1) as:

	 x̂defect = f ′(xng) = f ′(σ(xok ⊞ xdefect)).� (2)

It implies that the model f ′ is required to separate x̂defect from complex background xok under nonlinear 
interference σ. However, the background content may closely resemble defects, as depicted in Fig.  5 (g), 
rendering the distinction based on defect appearance unreliable. We aim to model the defect in defective images 
as different from defect-free ones, which is:

	

x̂defect = f(xng, x̂ok),
= σ(xok ⊞ xdefect) ⊟ x̂ok.

� (3)

In the change-modeling paradigm, the model learns a deep subtraction function ⊟, overcoming limitations 
associated with defect appearance. The disturbance of the nonlinear transformation σ and complex background 
is mitigated by the easily obtainable defect-free image x̂ok.

Change-aware Siamese network
Fig.  2 depicts our pipeline of change-aware Siamese network. The contrastive encoder extracts deep feature 
differences between the defective and defect-free samples. The change-aware decoder incorporates change 
information from the encoder to assist defect localization. The feature distance (DistMap) is used for change 
information interaction between the encoder and decoder. Specifically, the encoder contains an efficient 
Transformer-based backbone with four Transformer blocks29,59 using shared weights. Then, the hierarchical 
features are fused via multi-stage subtraction and upsampled to high resolution before decoding. In the decoding 
stage, the DistMap is used to introduce change information for locating pixel-wise defects. The whole network is 
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supervised by two loss functions, where the cross-entropy loss evaluates the similarity between the predictions 
and the corresponding ground truth, while the balanced contrastive loss distinguishes the features of defective 
regions from those of defect-free regions.

Contrastive feature encoder
We designed an efficient Transformer-based encoder to learn contrastive features with an implicit metric for 
feature comparison, ensuring it meets the demands of fast inspection in industrial production. To improve the 
efficiency since there are double computation costs for processing paired inputs, we draw the inspiration from 
sequence reduction attention29,60, as illustrated in Fig.  3 (a). A major bottleneck of the vanilla self-attention 
mechanism59 is the quadratic complexity with long sequence inputs, which is:

Fig. 3.  The basic modules. (a) The sequence reduction attention utilizes the spatial reduction layer to reduce 

the complexity of the self-attention module from O(N2) to O
(

N2

R

)
. (b) The change-aware decoder, based 

on a 3-dimensional (horizontal, vertical, and depth) attention module, utilizes the DistMap carrying change 
information in different ways when detecting objects in fully-supervised and semi-supervised settings.

 

Fig. 2.  The pipeline of our Transformer-based change-aware defect detection network, CADNet, is designed to 
accept an image under inspection (NG) and a defect-free reference image (OK) for deep change modeling. The 
contrastive feature encoder, comprising a Siamese four-stage Transformer, generates a deep feature distance 
map (DistMap). The change-aware decoder leverages the DistMap to facilitate accurate defect localization. The 
network is trained using a cross-entropy loss and a multi-class balanced contrastive loss. Note that the ground 
truth used is a multi-class segmentation map.
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Attention(Q, K, V ) = Softmax(QKT

√
dk

)V,� (4)

where matrices Q, K,  and V have the same dimensions N × C , and dk = N . We adopt the ratio R to reduce the 
length of sequence K as follows:

	
K̂ = reshape(N

R
, C · R)(K), � (5)

	 K = linear(C · R, C)(K̂), � (6)

where the sequence K is initially reshaped to N
R

× C · R, followed by a linear layer that processes a sequence of 
length (C · R) and produces a C-dimensional sequence. Consequently, the dimensions of the new K become 
N
R

× C , effectively reducing the complexity of the self-attention process from O(N2) to O
(

N2

R

)
. Each 

sequence reduction attention (SRA) module comprises a residually connected sequence reduction attention 
unit and a multi-layer perceptron (MLP). We employ two SRA modules at each Transformer stage, assigning 
reduction ratios of {8, 4, 2, 1} for the four stages, respectively.

