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The drive of the rural digital economy in agricultural development and the enhancement of agricultural 
net carbon efficiency are integral to ensuring the quality development of agricultural ecology. To better 
understand the impact of the digital economy on agricultural ecological quality, this paper utilizes 
panel data from 30 provinces (municipalities, autonomous regions) in China from 2013 to 2020 and 
employs the instrumental variable method to analyze the impact of digital economy development 
on agricultural net carbon efficiency. The results reveal that the advancement of the rural digital 
economy significantly enhances the net carbon efficiency of agriculture, and this finding remains 
robust even after substituting explanatory variables and excluding samples from direct-administered 
municipalities. Heterogeneity analysis indicates that the aforementioned impact is more pronounced 
in major grain-producing areas, regions with high agricultural industrial concentration, and areas with 
low government intervention. Further analysis reveals that the rural digital economy can enhance 
agricultural net carbon efficiency through two primary mechanisms: improving human capital and 
promoting technological progress. The conclusions of this study have significant implications for 
improving the level of rural digital economy development and optimizing agricultural net carbon 
efficiency.
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In recent years, with the development of Chinese agriculture, the carbon emission brought by agricultural 
production has also grown. “2023 China Agriculture and Rural Low-carbon Development Report” shows that 
China’s total carbon emissions from agricultural production in 2014 reached 828 million tons of CO₂ equivalent, 
accounting for 6.7% of the country’s total emissions. However, when the scope is expanded to include the entire 
agri-food system, agriculture-related greenhouse gas emissions account for more than 30% of global emissions, 
indicating that agriculture has become the main source of carbon dioxide emissions. On September 22, 2020, 
during the 75th session of the United Nations General Assembly, President Xi Jinping delivered a keynote speech 
announcing China’s commitment to peaking carbon emissions before 2030 and achieving carbon neutrality 
by 2060. Effectively reducing agricultural carbon emissions has become a critical pathway to advancing the 
“dual carbon” goals. And Azam (2017) conducted an early study revealing that agricultural economic growth 
and carbon emissions are interrelated in some EU countries1. As a new driver of economic growth, the digital 
economy should also play an active role in the pursuit of carbon peaking and carbon neutrality. Studies have shown 
that the digital economy has a strong carbon reduction ability in industry2, manufacturing3, transportation4, 
logistics5 and other fields. Will the digital economy also bring new momentum to the increase of net carbon 
efficiency in agriculture? What is the mechanism of action?

Previous literature has explored the relationship between the development of the digital economy and the 
net carbon efficiency of agriculture, but no uniform conclusion has been reached. On the one hand, some 
scholars believe that the digital economy, as a key driver of social development, can effectively reduce the carbon 
emission intensity of agricultural production6.Jin et al. further highlight from a spatial perspective that the 
development of the rural digital economy can significantly reduce agricultural carbon emissions. However, due 
to diminishing marginal returns and technological iteration, its impact exhibits a threshold effect7. Zhang et 
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al.8found that a digital economy can promote the improvement of agricultural green total factor productivity by 
improving agricultural technological innovation. On the other hand, when the level of a digital economy is low, 
the effect of rural digital economy development on agricultural carbon emission reduction is not obvious, but 
the construction of digital infrastructure will generate energy consumption such as electricity9, thus increasing 
agricultural carbon emissions and inhibiting the improvement of agricultural net carbon efficiency. This paper 
believes that the energy consumption and carbon emissions generated by digital applications are affected by 
the continuous upgrading of rural energy consumption structure and the gradual improvement of the modern 
energy system, and are not the key to rural energy conservation and emission reduction control. The development 
of a digital economy will play a more significant role in promoting agricultural carbon emission reduction, thus 
improving the quality of agricultural ecology.

The development of the rural digital economy is widely acknowledged as a critical driver for enhancing 
agricultural productivity and stimulating economic growth. However, existing studies predominantly explore 
the impact of the digital economy on agricultural productivity and rural economic development, often 
overlooking its effects on agricultural ecological quality. This research addresses this gap by introducing the 
concept of agricultural ecological quality and utilizing agricultural net carbon efficiency as a proxy variable for 
empirical analysis, thereby broadening the scope of existing literature. Our findings not only confirm that the 
rural digital economy significantly enhances agricultural net carbon efficiency but also elucidate the dual impact 
mechanisms of human capital and technological innovation. This dual mechanism analysis provides a deeper 
insight into how the digital economy improves agricultural ecology. Furthermore, the study investigates the 
heterogeneous impacts across major grain-producing areas, agricultural industrial concentration zones, and 
regions with varying degrees of government intervention. Compared to previous research, this paper offers 
a more comprehensive and detailed perspective, presenting an integrated research framework that combines 
digital economy development with sustainable agricultural practices. This framework provides valuable practical 
guidance for policymakers in formulating and implementing strategies to promote sustainable agriculture 
through digital economic advancements.

Research hypothesis
Mechanism of rural digital economy impacting agricultural net carbon efficiency
Based on externality theory, public goods possess significant positive externalities10. Distinguished from 
traditional agricultural economies, the digital economy, due to its high coverage and high penetration, possesses 
significant external economies. Because the digital economy inherently has green economic attributes, it 
transforms traditional production factors in agriculture into digital productivity11. The resulting inclusive effect 
can enhance agricultural net carbon efficiency.

Specifically, the development of internet infrastructure and meteorological observation networks serves as a 
fundamental prerequisite for the growth of the rural digital economy. Well-established digital infrastructure helps 
mitigate geographical constraints12, facilitates information sharing in rural areas, and enables farmers to access 
real-time market and weather information via the internet. This reduces uncertainties in agricultural production 
and enhances the efficient allocation of resources. Additionally, the advancement of rural logistics infrastructure 
minimizes losses during the transportation of agricultural inputs, improves the overall utilization efficiency 
of agricultural production factors, and promotes resource intensification, thereby enhancing agricultural net 
carbon efficiency.

Moreover, the digital economy plays a crucial role in reducing agricultural carbon emissions. Increased 
investment in agricultural information technology and the inflow of IT professionals have significantly 
accelerated the development of precision agriculture. Technologies such as smart irrigation and variable-rate 
fertilization help reduce the excessive use of fertilizers and pesticides, ultimately lowering carbon emissions in 
agricultural production.

Furthermore, the digital economy also strengthens agriculture’s carbon absorption capacity. The widespread 
adoption of digital technologies promotes the development of low-carbon agriculture, while the expansion of 
green farming practices, such as organic and eco-friendly cultivation models, further enhances the sector’s 
ability to sequester carbon.

Finally, digital technology penetration effectively mitigates technical adoption barriers for farmers while 
cultivating ecological awareness through cognitive interventions and enhanced social interactions. This dual 
mechanism not only enhances agricultural production engagement but also addresses participation gaps in 
environmental governance. These multi-tiered mechanisms collectively enable digital technologies to enhance 
agricultural sustainability through dual pathways: Instrumental rationality manifests through improved carbon 
efficiency metrics, while value rationality facilitates paradigm shifts in agricultural ecosystem operations. This 
synergy between technological applications and value reconstruction ultimately elevates agricultural net carbon 
efficiency through three interconnected dimensions: technological empowerment, behavioral modification, and 
institutional innovation. Based on this, this paper proposes Hypothesis 1:

H1  The inclusive effect of the rural digital economy will have a positive impact on agricultural net carbon effi-
ciency.

