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Transcriptomic profiling of severe
and critical COVID-19 patients
reveals alterations in expression,
splicing and polyadenylation

Marjorie Labrecque?, Elsa Brunet-Ratnasingham?, Laura K. Hamilton!, Daniel Auld?,
Alexandre Montpetit*, Brent Richards®®, Madeleine Durand’?, Simon Rousseau?,
Andrés Finzi*®, Daniel E. Kaufmann’1° & Martine Tetreault%1**

Coronavirus disease 2019 (COVID-19) is a multi-systemic illness that became a pandemic in March
2020. Although environmental factors and comorbidities can influence disease progression, there

is a lack of prognostic markers to predict the severity of COVID-19 illness. