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The burgeoning problem of electronic waste (e-waste) management necessitates sophisticated, 
efficient, and precise classification techniques for recycling and repurposing. To address these critical 
environmental and health implications, this research delves into a comprehensive analysis of three 
cutting-edge object detection models: YOLOv5, YOLOv7, and YOLOv8. These models are examined 
through the lens of efficient e-waste classification, a pivotal step in recycling and repurposing 
efforts. The ‘You Only Look Once’ (YOLO) methodology underpins our research, highlighting the 
distinctive architectural features of each model, including the CSPDarknet53 backbone, PANet, and 
advanced anchor-free detection. This research approach involved the creation of a specialized image 
dataset encompassing seven distinct e-waste categories to facilitate the training and validation 
of these models. The performance of improved and customizable YOLOv5, YOLOv7, and YOLOv8 
was meticulously evaluated across various parameters such as precision, recall, speed, and training 
efficiency. This evaluation explores the architectural nuances of each model and its efficacy in 
accurately detecting diverse e-waste components. The standout performer, YOLOv8, demonstrated 
exceptional capabilities with its enhanced feature pyramid networks and improved CSPDarknet53 
backbone with 53 convolutional layers, achieving superior precision and accuracy. Notably, this model 
showcased a significant reduction in training time while leveraging the computational power of the 
Tesla T4 GPU on Google Colab. However, the research also identified challenges, particularly in object 
orientation detection, suggesting avenues for future refinement. This study underscores the vital role 
of advanced YOLO architectures in e-waste management, providing critical insights into their practical 
viability, applicability in real-world scenarios, and potential limitations. By setting a benchmark 
in real-time object detection, our work paves the way for future innovations and improvements in 
environmental management technologies, specifically tailored to meet the escalating challenge of 
e-waste management.
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E-waste, comprising discarded electrical or electronic devices, has seen an alarming increase due to rampant 
growth in adopting electronic devices1. This surge has resulted in grave environmental and health challenges, 
necessitating precise classification and separation for efficient recycling and management2.

Computer vision, particularly object detection models, has shown immense potential to address these 
challenges. Object detection, which involves identifying and localizing objects within an image, plays a pivotal 
role in several industrial applications, including e-waste management, as proposed by Rosebrock et al.3However, 
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selecting an object detection model that harmoniously combines speed, accuracy, and computational efficiency 
remains a conundrum4.

YOLO, standing for ‘You Only Look Once,’ has been groundbreaking in real-time object detection and 
was recommended by Redmon et al.7. From its v5 iteration to v8, YOLO has consistently improved speed and 
performance metrics.

In this research, the researchers aim to evaluate three prominent object detection models, YOLOv5, YOLOv7, 
and YOLOv8 models, in terms of electronic waste classification. The crux of this research lies in discerning the 
performance of these models across different scenarios and input variations, enabling users to pinpoint the 
most suitable model for their specific e-waste management needs. In addendum, this research endeavors to 
present a comprehensive understanding of the strengths and weaknesses of these avant-garde object detection 
models in the context of e-waste classification. By doing so, we anticipate assisting a myriad of stakeholders, 
from researchers and developers to practitioners in computer vision and environmental management, in making 
judicious choices.

Related work
The escalating issue of e-waste disposal demands innovative techniques for its effective identification and 
classification. Central to this challenge is deploying advanced deep-learning models that can seamlessly detect 
and sort different types of electronic waste. In recent years, deep learning techniques, particularly those based 
on CNNs, have emerged as a potent solution to this growing problem. Table 1 summarizes the historical origins 
of prominent object detection models, highlighting their respective innovations and applications in fields such 
as real-time object detection and electronic waste detection.

Works by Zhou et al.12 were pioneers in this area, presenting one of the first CNN frameworks tailored 
for e-waste component type identification. Their study underscored the transformative potential of CNNs in 
discerning between various e-waste types, laying the groundwork for subsequent research in this domain. Jiang 
et al.4 supported this idea, demonstrating an automated e-waste sorting system based on deep learning. Their 
system exemplifies the accuracy and effectiveness of CNNs.

Amidst these advances in CNN-based methodologies, there’s been a parallel surge in the popularity and 
development of the YOLO (You Only Look Once) series of models. Originally introduced by Redmonet al.7, 
YOLO revolutionized real-time object detection. The ensuing versions, YOLOv5, v7, and v8, testified to the 
rapid advancements in this line of research. Bochkovskiy et al.8unveiled the YOLOv5, emphasizing architectural 
refinements for bolstered performance and scalability. The subsequent iterations, YOLOv7, and v8, as presented 
by13, incorporated technologies like Feature Pyramid Networks14, further propelling the YOLO architecture to 
the forefront of real-time object detection.

In parallel, the role of comprehensive frameworks like the TensorFlow Object Detection API, introduced by 
Huang et al.6, cannot be undermined. This open-source framework facilitates the end-to-end development of 
object detection models. However, its direct applicability to e-waste detection remains a relatively untapped area, 
even though preliminary investigations like that of Li et al.15 have hinted at its potential.

Recently, Zhang and Liu16enriched the e-waste literature by providing an exhaustive review of deep learning-
driven e-waste detection techniques, offering a holistic understanding of the evolving methodologies. Several 
subsequent studies have highlighted the strengths of YOLOv5 and allied architectures in e-waste detection. 
For instance, systems leveraging YOLOv5 alongside transfer learning have been proposed by researchers such 
as9,17, and even combined with ensemble learning by18. Significant accuracy improvements were achieved by 
Chen et al.19 through the innovative integration of multi-scale feature fusion techniques with YOLOv5. The 
quest for improved detection methods has been supported by the integration of cascaded networks. Alsubaei 
et al.20 demonstrated this by introducing a specialized deep learning-infused cascaded object detection system 
designed specifically for electronic waste.