The previous discussion established that, at a theoretical level, the development of the rural digital economy can 
enhance agricultural net carbon efficiency. However, during the nascent stage of digital economic development, 
three critical constraints exist: (1) According to the Statistical Report on China’s Internet Development, the 
internet penetration rate in rural China was only 33.1% in 2016, rising to 67.4% by 2020. The fragmentation 
of digital infrastructure and the limited adoption of digital technologies prevented the formation of network 
synergy effects, making data-driven decision-making ineffective for farmers in the initial stages. (2) The 
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application of digital technology remained confined to basic functions such as information transmission, without 
direct integration into agricultural production. (3) The high cost of digital equipment hindered widespread 
adoption, meaning that the potential for carbon reduction remained constrained by low farmer adoption rates 
and high factor-matching costs. These factors limited the positive impact of the digital economy on agricultural 
net carbon efficiency in the early stages. However, once digital economic development surpasses a critical 
threshold—characterized by improved digital infrastructure, higher adoption rates, and deeper technological 
integration—these constraints are overcome. At this stage, the inherent economies of scale and technological 
complementarities of the digital economy will drive systemic transformations in the agricultural ecosystem, 
significantly enhancing agricultural net carbon efficiency.

Consequently, this paper postulate Hypothesis 2:

H2  The relationship between rural digital economy development and agricultural net carbon efficiency exhibits 
a nonlinear threshold effect— insignificant at lower levels of digital economic development but significant at 
higher levels.

 Mechanisms of intermediary effects
Based on modern economic growth theory, labor quality, and agricultural technology levels are important 
factors influencing agricultural production efficiency, which in turn is highly related to agricultural net carbon 
efficiency13. Specifically, the higher the level of human capital among farmers and the better the agricultural 
technology, the higher the agricultural ecological efficiency and the stronger the agricultural net carbon efficiency. 
The digital economy facilitates the effective and reasonable allocation of agricultural production factors. On one 
hand, it expands farmers’ access to information and channels, thereby enhancing their human capital levels14. 
On the other hand, the introduction of digital technologies to rural areas brings technological advancements, 
significantly improving the level of agricultural production technology. These two effects continuously enhance 
agricultural net carbon efficiency. Therefore, this paper posits that the rural digital economy can influence 
agricultural net carbon efficiency by affecting agricultural human capital levels and technological progress.

Mechanism for enhancing human capital
Farmers’ human capital endowment refers to the knowledge, skills, and abilities that farmers possess in the 
process of making a living, serving as the premise and foundational conditions for agricultural production. 
Numerous empirical studies in China indicate that, on one hand, the development of the rural digital economy 
promotes the flow of high-quality educational resources to rural areas. This enables farmers to acquire knowledge 
and skills not only through conventional educational channels but also through new methods such as digital 
platforms, thereby improving their human capital levels and effectively narrowing the digital access gap between 
urban and rural areas15. The improvement in human capital significantly influences the research, development, 
use, and dissemination of new technologies, reducing agricultural carbon emissions and thereby enhancing 
agricultural net carbon efficiency. On the other hand, digital network platforms disseminate agricultural 
production knowledge related to the ecological environment and green production more conveniently. They also 
promote and popularize low-carbon agricultural production techniques to agricultural laborers through online 
video platforms, helping farmers gradually transition from a “knowledge effect” to a “learning effect,” and shaping 
farmers’ values towards low-carbon production. According to the theory of planned behavior, farmers’ green 
production cognition can be translated into behavior16, effectively reducing agricultural carbon emissions and 
non-point source pollution, thus increasing agricultural carbon sequestration and comprehensively promoting 
the enhancement of agricultural net carbon efficiency. Based on this, this paper proposes Hypothesis 3:

H3  The rural digital economy can enhance agricultural net carbon efficiency by improving human capital.

Mechanism for technological innovation
The level of agricultural technology refers to the degree of advancement of the techniques and equipment used 
in agricultural production, and it is crucial for agricultural productivity. The development of the digital economy 
fosters technological innovation by facilitating the free and efficient flow of innovative elements and reducing 
the coordination and integration costs of technological innovations. Additionally, the construction of digital 
infrastructure can drive reforms in the management systems of village collectives and regional governments, 
creating a more inclusive and free rural innovation environment that supports the collaborative development 
of agricultural technological innovation17. Endogenous economic growth theory emphasizes that technological 
innovation is the intrinsic driver of economic growth18, and it is also the internal driving force for green 
agricultural production. Relevant research indicates that the impact of agricultural technological advancement 
on agricultural net carbon efficiency unfolds through the following three aspects:

Firstly, Expected Agricultural Output: Technological innovation can enhance the marginal output of input 
factors, thereby improving the efficiency of the green agricultural economy and increasing agricultural carbon 
absorption. From the perspective of non-expected agricultural output, technological innovation can drive the 
transformation of traditional agriculture to modernization, accelerate the use of clean energy, and promote the 
cyclical utilization of production factor resources, thereby reducing agricultural carbon emissions19.

Secondly, Improvement of Agricultural Production Factors: Agricultural technological innovation can 
strengthen agricultural net carbon efficiency by improving production factors. Pesticides, fertilizers, and other 
agricultural inputs are major sources of agricultural carbon emissions. Technological innovation can create 
new types of green labor production materials, reducing the use of pesticides and fertilizers, and consequently 
lowering agricultural carbon emission levels.
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Thirdly, Spillover and Radiative Effects of Technology and Talent: Agricultural technological innovation 
can enhance agricultural net carbon efficiency through the continuous and radiative spillover of technology 
and talent. On one hand, technological progress can promote the clustering of agricultural industries, forming 
agricultural economies of scale20, thus improving regional agricultural net carbon efficiency. On the other 
hand, agricultural technological innovation encourages the cross-regional flow of high-tech talent, leading to 
the “spillover of knowledge,” which facilitates the diffusion of resources and experiences from high-net carbon 
efficiency regions to lower- efficiency regions, promoting overall regional development21.

Based on this, this paper proposes Hypothesis 4:

H4  The rural digital economy can enhance agricultural net carbon efficiency by promoting agricultural techno-
logical innovation.

Based on the above research hypotheses, the study maps the theoretical framework as shown in Fig. 1.

Research design
Model setup
To test the aforementioned research hypotheses, this paper constructs a fixed effects model (1) to examine the 
direct impact of rural digital economy development on agricultural net carbon efficiency:

	 NCEit = α0 + α1DIGit + αiControlit + µi+δt + εit� (1)

Building upon the theoretical propositions, this paper hypothesize a nonlinear relationship between rural 
digital economy development and agricultural net carbon efficiency. Following Hansen’s (1999) panel threshold 
regression methodology22, we specify the threshold effect model as follows:

	 NCEit = α0 + α1DIGit · I(DIGit ⩽ γ) + α2DIGit · I(DIGit > γ) + αiControlit + µi+δt + εit� (2)

To examine the intrinsic impact mechanism of rural digital economy development on agricultural net carbon 
efficiency, the previous section elaborated on the theoretical framework of the effects of human capital and 
technological progress on agricultural net carbon efficiency. Drawing on the research by Jiang Ting23. , this 
paper verifies the impact of rural digital economy development on agricultural human capital and technological 
progress by setting up models (2) and (3) as follows:

	 EDUit = α0 + α1DIGit + αiControlit + µi + δt + εit� (3)

	 agRDit = α0 + α1DIGit + αiControlit + µi + δt + εit� (4)

In the above models, i and t represent province and year, respectively. NCE denotes agricultural net carbon 
efficiency, EDU represents the level of agricultural human capital, agRD indicates the level of agricultural 
technological innovation, DIG signifies the level of the rural digital economy, Control denotes control variables, 

Fig. 1.  The theoretical framework of digital economy empowering agricultural ecological quality.
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α represents the parameters to be estimated in the model, µi denotes individual fixed effects, δi represents time 
fixed effects, and εit represents the random error term. I(•) is the indicator function. γ indicates the corresponding 
threshold value. This paper employs heteroskedasticity-robust standard errors.