The hierarchical Transformer blocks encode the defective and defect-free images in parallel using shared 
weights since the image pairs differ only in minimal defective regions. Denoting the pyramid features as 
{fn

m|m = 0, 1, n = 0, 1, 2, 3}, where m indicates the two Siamese branches, and n denotes the four feature 
layers. The feature distance at position (i, j) is:

	

DistMap (i, j) =
∥∥fng (i, j) − fok (i, j)

∥∥
2

,

fng = concat(f1
0 , f2

0 , f3
0 , f4

0 ),
fok = concat(f1

1 , f2
1 , f3

1 , f4
1 ),

� (7)

where fng  and fok  denote the concatenated (concat) hierarchical features from defective and defect-free 
images, respectively. The hierarchical features are resized to match the size of F 1

0  or F 1
1 . The contrastive loss 

(CL) is adopted as a constraint, which is formulated as:

	
CL =

{
DistMap (i, j) − τok, y(i, j) = 0,

max (0, τng − DistMap (i, j)) , y(i, j) = 1, � (8)

where y(i,  j) is the ground truth, with values 0 or 1 indicating whether the point is unchanged or changed, 
respectively. τok and τng are non-negative thresholds. When y(i, j) = 0 (i.e., unchanged point), the feature 
distance is expected to reduce towards τok, which is close to 0. Conversely, when y(i, j) = 1 (i.e., changed 
point), the feature distance is encouraged to increase towards τng. We set the τng and τok as 2.2 and 0.3 according 
to61. The τok is a positive value slightly above 0 since the paired unchanged points (defect-free) are not exactly 
the same. The τng is set to a larger positive value to encourage a considerable margin between these points that 
are different or defective.

The original contrastive loss is proposed for binary change detection. However, when there is more than one 
type of defect to be modeled as changed regions (i.e., y ∈ 1, 2, .., c), the sample-amount imbalance between 
them leads to imbalanced contrastive supervision. Hence, we propose to extend it with a multi-class balanced 
factor. Given the proportion of certain change categories to the total change areas (i.e., y(i, j) = 1), the balance 
factor is defined as:

	
Bp = 1

fp
= 1

np

C∑
q

nq.� (9)

where C is the number of total classes, fq  is the ratio of class q sample points to the total number of change 
sample points, where nq  and np denote the number of points in class q and class p, respectively. The balanced 
contrastive loss (BCL) can be defined as:

	

BCL =





CL, y(i, j) = 0,
C∑

cl=0
Bl, ·CL(y(i, j) = cl) y(i, j) ∈ 1, 2, .., C. � (10)

It places greater emphasis on less common change categories, resulting in a well-balanced distribution of loss 
across different types of changes.

Change-aware decoder
The attention mechanism is widely applied to model contextual information. However, the arbitrary location 
distribution and weak association with the surroundings of defects seriously affect the spatial context. To this 
end, we proposed a novel change attention mechanism named change-aware decoder (CAD), which introduces 
change information to assist in the location of the defect objects. Specifically, the feature distance obtained from 
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the contrastive feature encoder is skip-connected to the decoder and plays distinct roles when detecting objects 
in fully-supervised and semi-supervised settings. The structure of CAD is shown in Fig. 3 (b).

Initially, we extend the lightweight coordAttention62 into a 3-dimensional attention module, which allows us 
to achieve considerable precision in feature decoding while maintaining a low parameter cost. Constrained by 
the balanced contrastive loss, the DistMap exhibits high activation values for the change region and low values 
for the constant region. Current semantic segmentation methods have proven effective when detecting defects 
with abundant labeled data. Hence, the feature distance is added to the encoded features to assist in locating 
defects, which are represented as:

	 Output = ChangeAtt(Input ⊕ DistMap),� (11)

where ⊕ means point-wise addition, and ChangeAtt here is the combination of channel Attention (CA), 
horizontal attention (HA), and vertical attention (VA). The ChangeAtt is derived from:

	 ChangeAtt(·) = CA(·) ⊗ HA(·) ⊗ VA(·),� (12)

where ⊗ means point-wise multiplication. However, when encountering unseen defects with unknown 
appearances due to the limitation of labeled data, reliance on defect appearance becomes unreliable. In fact, it 
could be argued that when defect patterns are overfitted on the training set, it may lead to poorer generalization 
performance on the test set. In such scenarios, change information becomes the primary indicator for defect 
localization. Consequently, the DistMap acts as the spatial cue and interacts with the encoded features 
multiplicatively after normalization (Norm) to aid in this process, which is