In sum, while CNN-based methodologies have set benchmarks in e-waste detection, the YOLO family’s 
continuous evolution and complementary frameworks, such as the TensorFlow Object Detection API, signify 
an expansive and promising frontier. This research combines these distinct threads, offering a comprehensive 
evaluation of the family of YOLO architectures in e-waste detection, focusing on accuracy and applicability.

Model Origin Description Applications

CNN-Based 
Models

Jiang et al.4, Zhou 
et al.5 CNN-based models have proven to be effective at identifying and classifying e-waste components Identification and classification 

of e-waste

TensorFlow API Huang et al.6 Google’s open-source framework supports the entire object detection model development cycle Object detection and e-waste 
detection are understudied

YOLO Redmon et al.7 The original YOLO model, designed for real-time object detection, laid the groundwork for 
subsequent versions with faster and more accurate detection

Real-time object detection and 
e-waste detection are understudied

YOLOv5 Bochkovskiy et al.8 An improved version of the YOLO model focuses on enhancing performance and scalability via 
architectural changes

Real-time object detection and 
e-waste detection are understudied

YOLOv7 Wanget al.9–11 Advancements such as Feature Pyramid Networks and additional residual blocks were introduced to 
improve real-time object detection

Real-time object detection and 
e-waste detection are understudied

YOLOv8 Wanget al.9–11 YOLOv8 is a cutting-edge object detection algorithm known for its speed and accuracy. It has been 
used in many applications, such as self-driving cars, security cameras, and medical imaging

Pose estimation, object detection, 
and instance segmentation; 
e-waste detection is understudied

Table 1.  Historical origins of prominent object detection models.
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This research work is articulated to deliberate on the novelty of YOLOv5 in Section “Novelty of YOLOv5”, 
YOLOv7 in Section “Novelty of YOLOv7”, and YOLOv8 in Section “Novelty of YOLOv8”. The architectural 
comparison of the improved and customizable YOLOv5, YOLOv7, and YOLOv8 is explained in detail for a lucid 
understanding and contemplation. The methodology, dataset used for this research work, and model descriptions 
are mentioned in Section “Methodology”. The prominence of the YOLO models and their respective validations 
are mentioned in Section “Results and discussion” under the results and discussions. Section “Conclusion” 
dispenses the concluding remarks of this research, with improved YOLOv8 being the champion for the objective 
of E-waste classification, which was greatly inspired by Lou et al.21

Novelty of YOLOv5
The originality of YOLOv5 principally stems from its architectural breakthroughs and enhanced performance. 
The system incorporates a distinctive blend of elements, comprising CSPDarknet53 as its core, PANet in the 
intermediate section, and a YOLO head for object detection.

	1.	 The CSPDarknet53 backbone is a customized iteration of the Darknet-53 architecture, a deep CNN struc-
ture. The main feature of this approach is the utilization of the “cross-stage partial” technique, which divides 
the network into many stages with interconnected paths. This methodology improves the transmission of 
information and the dissemination of gradients.

	2.	 The PANet architecture in the neck region integrates characteristics from several layers of the backbone 
network, forming a feature pyramid. The method employs spatial pyramid pooling and lateral connections 
to aggregate features, enhancing object recognition across various scales.

	3.	 The YOLO head of YOLOv5 predicts the coordinates of bounding boxes and the probabilities of distinct 
classes at various grid scales. The model’s effectiveness in identifying objects of varying sizes is enhanced by 
its ability to predict across multiple scales.

The mathematical representation of the novelty of YOLOv5 is represented in Eq. (1):

	 YOLOv5 = f (CSPDarknet53, PANet, YOLO Head)� (1)

where

	a.	 “CSPDarknet53” refers to the core network infrastructure known as the CSPDarknet53 backbone network.
	b.	 The PANet is a network that aggregates paths and is utilized in the neck region.
	c.	 The YOLO Head symbolizes the YOLO head used for object detection.

Novelty of YOLOv7
The improved and customizable YOLOv7 incorporates advancements from the existing YOLOv5 framework to 
enhance speed and accuracy. This originality includes alterations in the core structure, techniques for focusing, 
and integration of features.

	1.	 The YOLOv7 model incorporates a customized variant of the CSPDarknet53 backbone network, which im-
proves the ability to extract features.

	2.	 The YOLOv7 model has the Spatial Attention Module (SAM) block, which enhances accuracy by enabling 
the model to concentrate on pertinent portions of the input.

	3.	 YOLOv7 utilizes PANet for feature fusion, similar to YOLOv5. This technique enhances object detection by 
merging features from various scales.

The mathematical representation for the novelty of YOLOv7 is represented in Eq. (2):

	 YOLOv7 = f (Modified CSPDarknet53, SAM Block, PANet)� (2)

where

	a.	 The term “Modified CSPDarknet53” refers to the altered version of the CSPDarknet53 backbone network.
	b.	 The acronym SAM stands for Spatial Attention Module, which is used to improve the feature extraction 

process.
	c.	 PANet is an acronym for Path Aggregation Network used for feature fusion.

Novelty of YOLOv8
The improved and customizable YOLOv8 represents the most recent iteration of the YOLO series and 
incorporates various pioneering elements such as anchor-free object identification, multi-scale prediction, and 
enhanced backbone networks.

	1.	 Anchor-Free Detection: YOLOv8 directly predicts an object’s center instead of relying on anchor boxes. This 
obviates the necessity of adjusting anchor boxes and enhances the precision of object localization.