It is important to note that the rural digital economy variable of interest in this paper may be endogenous. 
During the process of agricultural modernization, the improvement in net carbon efficiency may also promote 
the development of the rural digital economy. To address this potential endogeneity issue, this paper introduces 
an instrumental variable for re-estimation of the baseline regression. After repeated testing, the number of post 
offices per million people in 1984 is selected as the instrumental variable, mainly for the following reasons: First, 
relevance. The proliferation of telephones and the internet forms the foundation of digital economy development. 
Before the advent of telephone and internet development, information transmission and communication were 
primarily carried out through post office networks. Additionally, post office networks were the early sites for the 
installation of fixed telephone lines, and access to internet cables is closely related to telephone lines. Therefore, 
the number of post offices and the development of the digital economy are correlated. Second, exclusivity. The 
number of post offices in 1984 has a negligible impact on the current development of agricultural net carbon 
efficiency, thus satisfying the exclusivity condition. However, the number of post offices per million people in 
1984 is cross-sectional data and cannot be regressed with the panel data of the sample period using a fixed 
effects model. To resolve this issue, and drawing on the research of Huang Qunhui et al.24, this paper constructs 
an interaction term between the number of post offices per million people in 1984 and the number of internet 
broadband access users in each year of the sample period as the instrumental variable.

Variable selection
Explained variable: agricultural net carbon efficiency
Considering the dual effects of carbon emissions and carbon absorption in agriculture, this study uses 
agricultural net carbon efficiencyNCE to measure the development of agricultural ecological quality, focusing 
on the narrower scope of agriculture—namely, the planting industry. To emphasize the net carbon efficiency 
of the planting industry, this paper improves upon previous research by using the ratio of net carbon sinks to 
carbon emissions to measure agricultural net carbon efficiency. The constructed formula is as follows:

	
NCE = (S − E)

E
� (5)

 

In the formula, NCE represents agricultural net carbon efficiency, S is the amount of carbon absorption in 
agriculture, and E is the amount of carbon emissions in agriculture.

This study measures agricultural carbon emissions by primarily considering three sources: agricultural land 
cultivation, agricultural input, and methane emissions from rice paddies, with agricultural land cultivation and 
agricultural input combined into one category for calculation. Due to the difficulty in obtaining data related 
to crop straw management, this study excludes straw return and straw burning to ensure scientific rigor. The 
constructed carbon emissions calculation formula is as follows:

	 E = E1 + E2� (6) 

	
E1 =

∑
E1k =

∑
Akfk � (7) 

	
E2 =

∑
E2i =

∑
Bimi × a� (8) 

In the formula, E represents the total carbon emissions from the planting industry; E1 represents the carbon 
emissions from agricultural land cultivation and agricultural input; E2 represents the carbon emissions from 
methane emissions in rice paddies; E1k represents the carbon emissions generated by a specific type of carbon 
source; Ak represents the total amount of a specific type of carbon source; fk represents the carbon emission 
coefficient for a specific type of carbon source; and k represents the type of carbon source. This study draws 
on the research of Wu Guoyong et al.25to select crop planting areas, agricultural irrigation areas, fertilizers, 
pesticides, agricultural film, and diesel as the primary sources for calculating carbon emissions from the planting 
industry. The specific carbon emission coefficients and carbon sources are shown in Table 1. E2i represents the 
carbon emissions from rice paddies in province i; Bi represents the planting area of rice paddies in province i; mi 

Carbon Source Unit Coefficient

Crop sowing area kg/km2 312.6

Agricultural irrigation area kg/hm2 19.8575

Fertilizer kg/kg 0.8956

Pesticide kg/kg 4.9341

Agricultural film kg/kg 5.18

Diesel fuel kg/kg 0.5927

Table 1.  Carbon emission sources and carbon emission coefficients in crop cultivation.
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represents the methane emission factor for rice paddies in province i, based on the research of Tas Thamo et al.26, 
with given factor coefficients. a represents the global warming potential coefficient for methane, which is 6.82.

The total amount of organic carbon absorbed by crops during their growth and development processes, which 
constitutes agricultural carbon sequestration, is calculated using the following carbon absorption measurement 
formula:

	
S =

m∑
i=1

Si =
m∑

i=1

si
Qi

hi
(1 − ri)� (9)

 

In the formula, S represents the total amount of carbon absorbed by crops in the agricultural system. Si is the 
carbon absorption amount of a specific type of crop. si is the carbon absorption rate of a specific type of crop, 
Qi is the economic yield of a specific type of crop, hi is the economic coefficient of a specific type of crop, and, 
ri is the moisture content of a specific type of crop, Qi/hi represents the biological yield of the crop, and m is the 
number of crop types. The specific agricultural crops studied include food crops, economic crops, and vegetable 
crops, mainly including Food crops: rice, wheat, corn, potatoes, and beans; Oil crops: peanuts, rapeseed; Fiber 
crops: cotton; Sugar crops: sugarcane, sugar beet; Economic crops: tobacco, fruits, vegetables, and other crops. 
Coefficient values for various crops are shown in Table 2.

As can be seen from Fig. 2, the box plot for agricultural net carbon efficiency shows a fluctuating upward 
trend during the study period, which may be due to the limitations of agricultural transformation and upgrading, 
resulting in relatively slow development. The variations in the box plot indicate significant differences in data 
among provinces, demonstrating inconsistent levels of agricultural development across provinces. This trend 
may be attributed to the constraints on agricultural transformation and upgrading, resulting in relatively slow 
development. Additionally, significant variations in data across provinces indicate disparities in agricultural 
development levels, which have been confirmed in previous studies27.

Figure 3illustrates the spatiotemporal evolution characteristics of agricultural net carbon efficiency, from 
2013 to 2020 and also shows varying levels of change among provinces. Provinces such as Gansu, Sichuan, and 
Guizhou rose from a medium-low level to a medium level. Previous studies indicate that these regions are water-
scarce areas in the western part of the country28. Their improvement in agricultural net carbon efficiency may 
be due to increased focus on water resource management and ecological protection in recent years, enhancing 
agricultural production efficiency. Meanwhile, Hebei, Henan, and Shandong provinces advanced from a 
medium level to a medium-high level. As major agricultural provinces, this progression might be attributed to a 
recent emphasis on agricultural technological innovation and the promotion of agricultural techniques, which 
have simultaneously reduced carbon emissions and increased carbon absorption, placing them in a leading 

Fig. 2.  Box plot of agricultural net carbon efficiency.

 

Crop type S h r% Crop type S h r%

Rice 0.414 0.45 12 Cotton 0.450 0.10 8

Wheat 0.485 0.40 12 Sugarcane 0.450 0.50 50

Corn 0.471 0.40 13 Sugar beet 0.407 0.70 75

Potato 0.423 0.70 70 Vegetables 0.450 0.60 90

Bean 0.450 0.34 13 Fruits 0.450 0.70 90

Peanut 0.450 0.43 10 Tobacco 0.450 0.55 85

Rapeseed 0.450 0.25 10 Other Crops 0.450 0.40 12

Table 2.  Carbon absorption rates, economic coefficients, and moisture content of major crops in agriculture.
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position. Conversely, Beijing’s net carbon efficiency decreased from a medium-low level to a low level. Both 
its agricultural carbon emissions and carbon absorption are extremely low, likely because the economic focus 
is not on agriculture. Consequently, insufficient exploration of agricultural technology has resulted in weaker 
agricultural net carbon efficiency.