	 ChangeAtt(·) = CA(·) ⊗ Norm(DistMap) ⊗ (·), � (13)

	 Output = ChangeAtt(Input). � (14)

In this context, the multiplication operation incorporates a robust prior to specifically target the change regions. 
The DistMap serves as a spatial context prior, replacing the conventional horizontal or vertical attention 
mechanisms. Its purpose is to guide the model in identifying potential defects within the change areas. Notably, 
Fig. 7 demonstrates that the DistMap provides a coarse representation of the final outcome, with the so-called 
defective regions aligning precisely with the actual regions of change.

Loss function
The BCL and cross-entropy loss are employed for training the network. The BCL guides the model to learn 
contrastive features as mentioned in section  Contrastive feature encoder. The cross-entropy loss for a single 
point (i, j) is defined as:

	

CEL = − log eŷ(i,j,cy)

C−1∑
ck=0

eŷ(i,j,ck)

,
� (15)

where cy  is the true category of a sample point, C is the total categories, and ŷ(i, j, ck) indicates the predicted 
probability of class ck . The overall loss function used during model training is as follows:

	 loss = λ1CEL + λ2BCL� (16)

λ1 and λ2 are set to 1 in our experiment.

Experiments and results
Datasets
Three datasets are involved in the evaluation, including our synthetic LCD dataset and the PKU-Market-PCB31 
dataset, which are characterized by complex backgrounds and tiny texture anomalies. Additionally, the anomaly 
detection benchmark MVtec-AD16 is used to validate the generalizability of our method in a fully-supervised 
learning setting.

Synthetic LCD defect dataset. To validate our model’s capability for segmenting defects under various 
imaging, production conditions, and defect appearances, we constructed a synthetic LCD defect dataset termed 
SynLCD. During the real-world LCD inspection process, some specific display patterns are designed to reveal 
various types of defects (e.g., point, line, and Mura defects63). These patterns are constructed with pure color 
blocks, color maps, text blocks, grayscale transitions, and human faces. Figure 4 depicts ten defect-free display 
patterns, where the defect detection interface is divided into five functional zones to comprehensively evaluate 
display performance:

•	 Bottom-right corner (Facial image): The human visual system is highly sensitive to facial features. This zone 
tests the display’s ability to accurately render complex biological details, such as skin tone, hair texture, and 
facial contours. Deviations in color balance, saturation, or texture clarity may indicate panel driver issues or 
color calibration defects.

•	 Bottom-left corner (Grayscale transition): This zone uses a gradient from pure black to white to assess bright-
ness uniformity, contrast response, and backlight consistency. Defective screens may exhibit banding (unnat-
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ural color steps), uneven brightness, or backlight leakage (e.g., “Mura defects”), compromising visual smooth-
ness.

•	 Top-right corner (Text patterns): Designed to evaluate high-frequency detail rendering. Low-quality panels 
often display text with jagged edges, missing pixel blocks, or background noise-issues linked to abnormal 
subpixel arrangements, unstable driving circuits, or TFT (thin-film transistor) array defects.

•	 Above the facial image (RGB chromaticity chart): Utilizes standardized color wheels or gradients to measure 
color gamut coverage and accuracy. Abnormalities like color shifts, aliasing, or desaturation suggest flaws in 
color filters or signal processing algorithms.

•	 Top-left corner (Solid color blocks): Includes primary colors (red, green, blue, black) to test color purity and 
backlight uniformity. Irregularities such as localized brightness fluctuations, color blotches, or dark spots 
(e.g., “line defects”) reveal manufacturing imperfections.

The SynLCD dataset includes three types of defect samples with random positions and distribution: line defects, 
abnormal points (abpt), and mixed defects, as presented in Fig. 5. Some of these defects closely resemble the 
background patterns. For line defects, they exhibit low contrast with the background, spanning across the entire 
screen.