	2.	 Multi-Scale Prediction: YOLOv8 utilizes a method of predicting bounding boxes and class probabilities at 
many scales, enabling it to effectively recognize objects of varied sizes.

	3.	 Enhanced Backbone Network: YOLOv8 employs a customized variant of the CSPDarknet53 backbone net-
work, incorporating improvements like GhostNet modules and eliminating redundant layers.

Scientific Reports |        (2025) 15:18151 3| https://doi.org/10.1038/s41598-025-94772-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The mathematical representation for the novelty of YOLOv8 is represented in Eq. (3):

	 YOLOv8 = f (Anchor-Free Detection, Multi-Scale Prediction, Improved Backbone Network)� (3)

where

	a.	 Anchor-Free Detection is an innovative method for directly determining the centers of objects.
	b.	 Multi-scale prediction refers to the ability to forecast objects at different scales.
	c.	 The Improved Backbone Network refers to the advancements made in the CSPDarknet53 backbone net-

work.
	d.	 The mathematical representations provide a comprehensive grasp of the distinct contributions and advance-

ments brought by each YOLO model, enabling more precise comprehension of innovations in object recog-
nition.

Comparing the architectures of the improved—YOLOv5, YOLOv7, and YOLOv8
YOLOv5
YOLOv5 is a popular single-shot object detection algorithm that builds upon the earlier versions of YOLO. It 
introduces architectural advancements and performance improvements. Below is a detailed explanation of the 
YOLOv5 architecture22.

Improved backbone network
Improved YOLOv5 utilizes a powerful backbone network called CSPDarknet53 (Cross-Stage Partial Network). 
CSPDarknet53 is a modified version of Darknet-53, a deep CNN architecture. It consists of 53 convolutional 
layers and is designed to effectively extract high-level features from input images. The backbone network follows 
a “cross-stage partial” strategy, where it splits the network into multiple stages, and each stage has a partial 
path and a cross-path. The partial path processes the features independently, while the cross-path aggregates 
information from previous stages. This architecture helps improve information flow and gradient propagation, 
leading to better performance.

Neck
The neck of YOLOv5 is responsible for feature fusion and object detection at multiple scales. It consists of several 
convolutional layers and performs feature pyramid construction to handle objects of different sizes. The improved 
YOLOv5 employs a PANet (Path Aggregation Network) structure as its neck. PANet combines features from 
different layers of the backbone network to create a feature pyramid. It incorporates spatial pyramid pooling and 
lateral connections to aggregate features at different scales. This enables the network to detect objects of various 
sizes and improves detection accuracy.

Head
The head of YOLOv5 performs object detection and localization based on the features generated by the backbone 
and neck. It predicts bounding box coordinates and class probabilities for the detected objects.

The improved YOLOv5 adopts a YOLO head architecture that consists of several convolutional layers5, 
followed by a set of output layers. The output layers predict bounding box coordinates relative to the cell in the 
grid and class probabilities for multiple anchor boxes. The head predicts bounding box offsets, objectness scores, 
and class probabilities at different grid scales. These predictions are made at different feature map resolutions, 
allowing the detection of objects at multiple scales.

Loss function
YOLOv5 utilizes a combination of loss functions to train the model effectively. The loss functions include.

	1.	 Objectness Loss: This measures the accuracy of object prediction within each grid cell.
	2.	 Localization Loss: Measures the accuracy of predicted bounding box coordinates.
	3.	 Confidence Loss: Measures the accuracy of predicted class probabilities.
	4.	 Classification Loss: Measures the accuracy of predicted class labels.

The final loss is a linear combination of these individual loss components, and the network parameters are 
optimized using backpropagation and gradient descent algorithms.

Model sizes
YOLOv5 offers models of different sizes: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These models 
vary in terms of depth, width, and computational requirements. Smaller models like YOLOv5s are faster but 
may sacrifice some accuracy, while larger models like YOLOv5x provide higher accuracy but require more 
computational resources.

As shown in Fig.  1, the improved YOLOv5 architecture combines a powerful backbone network 
(CSPDarknet53) with a PANet neck and a YOLO head to perform efficient and accurate object detection. It 
leverages feature fusion and multi-scale predictions to handle objects of different sizes, making it suitable for 
a wide range of real-world applications. Figure 2 provides a detailed representation of the overall architecture, 
highlighting its layered structure and computational pathways.
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YOLOv7
YOLOv7 by Wang et al.9–11 is a single-stage object detection algorithm that builds upon the earlier versions of 
YOLO. It introduces several architectural advancements and performance improvements, including Trainable 
Bag-of-Freebies (BoF). BoF is a modular framework that allows users to plug and play various techniques 
to improve model performance. The improved YOLOv7 includes several pre-trained BoF modules, such as 

Fig. 2.  Improved YOLOV5 architecture.

 

Fig. 1.  Components used in the improved YOLOV5 architecture.
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GhostNet, Focus, and SPP, which can be used to improve the speed and accuracy of the model as depicted in 
Fig. 3

YOLOv7 head
The YOLOv7 head is a new design that improves object detection accuracy. It predicts bounding box coordinates 
and class probabilities for the detected objects using a set of convolutional layers followed by a set of output 
layers.

Improved backbone network
The improved YOLOv7 uses a modified version of the CSPDarknet53 backbone network, designed to effectively 
extract high-level features from input images. The modified backbone network includes several improvements, 
such as using GhostNet modules and removing unnecessary layers. As shown in Fig. 4, YOLOv7’s architecture 
enables more precise feature extraction, especially for smaller objects crucial for accurate e-waste classification.