Explanatory variable: rural digital economy
The level of rural digital economy development (DIG) is the core explanatory variable in this paper. Following the 
principles of data availability, scientific validity, comprehensiveness, and effectiveness in selecting measurement 
indicators, an evaluation index system for the rural digital economy is constructed from the dimensions of 
innovation development, infrastructure, digital penetration, and digital application. The specific components 
are shown in Table 3.

Drawing on previous research, the entropy method is employed to measure the level of the rural digital 
economy.

Box plots are used to analyze the temporal characteristics of rural digital economy levels (Fig. 4). From the 
figure, it is evident that from 2013 to 2020, the level of China’s rural digital economy has shown a continuous 
upward trend, with the range of fluctuations also expanding each year. The presence of outlier points indicates 
significant differences in the development of the agricultural digital economy among provinces, suggesting that 
the digital economy, as a new economic form, has developed rapidly in recent years. However, due to disparities 
in macroeconomic conditions, educational resources, human capital, and foundational infrastructure, the rural 
digital economy exhibits uneven regional development29.

Figure 5displays the temporal and spatial evolution of China’s rural digital economy development level. To 
provide a clearer depiction of the results, the study divides the timeframe of rural digital economy development 

Target Layer System Layer Index layer Index Explanation

Rural Digital 
Economy

Innovation

E-commerce Development Level Number of Taobao Villages(+)

Rural Innovation and Entrepreneurship Level Number of Rural Innovation and Entrepreneurship Parks(+)

Level of Information Technology Investment Fixed Asset Investment in the Information Technology Service Industry(+)

IT Professionals IT Workforce(+)

Infrastructure

Rural Logistics Infrastructure Development Rural Delivery Route Density(+)

Rural Postal Accessibility Number of Administrative Villages with Postal Service(+)

Agricultural Meteorological Infrastructure 
Development Number of Agricultural Meteorological Observation Stations(+)

Digital 
popularization

Rural Mobile Phone Penetration Average Number of Mobile Phones per Hundred Households in Rural 
Residences(+)

Rural Internet Penetration Number of Rural Broadband Access Households(+)

Rural Internet Penetration Average Number of Computers per Hundred Households in Rural Residences(+)

Digital application

Digital Trading of Agricultural Products Online Retail Sales of Agricultural Products(+)

Rural Postal Delivery Level Average Weekly Postal Delivery Frequency in Rural Areas(+)

Rural Internet Culture Development Average Weekly Postal Delivery Frequency in Rural Areas(+)

Rural Information Technology Application Average Population Served by Rural Postal Service Points(+)

Digital Service Consumption by Farmers Expenditure on Transportation and Communication by Farmers(+)

Service Consumption Level of Farmers Engel Coefficient of Rural Residents(-)

Table 3.  Evaluation index system for the rural digital economy.

 

Fig. 3.   Spatiotemporal evolution map of agricultural net carbon efficiency. Map generated by the authors 
using ArcGIS 10.8 (​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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levels into three specific years: 2013, 2016, and 2020, instead of just using the endpoints of 2013 and 2020. 
The figure reveals that in recent years, the rural digital economy development level in most provinces has 
been continuously rising. This trend is driven by market demand in the broader context of national economic 
development, with strong support from government policies and infrastructure projects. However, there are 
notable differences in the growth trends of the rural digital economy across regions. In 2013, the level of the rural 
digital economy across China tended to be uniform, but by 2020, the eastern coastal regions had gradually risen 
to medium-high and high levels, while the central and western regions remained at low to medium-low levels. 
This disparity is likely due to differences in technological innovation capabilities and application degrees. The 
development of the digital economy is closely related to economic foundations, and the eastern coastal regions 
possess favorable conditions in terms of geographical location, resource advantages, technological innovation, 
market demand, and policy support30.

Mediating variables
The first mediating variable selected in this paper is agricultural human capital (EDU). The level of agricultural 
human capital is measured by the average years of education of rural residents. The formula for the average years 
of education of rural residents is as follows:

Average years of education of rural residents =(Number of rural residents with no education×0 + Number of 
preschoolers×3 + Number of primary school graduates×6 + Number of middle school graduates×9 + Number of high 
school graduates×12 + Number of residents with college education or above×12)/ Total rural population.

The second mediating variable in this study is the level of agricultural technological innovation, measured 
by the investment in agricultural research and innovation. Currently, the available statistical data only includes 
research and innovation investment for the entire industry, and specific data for agricultural research and 
innovation investment is not available. In this study, the formula for measuring agricultural research and 
innovation investment is established as follows:

	 agRDit = Eit × RDit� (10) 

	
Eit = 0.5 × agRt

Rt
+ 0.5 × agGDPit

GDPit
� (11)

 

In the formula, agRDit represents the agricultural research and innovation investment of the province i in the 
year t, RDit represents the research and innovation investment of the province i in the year t, agRt represents the 
national agricultural research expenditure data, Rt represents the national research expenditure data, agGDPit 
represents the total agricultural output value of province i in the year t, and GDPit represents the total output 
value of province i in the year t.

Fig. 5.   Spatiotemporal evolution map of the rural digital economy. Map generated by the authors using 
ArcGIS 10.8 (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​e​s​r​​i​.​c​​o​m​/​​e​​n​​-​u​s​/​​a​r​c​​g​i​​s​/​p​r​o​d​​​u​c​t​s​/​​a​r​​c​g​i​s​-​d​e​​s​k​t​o​p​/​o​v​e​r​v​i​e​w).

 

Fig. 4.  Box plot of the rural digital economy.
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Control variables
To minimize the endogeneity problem caused by omitted variables, this paper adds control variables at the 
regional and agricultural levels, drawing on the studies of F Wang, Fengting31, Wang, Haoran, et al.32.

The regional-level control variables include Economic development level (pgdp), measured by the per capita 
GDP of each province; Urbanization level (urb), measured by the ratio of urban population to total population 
in each province; Urban-rural income gap (gap), measured by the ratio of disposable income between urban and 
rural residents.

The agricultural-level control variables include Rural fixed asset investment (inves); Expenditure on 
agriculture, forestry, and water affairs (aff); Agricultural disaster area (dis); Agricultural industrial structure 
(str), represented by the ratio of the value of forestry, animal husbandry, and fishery to the total output value of 
agriculture, forestry, animal husbandry, and fishery.

Data sources
Due to the more comprehensive availability of data related to rural digital economy metrics starting from 2013, 
this study selects the period from 2013 to 2020 as the sample interval. The primary data used in this study are 
derived from various sources, including the annual editions of the “China Statistical Yearbook,” “China Rural 
Statistical Yearbook,” “China Population and Employment Statistical Yearbook,” the “National Greenhouse Gas 
Emission Inventory,” and data from the National Bureau of Statistics, the Ministry of Commerce, and relevant 
research reports. Some data are also sourced from the websites of provincial and municipal statistical bureaus. 
The Rural Digital Inclusive Finance Development Index is obtained from the Peking University Digital Inclusive 
Finance Index Research Report33.

Given data availability, the study focuses on 30 provinces (municipalities and autonomous regions) in 
mainland China, excluding Tibet, Hong Kong, Macau, and Taiwan. To eliminate the effects of different 
measurement units among various indicators, the logarithms of some indicators are taken. Descriptive statistics 
of the indicators are presented in Table 4.

Results
Benchmark regression results
This section presents the regression results based on the benchmark model (1), as shown in Table 5. Column (1) 
is the fixed effects model with the core explanatory variables included. Column (2) includes the core explanatory 
variables and some control variables. Column (3) includes the core explanatory variables and all control 
variables. Column (4) considers the potential endogeneity by introducing instrumental variables for estimation.