Table 1 shows the statistical details of SynLCD. According to the assumption in Eq. (1), the defect image xng 
is formed by superimposing a clean surface image xok with the defect xdefect after applying a non-linear overall 
surface change σ. To generate line defects, we first divide the clean image into K areas. Next, in each area, we pre-
draw a line with random color, transparency, and width. These lines traverse the screen, simulating real-world 

Fig. 5.  Samples of SynLCD and the dataset challenges. (a) Abnormal points defect sample; (b) line defect 
sample; (c) mixed defect sample; (d) binary label of mixed defect image. (e) RGB deviation and irregular screen 
texture; (f) nonlinear saturation difference. (g) low contrast abpt and line defects.

 

Fig. 4.  The defect-free LCD patterns. In the real inspection process, the industrial LCD display patterns are 
constructed with RGB blocks, gray transition, color maps, characters, and faces to reveal various types of 
defects (e.g., point, line, and Mura defects63).
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line defects. Abnormal points tend to appear in high-frequency transition regions such as edges, hair, and text. 
To create abpt samples, we vary the grayscale threshold from 50 to 200 to obtain segmentation results at each 
threshold. From these segmentation results, we extract a set of edge points. Subsequently, we randomly cluster 
these points using K-means clustering, assigning each subclass a random color, scale, and transparency. Once 
we obtain both types of defects, we overlay them onto the clean image using Gaussian blur and Poisson seamless 
fusion64. This process introduces random luminance, contrast, ISO noise, and RGB color bias, enhancing sample 
diversity. To prevent sample imbalance interference during the classification task, we generate 300 defective 
and defect-free samples for each clean image in Fig. 4. In total, there are 4,200 training samples (seven standard 
background patterns and 600 samples for each pattern) and 1,800 testing samples.

PKU-Market-PCB. The PKU-Market-PCB dataset31 comprises 1,386 images along with 6 types of defects 
to validate the generalizability of our model in scenes with complex background and tiny defects. The original 
images exhibit inconsistent sizes. To streamline the training process, we resized and cropped the original images 
into 1000 × 1000 sub-images, retaining only those containing defects. Finally, there are 1,566 (70%) images for 
training and 676 (30%) images for testing. The preprocessed PCB dataset is included with our source code for 
accessibility at https://github.com/HATFormer/CADNet.

MvTec-AD. To further validate our model in detecting general defects, we conduct a comparison using the 
MvTec-AD16. It is a widely used anomaly detection benchmark. To facilitate more effective training and achieve 
precise defect segmentation, we reorganized the original dataset for fully-supervised training. The original 5,354 
images, along with their corresponding ground-truth annotations, were randomly shuffled and divided into two 
subsets: 3,747 (70%) images for training and 1,607 (30%) images for testing.

Experiment setting and metrics
Implementation details. Our model is implemented with MMSegmentation and trained with an RTX3090 
GPU. The input images are resized into 512 × 512 with common data augmentations, including random crop, 
flip, and color normalizing during training. For each dataset in the case of fully-supervised comparison, 70% and 
30% of samples are used for training and testing, respectively. For the compared methods, the input consists of a 
sample from the original dataset. In contrast, our method takes both a sample from the original dataset and the 
corresponding clean image as inputs. For SynLCD, there are ten clean fixed images, as shown in Fig. 4. Similarly, 
for PKU-Market-PCB31, ten clean images are provided. For MvTec-AD16, one defect-free image per class is 
selected for both training and testing. All models are trained for 30 epochs with a mixed batch size ranging from 
4 to 8, depending on the memory usage of each specific model.

In the context of semi-supervised comparison, we vary the proportion of labeled samples between 0% (This 
is actually an unsupervised setting. For simplicity, we include it in the semi-supervised comparison), 5%, 10%, 
and 15%. To compare with UAPS5, which utilizes unlabeled data for training, we follow the established setting 
in5 by incorporating 10% of unlabeled data.

Metrics. We use the semantic segmentation metrics for evaluating the pixel-wise defect predictions, 
including mean Intersection over Union (mIoU), Accuracy (Acc), and Fscore as also denoted in36,65. TP, FP, and 
FN are abbreviations for True Positive, False Positive, and False Negative, respectively. The metrics are outlined 
as follows:

•	 precision (P) and recall (R): TP/(TP+FP), TP/(TP+FN),
•	 Fscore: 2PR/(P+R),
•	 accuracy (Acc): TP + TN/(TP + FN + FP + TN),
•	 mIoU: 1

C

∑(C−1)
i=0

TPi
TPi+FPi+FNi

.

