Table 5 Comparison with the mainstream semantic segmentation methods in the MvTec-AD Dataset. Bold, Bolditalic and italic indicate the top three results. Note that there are 15 classes in MvTec-AD and six of them are reported here.

From: Siamese network with change awareness for surface defect segmentation in complex backgrounds

Method

\(\hbox {IOU}_{c1}\uparrow\)

\(\hbox {IOU}_{c2}\uparrow\)

\(\hbox {IOU}_{c3}\uparrow\)

\(\hbox {IOU}_{c4}\uparrow\)

\(\hbox {IOU}_{c5} \uparrow\)

\(\hbox {IOU}_{c6}\uparrow\)

\(\hbox {mIOU}\uparrow\)

\(\hbox {mAcc}\uparrow\)

\(\hbox {mFscore}\uparrow\)

FCN66

76.10

60.14

35.93

69.73

13.51

79.65

58.14

64.84

70.00

PSPNet67

72.00

68.24

43.86

74.89

42.43

83.44

65.42

76.25

77.58

DeepLabV3+36

76.65

63.48

41.18

72.31

34.93

81.12

63.77

77.59

76.19

DANet68

75.13

56.37

37.95

72.42

27.10

80.92

61.63

72.49

73.94

OCRNet69

70.89

65.18

45.67

65.47

35.41

81.51

59.89

68.98

72.31

SegFormer40

81.63

64.63

53.81

70.81

44.14

84.71

65.97

71.21

77.51

Our-CADNet

82.60

74.16

61.19

73.06

52.69

86.41

71.35

80.85

82.24