Comparing the regression results reveals that as control variables are gradually included, the regression 
coefficients for the rural digital economy are consistently positive and pass the significance tests at the 1% and 
5% levels. This indicates that the development of the rural digital economy significantly enhances the net carbon 
efficiency of agriculture, thereby validating hypothesis H1.

This study addresses the issue of endogeneity caused by omitted variables by incorporating control 
variables and employing a two-way fixed effects model for empirical regression. This approach aims to mitigate 
endogeneity arising from time-invariant and unobservable factors. However, the model may still be subject to 
endogeneity due to potential bidirectional causality. To address this, the study adopts the instrumental variable 
(IV) method to re-estimate the baseline regression. The number of post offices per million people in 1984 is 
selected as the instrumental variable, based on the following considerations: (1) Relevance: The penetration 
of telecommunication and internet services serves as the foundation of digital economy development. Before 
the widespread adoption of telephones and the internet, information exchange and communication primarily 
relied on postal networks. Moreover, post office locations were among the early sites for the deployment of fixed 
telephone lines, and internet infrastructure is closely linked to telephone networks. Therefore, the number of post 

Variable Observed value Mean value Standard deviation Minimum Maximum

NCE 240 5.975 2.758 1.710 13.01

DIG 240 14.699 9.975 3.239 58.444

lnEDU 240 2.057 0.078 1.771 2.282

lnagRD 240 2.459 1.072 −0.874 4.263

lninves 240 5.396 1.128 1.194 6.874

lnaff 240 6.268 0.537 4.812 7.199

lndis 240 5.954 1.541 0.693 8.349

str 240 9.524 5.111 0.3 25.1

gap 240 2.573 0.384 1.845 3.803

urb 240 0.603 0.116 0.379 0.896

lnpgdp 240 10.913 0.143 10.053 12.013

lncseq 240 7.413 1.265 3.755 9.057

lnDuf 240 5.537 4.228 4.771 6.068

lntool 240 12.274 1.698 7.584 14.915

Table 4.  Variables and descriptive statistics.
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offices is strongly correlated with the development of the digital economy. (2) Exclusivity: The number of post 
offices in 1984 has a negligible direct impact on the current development of agricultural net carbon efficiency, 
thereby satisfying the exclusivity condition. However, since the number of post offices per million people in 1984 
is cross-sectional data, it cannot be directly regressed alongside the panel data of the sample period using the 
fixed effects model. To address this issue, following the previous research34, this study constructs an interaction 
term between the number of post offices per million people in 1984 and the number of broadband internet 
subscribers in each sample year as the instrumental variable.

In Column (4), a two-stage estimation was conducted. In the first stage of the instrumental variable estimation, 
the F-value was 58.56, indicating no weak instrument variable problem. Therefore, using the interaction term 
between the number of post offices per million people in 1984 and the number of internet broadband access 
users in each sample year as an instrumental variable is appropriate. In the estimation of Column (4), the 
estimated coefficient of the digital economy is significant at the 5% level, indicating that the digital economy has 
a significant positive impact on agricultural ecological quality. Although the OLS regression results may lead 
to biased estimates of the rural digital economy, the extent of bias is not substantial. Therefore, in subsequent 
regressions, this study will use OLS for regression analysis.

Analysis of threshold effects
Following the testing approach of the threshold effect model, it is necessary to first determine the existence of 
a threshold effect and the number of threshold values before applying the model. The test results are presented 
in Table 6.

As shown in Table 6, when utilizing the level of rural digital economy development as the threshold variable, 
the single-threshold test passes the 10% significance level, with a p-value of 0.0550, while the double-threshold 
test fails to pass the significance test. The estimated single-threshold value for rural digital economy development 
is 0.1436.

Table 7 reveals the nonlinear relationship between rural digital economy development and agricultural net 
carbon efficiency. When the rural digital economy level is below the threshold value of 0.1436, its development 
does not contribute to the improvement of agricultural net carbon efficiency. However, when the rural digital 
economy exceeds this threshold, the estimated coefficient is 1.556, indicating that rural digital economy 

Variable Number of thresholds
F
value

P
value

10%
threshold 5% threshold 1% threshold Number of BS

DIG
Single-threshold 18.04 0.0550 15.7239 19.0101 28.0528 300

Double-threshold 6.76 0.5050 13.8328 17.8936 22.8302 300

Table 6.  Threshold effect tests.

 

OLS 2SLS

(1) (2) (3) (4)

DIG 3.403***
(4.34)

1.557**
(2.11)

1.810**
(2.37)

2.819**
(2.24)

lninves −0.800***
(−4.20)

−0.766***
(−3.92)

−0.746***
(−3.76)

urb 5.783***
(4.62)

5.290***
(3.92)

5.232***
(3.92)

gap −0.686*
(−1.94)

−0.524
(−1.57)

−0.523
(−1.61)

lnpgdp −1.735***
(−4.04)

−1.145**
(−2.01)

−1.267**
(−2.24)

lndis −0.001
(−0.04)

0.000
(0.01)

lnaff −0.028
(−0.11)

−0.051
(−0.19)

str 0.646
(1.52)

0.704*
(1.66)

Constant 5.474***
(47.30)

33.787***
(6.48)

25.350***
(3.44)

Province FE YES YES YES YES

Year FE YES YES YES YES

N 240 240 240 240

Adjusted R2 0.962 0.976 0.976

Estimated F-value 58.56

Table 5.  Baseline regression results. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively, with t-statistics in parentheses, as in the following tables.

 

Scientific Reports |        (2025) 15:10756 10| https://doi.org/10.1038/s41598-025-95209-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


development significantly enhances agricultural net carbon efficiency. This confirms the existence of a threshold 
effect in the impact of rural digital economy development on agricultural net carbon efficiency, supporting a 
nonlinear relationship between the two. Thus, Research Hypothesis H2 is validated. Specifically, in the early 
stages of digital economy development, weak infrastructure and the presence of “sunk cost” effects hinder its 
impact on agricultural net carbon efficiency. Additionally, the limited scale of pilot projects for agricultural 
digital technologies, such as the Internet of Things (IoT), prevents the formation of economies of scale, making 
it difficult for the digital economy to significantly enhance agricultural net carbon efficiency. However, once 
digital economy development surpasses the threshold value, institutional frameworks—such as data-sharing 
mechanisms and standardized digital agriculture practices—gradually improve. The integrated application of 
digital technologies fosters a “synergistic multiplication” effect, wherein the digital economy and agricultural net 
carbon efficiency mutually reinforce and amplify each other.

Robustness checks
Changing the dependent variable
This paper comprehensively examines the dual effects of agricultural carbon emissions and carbon absorption. 
Given the carbon sink characteristics of agriculture, agricultural carbon absorption indicators are used to 
approximate the net carbon efficiency of agriculture. The results are shown in Column (1) of Table  8. The 
regression coefficient for the rural digital economy is 0.165, maintaining the same sign as the benchmark 
regression and passing the 10% significance level test, confirming the robustness of the benchmark regression 
results.

Changing the core explanatory variable
Previous studies often include digital inclusive finance to measure the development level of the digital economy35. 
From a financial perspective, the development of digital inclusive finance can represent the development of the 
digital economy to some extent. Therefore, this paper replaces the original core explanatory variable with the 
digital inclusive finance index for regression, as shown in Column (2) of Table 8. The results indicate that even 
after changing the core explanatory variable, the regression results remain significantly valid, confirming the 
robustness of the benchmark regression results.