We measured the model’s complexity using parameters (Params) and giga floating point operations (GFLOPs). 
In all tables, the up-arrow means the higher the better, while the down-arrow means the lower the better.

Attributes Type Values Remarks

Amount

background pattern 10 variation in face and color-map, etc.

Defect types 3 line, abpt and mixed defects

Defect Samples 10×300×3 300 samples for each type and each pattern

Nondefect Samples 10×900 variation in brightness and contrast, etc.

Defect

shape 2 line and abpt

color 5 black, white, red, green, blue

opacity 10%-100% 10% interval

width 3-33 pixels 3% interval

Screen

brightness bias: 1-6 1 interval

contrast alpha: 0.5-1.5 0.1 interval

ISO noise 10%-100% 10% interval

RGB deviation 3-33 grayscale 3 interval

Table 1.  Statistical details of SynLCD dataset.
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Compared methods. Our model is evaluated from two aspects: (1) The fully-supervised segmentation task 
aims to demonstrate the superiority of change modeling over appearance modeling when there are abundant 
pixel-wise labels available. Six semantic segmentation methods are involved for comparison, as shown in Table 2. 
(2) The semi-supervised segmentation aims to evaluate the model robustness facing insufficient labeled samples 
as defects in a real-world production environment would not have abundant samples with consistent defect 
appearance. Five SOTA semi-supervised methods are involved for comparison as given in Table 2.

Quantitative comparison
Fully-supervised segmentation
In this section, we evaluate our proposed method in terms of fully-supervised segmentation performance. From 
the results of Table  3, our model achieves a remarkable improvement over the other segmentation models. 
Specifically, our model exhibits improved performance across the four metrics (IoUline, IoUabpt, mIoU, 
mFscore) by 12.65%, 0.82%, 8.17%, and 4.15%, compared to the runner-up results. In Table 4 and 5, our model 
obtains the best outcomes across most metrics in the PCB and MvTec-AD datasets.

In terms of efficiency, our model has comparable parameter to SegFormer, and both surpass other models 
significantly in computation. Our model shows substantial improvements over SegFormer, with a 1.84 GFLOPs 
increase resulting in 9.79% higher mIOU, 6.42% higher mAcc, and 5.15% higher mFscore. On one hand, 
this highlights our model’s efficiency, making it well-suited for deployment in industrial devices with limited 
computational resources. On the other hand, it showcases the superiority of our change-modeling mechanism.

Method IOUc1 ↑ IOUc2 ↑ IOUc3 ↑ IOUc4 ↑ IOUc5 ↑ IOUc6 ↑ mIOU ↑ mAcc ↑ mFscore ↑
FCN66 50.13 69.19 68.65 45.45 50.35 36.36 53.35 60.80 68.79

PSPNet67 74.04 72.59 72.61 71.29 66.39 72.46 71.56 81.77 83.40

DeepLabV3+36 75.39 73.56 74.22 73.57 69.94 76.47 73.85 82.10 84.94

DANet68 74.31 73.02 71.21 72.14 68.86 75.02 72.42 82.01 83.99

OCRNet69 76.08 73.00 73.78 75.98 71.13 78.13 74.68 83.45 85.48

SegFormer40 75.79 71.39 72.31 72.29 70.75 78.04 73.42 82.29 84.65

Our-CADNet  77.21  73.98  75.08  79.95  76.47  82.44  77.52  85.87  87.31

Table 4.  Comparison with the mainstream semantic segmentation methods in the PCB Dataset. Bold, 
Bolditalic and italic indicate the top three results for each metric.

 

Method IOUline ↑ IOUabpt ↑ mIOU ↑ mAcc ↑ mFscore ↑ MParams ↓ GFLOPs ↓
FCN66 51.86 11.48 31.67 36.06 44.45 49.5 57.91

PSPNet67 79.00 52.54 65.77 71.56 78.58 12.76 54.27

DeepLabV3+36 81.96 72.93 77.45 90.24 87.22 43.58 176.22

DANet68 79.92 57.04 68.48 76.27 80.74 49.82 199.05

OCRNet69 83.46 62.19 72.83 86.08 83.84 12.07 52.83

SegFormer40 82.99 69.62 76.31 83.68 86.39 3.72 6.37

Our-CADNet 94.02 73.53 83.78 89.05 90.84 3.90 8.21

Table 3.  Comparison with the mainstream semantic segmentation methods in SynLCD dataset. Bold, 
Bolditalic and italic indicate the top three results for each metric.