The YOLOv7 is available in four sizes: YOLOv7s, YOLOv7m, YOLOv7l, and YOLOv7x. These models 
vary in terms of depth, width, and computational requirements. Smaller models like YOLOv7s are faster but 
may sacrifice some accuracy, while larger models like YOLOv7x provide higher accuracy but require more 
computational resources.

Overall, YOLOv7 is a powerful and efficient object detection algorithm that balances speed and accuracy 
well. It is suitable for various real-world applications, such as self-driving cars, robotics, and security surveillance.

YOLOv8
YOLOv8 by Wang et al.9–11 is the latest version of the YOLO object detection algorithm. It introduces several 
new features and improvements over YOLOv7, including Anchor free detection and multi-scale prediction.

Anchor-free detection
As illustrated in Fig. 5, the improved YOLOv8 is an anchor-free object detector, which predicts an object’s center 
directly instead of using anchor boxes. This eliminates the need to tune anchor boxes and improves object 
detection accuracy. Figure 6 shows the full architecture of YOLOv8, demonstrating its ability to scale across 
multiple resolutions.

Multi-scale prediction
The improved and customizable YOLOv8 predicts bounding boxes and class probabilities at different scales, 
which allows it to detect objects of various sizes more effectively.

Fig. 3.  Components used in improved YOLOV7 architecture.

 

Scientific Reports |        (2025) 15:18151 6| https://doi.org/10.1038/s41598-025-94772-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Improved backbone network
The improved YOLOv8 uses a modified version of the CSPDarknet53 backbone network, designed to effectively 
extract high-level features from input images. The modified backbone network includes several improvements, 
such as using GhostNet modules and removing unnecessary layers.

Fig. 5.  Components used in the improved YOLOV8 architecture.

 

Fig. 4.  Improved YOLOV7 architecture.
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YOLOv8 is available in four sizes: YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. These models vary in 
terms of depth, width, and computational requirements. Smaller models like YOLOv8s are faster but may sacrifice 
some accuracy, while larger models like YOLOv8x provide higher accuracy but require more computational 
resources.

Overall, the YOLOv8 is a powerful and efficient object detection algorithm that balances speed and accuracy 
well. It is suitable for various real-world applications, such as self-driving cars, robotics, and security surveillance.

YOLOv8 is the first YOLO model trained on COCO v6, the latest COCO object detection dataset version. 
This means that YOLOv8 is better at detecting new and challenging objects, such as small objects and objects 
in complex scenes. Overall, the improved YOLOv8 significantly improves over the improved YOLOv7 and 
offers the best performance in speed and accuracy. It is a good choice for any task that requires real-time object 
detection.

Methodology
Figure 7 depicts the comprehensive structure of the proposed framework in this research investigation.

Materials and methods
Image dataset fabrication refers to the generation of numerous images that can be used to train a machine-
learning model. The creation of a dataset requires the collection, organization, and labeling of data and is a 
necessary step in the development of any object detection or classification model. This document discusses the 
creation of image datasets for seven classes, including resistors, capacitors, motherboards, regulators, batteries, 
LCDs, and IoT sensors. Figure 8 visually represents the seven e-waste categories considered in this study.

Image scraping and image standardization
The Python Image Library, as detailed by Lundh23, is a valuable resource for scraping and standardizing images 
to generate credible image datasets. PIL can be used to perform a variety of operations when creating an image 
dataset, including opening, resizing, cropping, and saving images. If you have a collection of raw images with 
different sizes and aspect ratios, for instance, you can use PIL to resize them to a standard size, crop them to 
focus on the relevant object or region, and save them in a standard format. This ensures that all images in the 
dataset are consistent and can be utilized to train a machine-learning model effectively.

Image data acquisition and segmentation
Collecting many images is the first step in creating an image dataset. In this instance, we focused on locating 
images of the seven classes. Images can be gathered from various sources, including search engines, online 
marketplaces, and manufacturer websites. Photographs should be of high quality and include a range of 
perspectives, lighting conditions, and backgrounds. It is essential that the images accurately represent the objects 
we wish to recognize in the real world.

Fig. 6.  Improved YOLOV8 architecture.
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Once many images have been collected, we must organize them into folders based on their respective classes. 
Seven folders have been created in this research work, one for each class. This step will make labeling and using 
the images easier to train the machine-learning model. PIL can also be used to clean and create the dataset. For 
instance, you may need to remove duplicate images, incorrect labels, or low-quality images. PIL provides various 

Fig. 8.  Seven electronic components encompass batteries, resistors, capacitors, circuit boards, regulators, 
LCDs, and IoT sensors.

 

Fig. 7.  Illustration of the workflow diagram.
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methods for manipulating images, such as blurring, sharpening, and adjusting brightness and contrast, which 
can improve the quality of images and make them easier to categorize.

Image labeling using bounding box
A class must be assigned to each image to label the images. There are numerous tools for labelling images, such 
as label boxes, CVAT, and labeling. These tools enable us to draw a bounding box around each image object and 
assign it to the corresponding class. To avoid confusion when training the model, ensuring that the labelling is 
uniform across all images is crucial. Figure 9 depicts an annotated sample with the help of an image labeling tool 
named makesense.io.

Data augmentation
The process of generating new images by applying various transformations to the original images is known as 
data augmentation. Data augmentation can increase the size of the dataset and enhance the model’s robustness. 
Numerous techniques for enhancing data include flipping, rotation, and cropping. It is essential that the 
augmented images accurately represent the objects we wish to identify in the real world. Figure 10 illustrates 
the data augmentation techniques implemented, significantly expanding the dataset and improving the model’s 
generalization capability.