Excluding directly governed municipalities
Considering the differences in agricultural subsidies and other policy preferences as well as development speeds 
between directly governed municipalities and other provinces (autonomous regions), these municipalities are 
excluded. The regression results after exclusion are shown in Column (3) of Table 8. The regression results for 

(1)
Agricultural carbon sequestration

(2)
Digital Inclusive Finance Index

(3)
Excluding municipalities

(4)
Winsorize

(5)
Change
Cluster

DIG 0.165*
(1.81)

1.236*
(1.81)

2.907***
(2.67)

1.810**
(2.37)

lnDuf 0.488***
(3.07)

Control Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Constant 11.947***
(11.63)

24.372***
(3.37)

23.815***
(3.10)

27.983***
(3.86)

25.350***
(3.44)

N 240 240 208 240 240

Adjusted R2 0.997 0.977 0.981 0.979 0.976

Table 8.  Robustness test results.

 

Variable

Agricultural net 
carbon efficiency

Coefficient t-value

Index(DIG ≤ 0.1436) −1.132 −0.94

Index(DIG > 0.1436) 1.556** 2.05

Control YES YES

Constant 11.818** 2.49

N 240 240

R2 0.398 0.398

Table 7.  Coefficient regression results of the threshold model.

 

Scientific Reports |        (2025) 15:10756 11| https://doi.org/10.1038/s41598-025-95209-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the core explanatory variable still align with the sign direction in the benchmark regression and pass the 10% 
significance test, confirming the robustness of the benchmark regression results.

Winsorization
To avoid the influence of extreme values in certain years or individual samples on the regression results, this 
paper performs a 2.5% bilateral winsorization on the dependent variable and core explanatory variable before 
re-running the regression. The results are shown in Column (4) of Table 8. The regression coefficient for the rural 
digital economy is 2.907, passing the 1% significance level test, confirming the robustness of the benchmark 
regression results.

Replacing robust standard error tests
Although heteroskedasticity-robust standard errors can mitigate potential heteroskedasticity issues in the 
model, clustered robust standard errors provide more reliable statistical inference when the data exhibit a 
clustered structure. To ensure the robustness of the empirical results, this study further employs clustered robust 
standard errors to re-examine the baseline regression results. Specifically, the standard errors are clustered at 
the “province-year” level. As shown in column (5) of Table 8, the regression coefficient is 1.810 and remains 
significant at the 5% level, indicating that the research conclusions are robust.

Heterogeneity analysis
Given the significant economic development disparities across different regions in China, along with varying levels 
of digital economy development, infrastructure, and industrial structure, this paper analyzes the heterogeneous 
effects of the digital economy on agricultural net carbon efficiency from the following perspectives:

Firstly, agricultural production functional zones  The 30 provinces are divided into 13 major grain-producing 
areas and 17 non-grain-producing areas based on differences in agricultural production functions. Major 
grain-producing areas have natural conditions suitable for grain crop cultivation, yielding high grain output that 
not only ensures self-sufficiency but also supplies surplus grain. In contrast, non-grain-producing areas have 
lower agricultural planting levels and a gap between grain production and demand. The impact of the digital 
economy on agricultural net carbon efficiency, which is based on agricultural planting, may vary across different 
agricultural production functional zones.

Secondly, agricultural industry clustering  Based on the location quotient indicator, the 30 provinces are divided 
into high and low agricultural industry clustering areas. Agricultural industry clustering is highly correlated 
with regional agricultural production efficiency and resource allocation efficiency, which in turn are linked to 
agricultural carbon efficiency36. Therefore, the impact of the digital economy on agricultural net carbon efficien-
cy may differ across regions with varying degrees of agricultural industry clustering.

Thirdly, government intervention levels  The sample is divided into regions with high and low government inter-
vention levels based on the ratio of general government budget expenditure to GDP. The degree of government 
intervention also represents the level of marketization in the region. The level of marketization significantly 
affects the development of the digital economy and high-quality agricultural development37. Thus, the impact 
of the digital economy on agricultural net carbon efficiency varies with the degree of government intervention.

Based on models (1) and (2) in Table 9, it is evident that the digital economy has a significant positive impact 
on the net carbon efficiency of agriculture in major grain-producing areas at the 1% significance level, whereas 
non-grain-producing areas did not pass the significance test.

From models (3) and (4) in Table 9, it can be seen that the digital economy significantly promotes the net 
carbon efficiency of agriculture in regions with high agricultural industry concentration at the 1% significance 
level, while it has no significant effect in regions with low agricultural industry concentration.

(1)
major grain-producing

(2)
non-grain-producing

(3)
High industry 
clustering

(4)
low industry 
clustering

(5)
high government 
intervention

(6)
low 
government 
intervention

DIG 5.808***
(2.69)

0.739
(1.08)

11.073***
(5.20)

0.992
(1.21)

7.808
(0.93)

1.669**
(2.47)

Control Yes  Yes  Yes  Yes  Yes  Yes

Province FE  Yes  Yes  Yes  Yes  Yes  Yes

Year FE  Yes  Yes  Yes  Yes  Yes  Yes

Constant 31.989***
(3.70)

15.142
(1.33)

17.662**
(2.16)

35.539**
(2.14)

16.358
(1.47)

32.404***
(4.74)

N 104 136 152 88 120 120

Adjusted R2 0.987 0.972 0.978 0.984 0.960 0.989

Table 9.  Heterogeneity test results.
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According to models (5) and (6) in Table 9, the digital economy has a significant positive effect on the net 
carbon efficiency of agriculture in areas with low government intervention, whereas there is no significant 
impact in areas with high government intervention.

Mechanism analysis
The previous discussion has confirmed the significant positive impact of rural digital economy development on 
agricultural net carbon efficiency. But through which pathways is this impact achieved? To verify the underlying 
mechanisms, this paper introduces mediating variables and conducts further analysis based on models (2) and 
(3) mentioned earlier. The results are presented in Table 10.

As shown in Column (1) of Table 10, rural digital economy development significantly improves the level of 
human capital. Combining the results from Jiang Ting et al. (2022) on mediation models with the theoretical 
analysis discussed earlier, it can be reasonably inferred that the rural digital economy can enhance agricultural 
net carbon efficiency through the human capital effect, thus validating Hypothesis H3.

As shown in Column (2) of Table 10, rural digital economy development significantly enhances the level of 
agricultural technological innovation. This suggests that the rural digital economy can enhance agricultural net 
carbon efficiency through the effect of technological innovation, thereby validating Hypothesis H4.

Discussion
Previous studies have predominantly measured agricultural ecological quality from the perspectives of 
agricultural production inputs and outputs, with agricultural ecological efficiency being a common measure. 
For example, Wu Guoyong et al.38incorporated agricultural non-point source pollution into their assessment. 
However, these studies tend to focus on carbon emissions and often overlook agricultural carbon absorption. 
As agriculture is a dual system that involves both carbon absorption and carbon emissions, its net carbon 
efficiency is crucial. This study proposes that measuring agricultural net carbon efficiency provides a more 
reasonable assessment of agricultural ecological quality by considering both the environmental costs and 
ecological benefits of agricultural production. In measuring the rural digital economy, this study takes into 
account various indicators and synthesizes the methods frequently used by current scholars. For instance, 
some scholars measure the rural digital economy based on internet penetration, general equipment, digital 
penetration, digital integration, and investment levels39. However, these selected indicators are relatively singular 
and fail to comprehensively measure the digital economy. Additionally, Chen, Jinbiao, et al.40 selected multiple 
indicators from aspects such as infrastructure, user base, and industry scale to measure the digital economy, 
but many of these indicators are derived from the secondary industry, which does not reflect the development 
level of the rural digital economy. Building on a systematic review of previous research, this study employs the 
entropy method, selecting multidimensional indicators from innovation development, infrastructure, digital 
penetration, and digital application to measure the development level of the rural digital economy. This approach 
not only provides reliable data support for calculating the rural digital economy but also offers a beneficial 
expansion of the existing measurement indicators for the rural digital economy. On this basis, this study analyzes 
the spatiotemporal evolution characteristics of agricultural ecological quality and the rural digital economy, 
contributing to a deeper understanding of the current development status of agricultural ecological quality and 
the rural digital economy.