 

Fully-Supervised Methods Semi-Supervised Methods

FCN66: utilizes fully convolutional layers to realize dense prediction for arbitrary-sized images. DCT45: employs one network to ensure consistency across different 
views of a given sample.

PSPNet67: Utilizes global context aggregation through pyramid pooling for complicated scene parsing. CPS43: enforces consistency between two segmentation networks 
initialized differently.

DeepLabV3+36: introduced the atrous spatial convolutional pyramid (ASPP) to enhance the multi-scale 
contextual information.

UAMT46: encourages consistent predictions under different 
perturbations and estimates uncertainty to learn from unlabeled data.

DANet68: enhances segmentation by adaptively integrating semantic dependencies in spatial and channel 
dimensions via the self-attention mechanism.

UCC44: employs a shared encoder with dual decoders and enforces 
consistency between the decoders with data augmentations.

OCRNet69: introduces object-contextual representations for semantic segmentation, leveraging pixel-object 
relationships to augment pixel representations.

UAPS5: dynamically blends pseudo-labels from multi-head outputs 
during a single forward pass for uncertainty regularization.

SegFormer40: presents a streamlined semantic segmentation framework by integrating Transformers with 
lightweight MLP decoders.

Table 2.  An overview of fully-supervised and semi-supervised segmentation methods for comparison.
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Semi-supervised segmentation
When defect appearances are clearly defined with ample labeled data, general segmentation models like 
SegFormer demonstrate satisfactory performance. However, a notable concern is that appearance-based 
modeling cannot ensure robust generalization in real-world applications with the limited defect samples and 
diverse defect appearance. Therefore, we explore defect segmentation more deeply in scenarios with limited or 
even no labels.

In the series of experiments, denoted as LL, AA, LA, and AL, the first character indicates training on either 
line (L) or abpt (A), while the second character denotes testing on line (L) or abpt (A). As results shown in Fig. 6, 
most segmentation models obtain acceptable fully-supervised segmentation results but fail to detect unseen 
defects (metrics such as IoU, Acc, and Fscore are lower than 0.5%) due to their appearance-based modeling 
nature. In contrast, our change-aware model exhibits considerable results when defect appearance is unseen 
in the training phase. Regarding LA (i.e., trained online and tested on abpt defect), there is a notable decrease 
in accuracy. It is conceivable that the abpt defects are more complex to distinguish from the background with 
smaller sizes.

Table 6 demonstrates our model’s superior performance to five SOTA semi-supervised segmentation methods 
across different supervision settings. This demonstrates our model’s potential for flexible application with only a 
few real samples in production, significantly reducing data collection and labeling costs.

Ablation studies
In this section, we investigate how the contrastive loss (CL), balanced contrastive loss (BCL), and change-aware 
decoder (CAD) influence the model. According to the results in Table 7 and Fig. 7, the following conclusions 
can be drawn:

•	 Leveraging CL to supervise intermediate layers has led to notable improvements in most accuracy metrics 
without introducing extra computational costs. Comparison between distmap_noCL and distmap_CL in 
Fig. 7 highlights how the contrastive constraint aids in reducing background noise and identifying more dis-

Fig. 6.  Comparison of cross-testing performance. In this setting, the samples during inference do not appear 
in the training phase. For LL, AA, LA, and AL, the first character means training with line (L) or abpt (A) set, 
while the second represents the testing set.

