Table 4 The performance with ambiguity rejection precision.

From: Ambiguity-aware semi-supervised learning for leaf disease classification

Data ratio

Base accuracy

Coverage

Select accuracy

Reject accuracy

BRACOL dataset

   05%

\(92.18 \pm 1.45\)

\(72.54 \pm 5.05\)

\(99.50 \pm 0.48\)

\(31.58 \pm 4.12\)

   10%

\(93.94 \pm 0.94\)

\(76.16\pm 2.51\)

\(99.43 \pm 0.44\)

\(23.60 \pm 4.06\)

   20%

\(95.26 \pm 0.59\)

\(82.00 \pm 3.81\)

\(99.42 \pm 0.41\)

\(24.11 \pm 4.35\)

   25%

\(95.98 \pm 0.47\)

\(85.88 \pm 2.00\)

\(99.08 \pm 0.61\)

\(22.65 \pm 4.06\)

   33%

\(96.33 \pm 0.49\)

\(84.03 \pm 4.04\)

\(99.33\pm 0.14\)

\(19.57 \pm 1.12\)

   50%

\(96.58 \pm 0.69\)

\(88.51 \pm 2.76\)

\(\varvec{99.46 \pm 0.37}\)

\(25.18 \pm 2.96\)

   100%

\(96.78 \pm 0.68\)

\(86.16 \pm 4.11\)

\(\varvec{99.38 \pm 0.24}\)

\(20.53 \pm 7.01\)

Banana dataset

   05%

\(94.09 \pm 2.07\)

\(91.95 \pm 5.23\)

\(98.56 \pm 0.90\)

\(61.72 \pm 14.41\)

   10%

\(96.87 \pm 1.31\)

\(91.12 \pm 2.61\)

\(99.71 \pm 0.18\)

\(49.91 \pm 12.10\)

   20%

\(98.26 \pm 0.32\)

\(96.90 \pm 0.44\)

\(99.97 \pm 0.16\)

\(51.64 \pm 6.44\)

   25%

\(98.76 \pm 0.36\)

\(97.29 \pm 1.46\)

\(99.76 \pm 0.31\)

\(49.61 \pm 33.83\)

   33%

\(98.76 \pm 0.31\)

\(98.04 \pm 2.34\)

\(99.69\pm 0.31\)

\(77.78\pm 38.49\)

   50%

\(99.23 \pm 0.22\)

\(97.99\pm 1.10\)

\(\varvec{100.0 \pm 0.00}\)

\(41.67 \pm 11.79\)

   100%

\(99.31 \pm 0.26\)

\(99.50\pm 0.04\)

\(\varvec{99.69 \pm 0.02}\)

\(63.33 \pm 41.50\)

  1. Significant values are in bold.