Building on this foundation, this study explores how the rural digital economy empowers the development of 
agricultural ecological quality from the perspective of net carbon efficiency. Theoretical analysis and empirical 
tests reveal that the development of the rural digital economy can significantly enhance agricultural net carbon 
efficiency, which is logical. On one hand, the proliferation of new infrastructure in the course of rural digital 
economy development provides a solid foundation for the digital transformation of traditional agriculture, 
promoting the effective allocation of agricultural resources and improving the utilization rate of agricultural 
production factors. On the other hand, the innovative development of agricultural digital technologies offers 
intrinsic motivation for the green and low-carbon development of agriculture. The promotion of the digital 
economy can enhance farmers’ awareness of both ecological and economic benefits41, guiding them towards an 
ecological mindset and thereby enhancing agricultural net carbon efficiency.

However, this empowering effect exhibits significant heterogeneity. Firstly, for agricultural production 
functional areas, the digital economy has a significant positive impact on agricultural net carbon efficiency at 

(1)
EDU

(2)
AgRD

DIG 0.571**
(2.12)

0.599***
(4.05)

Control Yes Yes

Province FE Yes Yes

Year FE Yes Yes

Constant 0.522
(1.07)

−10.022***
(−5.41)

N 240 240

Adjusted R2 0.924 0.990

Table 10.  Mediation effect test results.
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the 1% level in major grain-producing areas, while non-grain-producing areas do not pass the significance test. 
The underlying reasons may be attributed to the well-developed planting industry in major grain-producing 
regions, which benefits from advantages in organization, large-scale operations, and intensive production. These 
factors provide a strong foundation for the rapid advancement of the digital economy within the agricultural 
sector. Moreover, as the digital economy becomes increasingly integrated with the planting industry, land 
management efficiency is significantly enhanced, while the optimized allocation of production inputs improves 
the utilization efficiency of fertilizers, pesticides, and other agricultural resources. Precision and intelligent 
agricultural production and operations not only enhance the efficiency of grain production and distribution 
but also reduce costs, thereby driving the growth of green total factor productivity in agriculture. For instance, 
the Beidahuang Agricultural Reclamation Group in Heilongjiang Province has implemented the “Unmanned 
Farm” pilot project, leveraging digital technologies such as Beidou navigation, drone-based crop protection, 
intelligent irrigation, and remote monitoring to improve land management efficiency and the precise application 
of agricultural inputs. Precision fertilization and intelligent irrigation have effectively reduced fertilizer and 
water resource waste, thereby lowering agricultural carbon emissions and enhancing agricultural net carbon 
efficiency. Therefore, the digital economy plays a particularly significant role in improving agricultural net 
carbon efficiency in major grain-producing regions.

Secondly, regarding agricultural industrial agglomeration, the digital economy significantly promotes 
agricultural net carbon efficiency at the 1% level in high agricultural industrial agglomeration areas, while it 
has no significant effect in low agricultural industrial agglomeration areas. This is because low agricultural 
industry agglomeration regions are typically economically developed areas, such as the Yangtze River Delta, 
the Pearl River Delta, and the core regions of Beijing-Tianjin-Hebei. These areas are primarily characterized 
by non-agricultural industrial structures. Although they exhibit a high level of digital economy development, 
the potential for applying digital technologies to agricultural ecological improvements is relatively limited, 
resulting in an insignificant impact of the digital economy on agricultural net carbon efficiency. In contrast, high 
agricultural industry agglomeration regions are often economically underdeveloped areas primarily engaged in 
agricultural production, such as the Northeast Plain and the Huaihai Plain. These regions generally have lower 
levels of digital economy development but exhibit a strong demand for the application of digital technologies in 
agriculture. Consequently, the rapid development of the digital economy in these low-level regions has a more 
pronounced impact on agricultural net carbon efficiency.

Finally, in terms of the degree of government intervention, the digital economy has a significant positive 
effect on agricultural net carbon efficiency in areas with low government intervention, but not in areas with 
high government intervention. A possible explanation lies in the fact that in regions with low government 
intervention, the market mechanism plays a dominant role, facilitating the rapid and smooth flow of various 
factors, thereby improving the efficiency and rationality of resource allocation. From the perspective of 
transaction cost theory in institutional economics, lower government intervention implies fewer administrative 
barriers and policy constraints. As a result, enterprises and farmers face lower institutional transaction costs 
when adopting new technologies, which promotes the widespread application of the digital economy in areas 
such as agricultural production. This, in turn, enhances the impact of the digital economy on agricultural net 
carbon efficiency and promotes the development of agricultural ecological quality. From the perspective of the 
policy crowding-out effect, regions with high levels of government intervention may result in a greater reliance 
on government-driven allocation of agricultural policy resources, rather than market demand. This reduces 
the autonomy of market entities and weakens the innovation drive of farmers and agricultural enterprises. For 
instance, if the government directly provides subsidies for agricultural machinery instead of supporting the 
application of digital technologies, farmers may prefer to adopt traditional farming methods over investing 
in digital agriculture technologies, thereby diminishing the impact of the digital economy on agricultural net 
carbon efficiency. Further consideration suggests that when government intervention is excessive and lacks 
transparency, policy resources may be captured by certain stakeholders, failing to truly foster the development of 
the digital economy. This may lead to a disconnect between government-driven agricultural green development 
policies and market needs, preventing the effective realization of the carbon reduction potential of the digital 
economy. Ultimately, this results in the insignificant impact of the digital economy on agricultural net carbon 
efficiency in high government intervention regions.

Previous studies have often conducted heterogeneity analyses based on regional differences within China. 
For instance, Zhang Hongsheng et al.42 investigated the impact of the digital economy on agricultural carbon 
emissions, finding that the carbon reduction effects were more pronounced in the eastern and central regions 
compared to the western region. The eastern region of China, being coastal, benefits from a more developed 
environment for technological innovation and a higher degree of digitalization, thus exhibiting significant 
differences in the “digital carbon reduction” effects. However, substantial internal regional disparities make it 
difficult to capture local characteristics, thereby reducing the practical applicability of the results. This study, by 
analyzing heterogeneity from the perspectives of grain production areas, agricultural industrial agglomeration, 
and government intervention, aims to provide a more targeted analysis of policy effects. Consequently, it offers 
a more precise explanation of the mechanisms at play and provides differentiated, practically valuable policy 
recommendations.