 

Method IOUc1 ↑ IOUc2 ↑ IOUc3 ↑ IOUc4 ↑ IOUc5 ↑ IOUc6 ↑ mIOU ↑ mAcc ↑ mFscore ↑
FCN66 76.10 60.14 35.93 69.73 13.51 79.65 58.14 64.84 70.00

PSPNet67 72.00 68.24 43.86 74.89 42.43 83.44 65.42 76.25 77.58

DeepLabV3+36 76.65 63.48 41.18 72.31 34.93 81.12 63.77 77.59 76.19

DANet68 75.13 56.37 37.95 72.42 27.10 80.92 61.63 72.49 73.94

OCRNet69 70.89 65.18 45.67 65.47 35.41 81.51 59.89 68.98 72.31

SegFormer40 81.63 64.63 53.81 70.81 44.14 84.71 65.97 71.21 77.51

Our-CADNet 82.60 74.16 61.19 73.06 52.69 86.41 71.35 80.85 82.24

Table 5.  Comparison with the mainstream semantic segmentation methods in the MvTec-AD Dataset. Bold, 
Bolditalic and italic indicate the top three results. Note that there are 15 classes in MvTec-AD and six of them 
are reported here.
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criminative change (defective) regions. Furthermore, distmap_noCL illustrates that lines are more discernible 
than abpt regions, indicating an imbalanced contrastive constraint.

•	 As depicted in distmap_CL and distmap_BCL in Fig. 7, BCL effectively amplifies the intensity of abpt defects, 
leading to a further improvement in IoUabpt while maintaining stable IoUline. Consequently, there is an 
overall increase in mIoU and mFscore.

•	 The CAD model yields enhancements across all accuracy metrics with a minimal increase of computation 
cost. The comparison between prob_noCAM and prob_CAM reveals the significance of change information 
and spatial context in effectively restoring broken lines while mitigating noise detections.

Qualitative results
In the two left panels of Fig. 8, the Precision-Recall (P-R) curves demonstrate that our change-aware network 
consistently outperforms others, particularly at higher recall values, for both the line and abpt defects. Examining 
the Fscore-Threshold (FT) curves in the right two panels, our model consistently achieves a higher Fscore across 
various binary threshold values. Furthermore, the detection of larger-sized line defects generally results in 
higher precision and Fscore compared to abpt defects.

Figs.  9 and  10 present further visual comparisons in the SynLCD and PCB datasets. For an intuitive 
observation, the multi-class defects are all set to white. The green color denotes missed detections and red color 
denotes wrong detections. The errors in yellow summarise the missed and wrong detections. Thin lines, in 
comparison, are more likely to be missed than thick lines, as the downsampling during feature extraction may 
cause information loss. Overall, the other models are the least effective compared to our CADNet, as reflected by 
its accuracy metrics. It has a large number of misses and wrong detections on all the tested images.

Figure 11 depicts the results of our method and Segformer in scenes with general industrial products. Note 
that the high-level semantic defects in rows 3 and 4 cannot be addressed using conventional segmentation 
methods, as they exhibit normal textures. Figure 12 illustrates the predictions generated by our model in fully- 
and unsupervised manners. Interestingly, despite the decline in the mIoU in detecting unseen defects, the visual 
impact is not readily apparent. Indeed, the mIoU values for CADNet remain impressively satisfactory. Taking the 
results of SegFormer on the COCO70 dataset as benchmarks, the real-time variant of SegFormer (B0) achieves 
mIoU scores of 35.6%. The non-real-time version (B5) achieves 46.7%. This explains why our method achieves 
acceptable visual results on unseen objects.

Conclusion
Recent advancements in computer vision technologies have catalyzed significant progress in industrial defect 
detection. However, challenges persist in achieving fine-grained defect segmentation, primarily due to two 
major obstacles: (1) The limited collection and labeling of defect data, which renders most data-driven semantic 
segmentation models ineffective, and (2) The inconsistent appearances observed during the development and 
application phases of models, presenting significant bottlenecks to many appearance-modeling algorithms, 
especially for those defect objects under complex background, including LCD screen, PCB, and printed 
productions. To address this, we develop a change-based modeling framework to locate pixel-wise multi-class 
defects, based on the assumption that defective regions are essentially the differences between defective and 
defect-free images.

CEL CL BCL CAD IoUline ↑ IoUabpt ↑ mIoU ↑ mAcc ↑ mFscore ↑ Params ↓ GFLOPs ↓

✓ 84.21 73.00 78.61 85.09 87.91 3.72 8.16

✓ ✓ 89.40 70.17 79.78 85.22 88.43 3.72 8.16

✓ ✓ 89.56 72.96 81.26 87.32 89.43 3.72 8.16

✓ ✓ ✓ 94.02 73.53 83.78 89.05 90.84 3.90 8.21

Table 7.  Ablation study about the loss function and decoder. From left to right are cross-entropy loss (CEL), 
contrastive loss (CL), balanced contrastive loss (BCL), and change-aware decoder.