Dataset fragmentation
After collecting, organizing, labeling, and augmenting the images, we must divide the dataset into training, 
validation, and testing sets. The training set is used to train the model, the validation set is used to tune the 
model’s hyperparameters, and the testing set is used to assess the performance of the model. The division should 
be made randomly and reflect the distribution of classes in the real world.

Experimental dataset
In our research Dataset, we have considered a total of 700 images processed or synthesized using the above-
mentioned techniques. For each dataset class, the distribution is shown in Table 2.

Fig. 10.  Image augmentation implemented on each image to expand the dataset’s size, thereby enriching the 
available data for the featured object detection model.

 

Fig. 9.  A sample image out of the seven classes of electronic components annotated using ‘makesense.io’.
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Model selection
Improved—YOLOv5, YOLOv7, and YOLOv8 are three distinct yet complementary machine learning pre-
trained models that were utilized in our pursuit of a robust and effective solution for electronic waste detection.

YOLOv5
Ultralytics developed the YOLOv5 (You Only Look Once version 5) real-time object detection algorithm. We 
chose this model because of its lightweight construction, speed, and competitive precision. The innovative 
structure of YOLOv5, which consists of a backbone (CSPDarknet53), a neck (PANet and FPN), and a head 
(YOLOv3), was especially advantageous. Our e-waste identification system required real-time detection 
and high accuracy, which was made possible by this configuration15. Improved YOLOv5 was known for its 
CSPDarknet53 backbone, PANet for feature fusion, and a straightforward YOLO head for object detection, 
focusing on efficiency and simplicity.

YOLOv7
The improved YOLOv7 model was selected due to its enhanced performance in terms of speed and precision 
compared to previous versions. Its enhanced architecture includes several additional components, including 
an enhanced backbone (CSPDarknet53), the SAM block for an attention mechanism, and the PANet for 
feature fusion. Improved YOLOv7 introduced improvements such as the Spatial Attention Module (SAM) and 
modifications to the CSPDarknet53 backbone for enhanced feature extraction. These enhancements made it an 
ideal candidate for this research.

YOLOv8
The improved YOLOv8 is a recent iteration of the YOLO series that boasts improved performance, particularly 
concerning average precision. Its most significant enhancements include using an asymmetric loss to balance 
classification and localization and incorporating Mish activation to improve accuracy.

Anchor-Free Detection: YOLOv8 eliminates the need for anchor boxes by predicting the center of objects 
directly, simplifying the detection process and potentially increasing accuracy and speed by reducing the number 
of box predictions and streamlining Non-Maximum Suppression (NMS).

New Convolutions and Architectural Changes: YOLOv8 introduces C2f. modules, replacing C3 modules, and 
modifies the convolutional layers to improve feature extraction and information flow. This includes changes in 
the kernel sizes and the method of feature concatenation, aiming for a more efficient architecture.

Adaptive Training and Advanced Data Augmentation: MixUp and CutMix are used for more robust model 
training. YOLOv8 also optimizes training with adaptive learning rates and loss function balancing.

Customizable Architecture and Multiple Backbones: YOLOv8 supports EfficientNet, ResNet, and CSPDarknet, 
offering flexibility and customization for specific use cases.

Enhanced Speed and Accuracy: The model achieves faster inference speeds without sacrificing accuracy, 
positioning it as a leading solution for real-time object detection tasks.

Due to these promising improvements, we decided to include this model in our research.

Results and discussion
This section presents the results obtained from the models improved – YOLOv5, YOLOv7, and YOLOv8.

YOLOv5 results
The classification matrix from Fig.  11 compares the true labels (horizontal axis) against the predicted labels 
(vertical axis) for various electronic components and backgrounds. The diagonal cells represent the proportion 
of correct predictions for each class, with values such as 0.68 for batteries and 0.73 for circuit boards, indicating a 
higher rate of correct identification. Off-diagonal cells show misclassifications; IoT sensors are often misclassified 
as LCDs, as indicated by a value of 0.14. The color gradient from white to dark blue represents the scale of the 
proportions, with darker shades indicating higher values.

Figure 12 depicts the model’s ability to accurately identify and classify components in a hardware context. 
This demonstrates the model’s applicability in automated electronic inventory management and quality control 
systems.

E-waste category Total number of images Number of images in the training set Number of images in the testing set Number of images in the validation set

Total 700 504 98 98

Battery 100 72 14 14

Capacitor 100 72 14 14

Circuit-board 100 72 14 14

IoT sensor 100 72 14 14

LCD 100 72 14 14

Regulator 100 72 14 14

Resistor 100 72 14 14

Table 2.  Distribution of the dataset across various classes of e-waste components.
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Fig. 12.  The performance outcomes of the improved YOLOV5 model on the validation dataset.

 

Fig.11.  Confusion Matrix of the improved YOLOv5 in e-waste classification.
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The improved YOLOV5 model’s performance on the test dataset is depicted, highlighting its proficiency in 
identifying and classifying various electronic components such as resistors, capacitors, and voltage regulators, 
as displayed in Figure 13.

The F1-Confidence Curve from Fig. 14 showcases the model’s performance for various electronic components, 
including batteries, capacitors, circuit boards, IoT sensors, LCDs, regulators, and resistors, as evaluated by the 
improved YOLOV5 model. The curve illustrates the trade-off between the F1 score and the confidence threshold 
for detection. A peak F1 score of 0.62 at a confidence level of 0.404 for all classes combined indicates optimal 
detection performance at this confidence threshold, suggesting a balanced precision-recall relationship achieved 
by the model across different component classes.

Fig. 14.  F1-Confidence curve for all the classes showcased by the improved YOLOV5 model.

