Table 4 Performance of custom YOLOv5, v7 and v8 models on FICS PCB standard dataset.

From: Advancing e-waste classification with customizable YOLO based deep learning models

Models

Class

Images

Instances

Precision

Recall

mAP50

mAP50-95

YOLOv5

All

10

501

0.52

0.236

0.207

0.126

0

10

65

0.45

0.892

0.892

0.6

1

10

231

0.287

0.377

0.377

0.0921

2

10

174

0.381

0.145

0.145

0.0608

3

10

3

0

0

0

0.00469

4

10

3

1

0

0

0

5

10

25

1

0

0

0

Time: 100 epochs, 0.100 h

Model summary (fused): 212 layers, 20,877,180 parameters, 0 gradients, 47.9 GFLOPs

YOLOv7

All

10

501

0.187

0.0667

0.00453

0.00100

0

10

65

0.0692

0.108

0.0136

0.00426

1

10

231

0.0223

0.177

0.00665

0.00102

2

10

174

0.0332

0.115

0.00691

0.00126

3

10

3

0

0

0

0

4

10

3

1

0

0

0

5

10

25

0

0

0

0

Time: 100 epochs, 0.540 h

Model Summary: 1032 layers, 151,055,568 parameters, 151,055,568 gradients, 210.0 GFLOPS

YOLOv8

All

10

501

0.495

0.395

0.437

0.316

0

8

65

0.682

0.923

0.863

0.792

1

8

231

0.573

0.459

0.461

0.277

2

8

174

0.738

0.454

0.627

0.376

3

2

3

0.143

0.333

0.159

0.143

4

1

3

0

0

0

0

5

3

25

0.833

0.2

0.512

0.306

Time: 100 epochs, 0.535 h

Model summary (fused): 218 layers, 25,843,813 parameters, 0 gradients

Speed: 0.5 ms preprocess, 9.7 ms inference, 0.0 ms loss, 1.1 ms post process per image