 

Method
mIoU ↑ Fscore ↑
0% 5% 10% 15% 0% 5% 10% 15%

DCT45 0.05 56.96 73.67 71.85 0.10 71.27 84.57 82.75

UAMT46 0.44 61.68 68.73 71.96 0.88 75.48 80.94 83.15

CPS43 1.09 65.07 65.63 76.02 2.15 78.29 78.70 85.68

UCC44 0.015 61.40 70.48 71.55 0.03 75.41 82.27 82.78

UAPS5 0.44 58.86 74.43 81.34 0.88 72.52 84.35 89.22

Our-CADNet 46.89 82.93 84.52 84.71 63.84 90.87 91.64 91.72

Table 6.  Comparison with the SOTA semi-supervised segmentation methods in the SynLCD dataset across 
varying proportions of labeled data (from 0% to 15%). All models are pre-trained on the abpt defects and 
subsequently fine-tuned and tested using the line defects. The bold font indicates the best results.
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We conducted an in-depth experiment using the proposed SynLCD and two public datasets. Our model 
surpasses six leading segmentation models in performance while maintaining reasonable computational costs. 
Furthermore, our model demonstrates superior performance in semi-supervised segmentation compared to 
five state-of-the-art semi-supervised methods. Remarkably, our CADNet achieves a mIoU of 46.89% and a F1-
score of 63.84%, while all the other models produce collapsed results. Our ablation study demonstrated the 
effectiveness of the proposed components.

This breakthrough suggests that the mechanism of modeling change is more effective than those appearance-
modeling based semantic segmentation methods. Moreover, the change-aware mechanism endows our 

Fig. 8.  Comparison though precision-recall (PR) and Fscore-threshold (FT) curves. From left to right, the PR 
curves of the line, the PR curves of the abpt, the FT curves of the line, and the FT curve of the abpt defects.

 

Fig. 7.  Visual ablation results. It shows the final predictions (pred), probability map (prob) before output and 
DistMap with or without CAD, CL, and BCL.
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model with considerable potential for real-world applications, especially in scenarios where appearances are 
highly variable. Thanks to the efficient change-modeling architecture, both the computational cost and label 
requirement of CADNet are relative low. This enables the feasibility of our method for developing a streamlined 
model for basic industrial inspections using only a few samples.

The limitations and future research of our work are as follows: (1) One limitation of our model is its sensitivity 
to large geometric misalignment, which may impact its performance in real-world scenarios where defects might 
be detected under non-ideal conditions, such as varying perspectives or misaligned sensor data. This requires 
further research to address the alignment of heterogeneous data effectively. (2) While we have utilized certain 
data augmentation strategies, our model’s robustness could be further enhanced by exploring more advanced 
techniques. For instance, the use of diffusion models to synthetically expand the defect dataset could improve 
generalization to unseen defect types. This avenue of research is still unexplored in our current work and 
represents a key area for further development. (3) Although our approach shows promising accuracy results with 
relatively low computational cost, it can be computationally intensive in a real industry environment, particularly 
for large-scale datasets. Future work can focus on optimizing the model’s efficiency through techniques such as 
pruning or hardware acceleration.

Fig. 9.  Visual comparison in SynLCD dataset. White color represents the line and abpt defects, while green 
color represents missed detections and red color wrong detections. The errors (Err) in yellow summarise the 
missed and wrong detections.
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Fig. 10.  Visual comparison on the PCB dataset. White color represents the defects, while green color 
represents missed detections and red color wrong detections. The errors (Err) in yellow summarise the missed 
and wrong detections.
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Fig. 12.  Visualization of model predictions in training settings of fully- and semi-supervision.

 

Fig. 11.  Visual comparison on the MvTec-AD dataset. The results indicate the superior performance of our 
method with contrastive constraint. The first two and last two rows represent the scenes with low-contrast and 
complex backgrounds, while the third and fourth rows are high-level semantic anomalies.
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Data availability
All the datasets utilized in this study are available at https://github.com/HATFormer/CADNet.
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