 

Fig. 13.  The performance outcomes of the improved YOLOV5 model on the test dataset.
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Figure 15 provides a visual representation of the improved YOLOv5 model’s detection results, with the 
histogram showing the frequency of instances for each component class and the scatter plots depicting the 
spatial distribution and aspect ratios of detected objects. The histogram reveals that the model detected resistors 
most frequently, and the scatter plots suggest a consistent detection pattern across various scales and positions 
within the images. This visualization offers insights into the model’s precision and recall capabilities, reflecting 
its effectiveness in identifying and localizing electronic components in a dataset.

The improved YOLOv5 results are quantified in a series of graphs that track the model’s training and validation 
losses and its precision, recall, and mean Average Precision (mAP) over epochs. The graphs in Fig. 16 show 
a consistent decrease in loss metrics and increased precision and recall as training progresses, indicating the 
model’s improving accuracy in object detection. Notably, the mAP metrics for both 0.5 and 0.5:0.95 thresholds 
exhibit an upward trend, suggesting the model’s robust performance across different levels of detection difficulty.

Improved YOLOv7 RESULTS
Figure 17 illustrates the performance evaluation of the improved YOLOv7 model. Compared to the v5 result, the 
v7 model achieves higher accuracy for all classes, especially for the background classes. The matrix shows varying 
degrees of predictive accuracy, with perfect predictions for LCDs (1.00) and less accuracy for other components 
(e.g., resistors with a true positive rate of 0.67). The shades of blue represent the probability scores, with darker 
shades indicating higher probabilities. Each category also has false positives, indicated by the ‘background FP’ 
column. This suggests that the v7 model better distinguishes between background and objects in the dataset.

Figure 18 depicts a montage of annotated results from an object detection model, specifically improved 
YOLOv7, tested on various electronic components, such as sensors, circuit boards, and regulators. Each 
component is boxed with a corresponding confidence score, demonstrating the model’s precision in identifying 
and classifying electronic items within a validation dataset. The high confidence scores, close to 1.0, indicate 
robust performance and accuracy in the model’s predictions.

Figure 19 illustrates the precision-recall trade-off for various electronic component categories using the 
improved YOLOv7 object detection model on a validation dataset. Each line represents an F1 score curve for a 
specific category across different confidence thresholds, such as batteries, capacitors, and sensors. The aggregate 

Fig. 15.  The improved YOLOV5 inference performance on a given dataset.
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performance for all classes is highlighted, with an optimal F1 score of 0.62 achieved at a confidence level of 0.471, 
indicating balanced detection accuracy and reliability for the model across diverse electronic components.

Figure 20 comprehensively evaluates the improved YOLOv7 model on a validation dataset encapsulated 
through various performance metrics. The graphs display trends in loss for bounding box prediction (Box), 

Fig. 17.  Confusion matrix of the improved YOLOv7 in E-waste classification.

 

Fig. 16.  Improved YOLOV5 model’s loss graph on the E-waste dataset.
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objectness of detections, classification accuracy over epochs, and precision and recall curves. Additionally, the 
model’s mean Average Precision (mAP) is delineated for a single IoU threshold of 0.5 and a range from 0.5 
to 0.95, signifying the model’s effectiveness in object detection tasks with an emphasis on the consistency of 
performance over different Intersection over Union (IoU) thresholds.

YOLOv8 results
The confusion matrix from Fig. 21 illustrates the performance evaluation of the proposed YOLOv8 model. 
The model achieves very high accuracy for all classes, with the highest correct prediction rates for IoT sensors 
(0.87) and LCDs (0.80). While it does show a high false positive rate for the background, similar to improved 

Fig. 19.  F1-confidence curve for all the classes showcased by the improved YOLOv7 model.

 

Fig. 18.  The performance outcomes of the improved YOLOV7 model on the validation dataset.
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YOLOv5, the true positive rates for specific components are improved compared to both previous versions, 
indicating enhancements in the model’s learning and classification abilities. Overall, the v8 model results are 
very promising and suggest a significant improvement over the v5 and v7 models.

The image illustrates the performance outcomes of the improved YOLOV8 model on the validation dataset, 
highlighting its ability to detect and classify a wide range of electronic components with high accuracy. The 
displayed objects in Fig. 22 include IoT sensors, capacitors, batteries, and LCDs, each correctly identified and 
boxed, signifying the model’s precision.

Figure 23 showcases the validation results for the improved YOLOV8 model, demonstrating its refined object 
detection capabilities on electronic components such as resistors, capacitors, and voltage regulators. The images 
vividly showcase the model’s accuracy in identifying and delineating the boundaries of each component, with 
precise bounding boxes completely outclassing other YOLO models.

Fig. 21.  Confusion matrix of improved YOLOv8 in E-waste classification.

 

Fig. 20.  Improved YOLOv7 model’s loss graph on the E-waste dataset.
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Fig. 23.  The performance outcomes of the improved YOLOV8 model on the test dataset.

 

Fig. 22.  The performance outcomes of the improved YOLOV8 model on the validation dataset.
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The F1-Confidence Curve from Fig. 24 showcases the improved YOLOv8 model’s performance across 
individual classes. Achieving a peak F1 score of 0.63 at a confidence threshold of 0.375, YOLOv8 demonstrates 
significant improvements over previous iterations, like improved YOLOv5 and YOLOv7. This iteration represents 
a superior balance of precision and recall, indicating a more accurate and reliable performance in component 
classification tasks across multiple classes.

Figure 25 presents a comprehensive analysis of the improved YOLOv8 model’s object detection performance, 
featuring a histogram of instance counts per class and density plots for object localization. The histogram indicates 

Fig. 25.  Improved YOLOV8 performance inference on a given dataset.