Moreover, there are multiple pathways through which the development of the digital economy can enhance 
agricultural ecological quality. This study posits that human capital and technological innovation are important 
intermediary channels, and this hypothesis has been empirically validated. From the perspective of human 
capital effects, the development of the rural digital economy provides diversified education and training 
platforms for agricultural producers, offering channels for farmers to learn about agricultural production 
techniques, sustainable development, and the agricultural ecological environment. Agricultural producers 
can access agricultural knowledge, market information, weather forecasts, and other data through digital 
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technologies. Moreover, highly skilled labor can comprehend the precise agricultural management schemes 
provided by digital technology, which helps to improve agricultural production efficiency and better adapt to 
agricultural environmental challenges. From the perspective of technological innovation effects: on one hand, 
the rural digital economy provides precise management tools for agricultural production through technological 
innovation. Using innovative technologies such as drones, satellite remote sensing, and sensors, farmers can 
obtain information on soil moisture, crop growth status, and climate change, enabling precise monitoring and 
management of the agricultural production process. On the other hand, the rural digital economy promotes 
the development of intelligent agricultural carbon reduction technologies through technological innovation43. 
With monitoring equipment and data analysis, farmers can monitor and assess the greenhouse gas emissions 
generated by agricultural activities in real-time, identify and locate emission sources, and take corresponding 
reduction measures. Technological innovation can improve resource utilization efficiency and reduce greenhouse 
gas emissions, thereby enhancing agricultural net carbon efficiency.

The limitations of this study are as follows. Firstly, in selecting the evaluation indicators for the development 
level of the rural digital economy, this study referred to excellent domestic and international journal articles 
and aimed to comprehensively and scientifically choose indicators widely recognized by scholars. However 
the inherent complexity and accessibility challenges of agricultural digitalization data impose measurement 
constraints. Specifically, the unavailability of sector-specific datasets on precision agriculture adoption rates 
and smart irrigation penetration indices – critical dimensions of agricultural technology application may result 
in systematic underestimation of digital economy development levels. Secondly, the empowering channels of 
the rural digital economy on agricultural ecological quality could be diverse. For feasibility reasons, this paper 
only selected human capital and technological innovation as intermediary mechanisms. Future research could 
analyze and verify other perspectives, such as agricultural planting structures. Thirdly, the data in this paper 
is sourced from provincial panel data in China, and analyses at the provincial level may mask the effects of 
heterogeneity at the county level. Meanwhile, the development of the digital economy has an international trend 
and can bring more ecological benefits to the international community, not limited to agriculture. The research 
ideas and methodological models of this paper can be applied to the issues of digital economy development and 
agricultural ecological quality in other countries and regions. Future research could extend the perspective to 
an international context.

Conclusions and policy implications
Conclusion
The rural digital economy is a key force in enhancing agricultural net carbon efficiency and plays a significant 
role in promoting agricultural ecological quality. This study examines how the rural digital economy empowers 
agricultural ecological quality development, incorporating human capital and agricultural technological progress 
into the analytical framework. Based on panel data from 30 provinces (municipalities, autonomous regions) in 
China from 2013 to 2020, the study conducts empirical tests and finds the following:

Agricultural Net Carbon Efficiency Trends: Agricultural net carbon efficiency shows a fluctuating upward 
trend, while the development level of the rural digital economy continues to grow, albeit with significant regional 
differences.

Positive Impact of Digital Economy: The development of the rural digital economy significantly enhances 
agricultural net carbon efficiency. This result remains robust even after introducing instrumental variable 
estimation, changing variables, excluding certain samples, and performing winsorization.

Heterogeneity in Impact: The impact of the digital economy on agricultural net carbon efficiency varies 
across different agricultural production functional zones, levels of agricultural industry clustering, and degrees 
of government intervention.

Indirect Enhancement through Human Capital and Technological Advancement: The rural digital economy 
can indirectly enhance agricultural net carbon efficiency through the effects of human capital and technological 
advancement.

 Policy implications
Based on these findings, the following policy implications are proposed to improve the development of the rural 
digital economy, optimize the pathways to enhance agricultural net carbon efficiency and promote agricultural 
ecological quality development:

Firstly, based on the findings regarding the upward trend in agricultural net carbon efficiency fluctuations, 
a dynamic agricultural carbon monitoring mechanism should be established to enable real-time tracking of the 
agricultural carbon footprint. Simultaneously, efforts should be made to actively participate in the development 
of a global digital trading platform for agricultural carbon credits, facilitating cross-border digital carbon 
certification and mutual recognition pilot programs in collaboration with other countries.

Secondly, the research findings indicate that the development of the digital economy can effectively enhance 
agricultural net carbon efficiency. Therefore, the government should adopt a top-level design approach to 
formulate a comprehensive agricultural digitalization development strategy, leveraging the inclusive benefits 
of the digital economy while prioritizing agricultural ecological benefits. Additionally, it is crucial to mitigate 
the potential negative impacts and social risks associated with digital economic development, preventing the 
widening of the digital divide.

Thirdly, given the threshold effect observed in digital economy development, it is essential to strengthen 
rural digital infrastructure, expand internet coverage, and enhance network quality. Efforts should be made to 
promote the widespread application of digital technologies across the entire agricultural production value chain. 
This includes focusing on the development and optimization of digital platforms throughout the agricultural 
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production process, accelerating the innovative integration of digital platforms and technologies in agriculture, 
and guiding small-scale farming toward a green, eco-friendly digital agricultural transformation.

Finally, research indicates that human capital and agricultural technological innovation serve as effective 
transmission mechanisms through which the digital economy enhances agricultural net carbon efficiency. 
On one hand, it is essential to establish a well-structured rural education system and develop high-quality 
agricultural skills training platforms. Strengthening education and training for farmers in the use of agricultural 
digital technologies will help improve their digital literacy, human capital, and capacity for digital innovation. 
Additionally, enhancing farmers’ scientific production and management capabilities through knowledge-
sharing platforms can facilitate experience exchange and technological collaboration among agricultural 
practitioners. On the other hand, efforts should be made to reinforce support for agricultural technological 
innovation by increasing fiscal investment in agricultural R&D and establishing dedicated funding programs to 
promote rural digital economy development. Providing targeted loans and financing channels for farmers, while 
encouraging agricultural enterprises to invest in digital agricultural technologies and equipment, will further 
drive innovation. Moreover, strengthening agricultural science and technology research and its application 
requires the creation of collaboration platforms between research institutions and agricultural enterprises. 
This will accelerate the integration of digital technologies into agricultural production, facilitating the rapid 
transformation of technological advancements into practical agricultural applications.

Building on this foundation, active participation in global digital agriculture governance is essential. On 
one hand, fostering cross-border technological collaboration and innovation is crucial. Drawing on the digital 
agriculture experiences of the European Union and other countries, efforts should focus on the development of 
climate-smart agricultural technologies. Additionally, advanced digital irrigation technologies from countries 
such as Israel should be introduced and localized for application in arid regions like Northwest China. On the 
other hand, leveraging the “Belt and Road” Initiative, China should promote its smart agriculture solutions 
to developing countries. For instance, the Chinese agricultural remote sensing monitoring system can be 
introduced to Southeast Asia, facilitating the establishment of a digital agriculture alliance to enhance global 
agricultural digitalization and cooperation.

In conclusion, enhancing agricultural net carbon efficiency from the perspective of rural digital economy 
development requires the cooperation and joint efforts of the government, research institutions, agricultural 
enterprises, and farmers. It is essential to strengthen the cross-regional flow of digital economy resources and the 
cultivation of digital talents, promote the research and dissemination of low-carbon agricultural technologies, 
comprehensively improve agricultural production efficiency, and advance agricultural ecological quality 
development.

Data availability
The Rural Digital Inclusive Finance Development Index is derived from the Peking University Digital Inclusive 
Finance Index Research Report, but the availability of data is restricted and its use in this research is author-
ised and therefore not publicly available. However, data is available at the reasonable request and permission of 
the Peking University Digital Finance Research Centre. Other data are available to the public under a Creative 
Commons licence at https://data.cnki.net/. Corresponding author may be contacted if data from this study are 
required.
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