 

Fig. 24.  F1-confidence curve for all the classes showcased by the improved YOLOv8 model.
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the number of detected instances for each class, with ‘Resistor’ being the most prevalent, while the density plots 
reveal the distribution of object positions (x, y) and aspect ratios (width, height) across the dataset. This multi-
faceted depiction underscores the model’s capability to recognize a wide variety of objects and accurately localize 
them within the image space, highlighting the advances of improved YOLOv8 in terms of both detection and 
contextual understanding of objects in images.

Figure 26 illustrates the superior performance of the improved YOLOV8 model compared to its predecessors, 
improved YOLOV5 and YOLOV7, as evidenced by the descending trend in both training and validation loss 
curves and the ascending precision and recall rates. The marked improvement in the mean Average Precision 
(mAP) scores, especially at the stringent 0.5 IoU threshold, highlights YOLOV8’s advancements in accurately 
detecting and classifying objects. These results underscore the model’s significant learning and predictive 
accuracy evolution, setting a new benchmark for object detection models.

Discussion on the state-of-the-art comparison
Table 3 presents the performance results attained by each model on the data and Table 4 presents Performance 
of custom YOLOv5, v7 and v8 models on FICS PCB standard dataset.

The FICS-PCB Dataset, utilized by Hangwei Lu et al.24, has become one of the most often used datasets in 
recent years within the field of electrical components object recognition. The data included above is an annotated 
extract supplied by Roboflow25. The Roboflow dataset utilized herein comprises six classes: ICs, capacitors, 
resistors, inductors, transistors, and diodes, which are enumerated from 0 to 6 in the above table. Nonetheless, 
the YOLO models proposed in this study require significant enhancement regarding the classification of the 
FICS-PCB dataset, as the dataset was inherently limited and the training and testing splits were challenging to 
execute, which has hindered the performance capabilities of the YOLO models. This comparison depicted in 
Fig. 27 aims to ensure equitable and impartial results derived from this study.

The rapid evolution of object detection algorithms, particularly in the realm of YOLO models, has significantly 
enhanced the capabilities of computer vision systems. This research critically evaluates the performance of three 
advanced iterations of the YOLO architecture—YOLOv5, YOLOv7, and YOLOv8—in the context of electronic 
waste classification. The comparative analysis focuses on the architectural nuances and operational efficacy of 
the above-mentioned models.

Improved YOLOv5, with its CSPDarknet53 backbone and PANet, demonstrated substantial capabilities 
in detecting various e-waste components. Its multi-scale prediction feature enabled it to recognize objects of 
different sizes, a vital attribute in e-waste management. Improved YOLOv7, building upon improved YOLOv5’s 
foundation, incorporated additional features like the Spatial Attention Module (SAM) block, improving focus 
on pertinent input areas and enhancing accuracy. However, both models faced challenges in object orientation 
detection, suggesting room for improvement.

Improved YOLOv8 emerges as a superior model in this research work. Its anchor-free detection method 
directly predicts an object’s center, eliminates the need for anchor box adjustments, and improves object 
localization accuracy. The enhanced CSPDarknet53 backbone in improved YOLOv8, incorporating GhostNet 
modules and reduced redundancy, further refines feature extraction. This architectural superiority is evident 

Fig. 26.  YOLOV8 model’s loss graph on the E-waste dataset.
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in YOLOv8’s performance. It demonstrated exceptional precision and accuracy, significantly reducing training 
time, a testament to its computational efficiency.

The research work’s dataset included seven distinct e-waste categories: resistors, capacitors, motherboards, 
regulators, batteries, LCDs, and IoT sensors. An in-depth analysis revealed variances in classification accuracy 
across these categories. Certain classes, like batteries and circuit boards, showed higher rates of correct 
identification than others, like IoT sensors and LCDs, which were prone to misclassification. This disparity can 
be attributed to several factors, including object size, shape, and texture differences, which affect the model’s 
detection capabilities.

The differential classification accuracy among e-waste categories can partly be explained by the feature 
learning theory in deep neural networks. This theory posits that the network learns to identify and extract 
features critical for classification tasks. Classes with distinct, easily discernible features tend to be classified more 
accurately than those with subtle or complex features. For instance, the different shapes and sizes of batteries 
and circuit boards might make it easier for the models to learn and identify them than the varied and intricate 
designs of IoT sensors and LCDs.

In conclusion, the improved YOLOv8 stands out as the most effective model for e-waste classification, 
primarily due to its advanced architectural features. The improved backbone network and anchor-free detection 
offer enhanced precision and efficiency. However, the research also highlights the need for continued refinement, 
especially in object orientation detection, to further enhance the model’s utility in diverse e-waste management 
scenarios. Future research could explore integrating these advanced models with emerging technologies to 
create more sophisticated, automated e-waste sorting systems. The ultimate goal remains to align technological 
advancements with environmental sustainability, paving the way for innovative solutions in global e-waste 
management.

Models Class Images Instances Precision Recall mAP50 mAP50-95

YOLOv5

All 686 146 0.726 0.595 0.702 0.551

Battery 98 19 0.482 0.684 0.669 0.562

Capacitor 98 34 0.776 0.471 0.664 0.452

Circuit Board 98 15 0.765 0.867 0.889 0.83

IoT Sensors 98 17 0.667 0.471 0.606 0.624

LCD 98 15 1.000 0.800 0.900 0.688

Regulator 98 14 0.467 0.500 0.526 0.332

Resistor 98 32 0.923 0.375 0.659 0.465

Time: 100 epochs, 0.634 h
Model summary (fused): 212 layers, 20,877,180 parameters, 0 gradients, 47.9 
GFLOPs

YOLOv7

All 686 146 0.709 0.584 0.643 0.479

Battery 98 19 0.48 0.632 0.564 0.432

Capacitor 98 34 0.78 0.529 0.765 0.423

Circuit Board 98 15 0.798 0.733 0.86 0.805

IoT Sensors 98 17 0.534 0.473 0.515 0.407

LCD 98 15 0.926 0.841 0.881 0.649

Regulator 98 14 0.615 0.571 0.603 0.46

Resistor 98 32 0.831 0.308 0.316 0.181

Time: 100 epochs, 1.901 h
Model Summary: 1032 layers, 151,055,568 parameters, 151,055,568 gradients, 
210.0 GFLOPS

YOLOv8

All 686 146 0.832 0.704 0.821 0.678

Battery 98 19 0.609 0.789 0.732 0.624

Capacitor 98 34 0.864 0.582 0.794 0.543

Circuit Board 98 15 0.821 0.911 0.932 0.850

IoT Sensors 98 17 0.756 0.611 0.708 0.682

LCD 98 15 1.000 0.867 0.925 0.745

Regulator 98 14 0.552 0.612 0.634 0.450

Resistor 98 32 0.943 0.492 0.702 0.520

Time: 100 epochs, 0.535 h
Model summary (fused): 218 layers, 25,844,392 parameters, 0 gradients
Speed: 4.0 ms preprocess, 7.7 ms inference, 0.0 ms loss, 3.8 ms post process per 
image

Table 3.  Improved—YOLOv5, YOLOv7, and YOLOv8 Experimental Results.
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Conclusion
This comprehensive research work critically evaluated the YOLOv5, YOLOv7, and YOLOv8 object detection 
models, specifically tailored to address the escalating challenges in electronic waste (e-waste) classification. The 
proposed research was driven by the urgency to develop efficient, accurate, and sustainable solutions for e-waste 
management, a burgeoning environmental concern. The findings from our research work distinctly highlight 
the superiority of the improved YOLOv8 model in terms of accuracy, precision, and training efficiency. This 
model’s advanced architecture, featuring Feature Pyramid Networks and an improved CSPDarknet53 backbone, 
sets it apart from its predecessors. Notably, improved YOLOv8 demonstrated remarkable performance in object 
detection with reduced training times, utilizing the computational strengths of the Tesla T4 GPU on Google 
Colab. This efficiency makes it exceptionally suitable for real-time e-waste detection applications. However, This 
research also unveiled certain limitations, primarily in object orientation detection. This aspect of YOLOv8’s 
functionality suggests a critical area for further development. Addressing this limitation can significantly 
enhance the model’s utility in complex and varied e-waste management scenarios.

The present research underlines the enormous potential and future scope for improvements in the YOLO 
architecture. Integrating these advanced models with emerging technologies is envisioned to create sophisticated 
automated e-waste sorting systems. Tailoring these models to cater to specific e-waste challenges, such as diverse 
material recognition and improved orientation sensitivity, is crucial to our future roadmap. Additionally, real-
world implementation of these models and continuous refinement based on practical feedback will be pivotal in 
aligning technological innovation with environmental sustainability.

The implications of this research extend beyond mere technological advancements. It marks a significant 
step towards integrating innovative technological solutions with ecological responsibility. By setting a new 
benchmark in real-time object detection for e-waste management, this research work not only contributes to the 
field of environmental management but also aligns with global goals of resource conservation and environmental 
protection. Our work paves the way for future explorations that promise to revolutionize e-waste management 
systems, thereby substantially contributing to global sustainability efforts.

Models Class Images Instances Precision Recall mAP50 mAP50-95

YOLOv5

All 10 501 0.52 0.236 0.207 0.126

0 10 65 0.45 0.892 0.892 0.6

1 10 231 0.287 0.377 0.377 0.0921

2 10 174 0.381 0.145 0.145 0.0608

3 10 3 0 0 0 0.00469

4 10 3 1 0 0 0

5 10 25 1 0 0 0

Time: 100 epochs, 0.100 h
Model summary (fused): 212 layers, 20,877,180 parameters, 0 gradients, 
47.9 GFLOPs

YOLOv7

All 10 501 0.187 0.0667 0.00453 0.00100

0 10 65 0.0692 0.108 0.0136 0.00426

1 10 231 0.0223 0.177 0.00665 0.00102

2 10 174 0.0332 0.115 0.00691 0.00126

3 10 3 0 0 0 0

4 10 3 1 0 0 0

5 10 25 0 0 0 0

Time: 100 epochs, 0.540 h
Model Summary: 1032 layers, 151,055,568 parameters, 151,055,568 
gradients, 210.0 GFLOPS

YOLOv8

All 10 501 0.495 0.395 0.437 0.316

0 8 65 0.682 0.923 0.863 0.792

1 8 231 0.573 0.459 0.461 0.277

2 8 174 0.738 0.454 0.627 0.376

3 2 3 0.143 0.333 0.159 0.143

4 1 3 0 0 0 0

5 3 25 0.833 0.2 0.512 0.306

Time: 100 epochs, 0.535 h
Model summary (fused): 218 layers, 25,843,813 parameters, 0 gradients
Speed: 0.5 ms preprocess, 9.7 ms inference, 0.0 ms loss, 1.1 ms post 
process per image

Table 4.  Performance of custom YOLOv5, v7 and v8 models on FICS PCB standard dataset.
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Data availability
Data supporting the findings will be available from Mr. Akhil Rajeev P (akhilrajeevpillai6419@gmail.com) upon 
reasonable request.
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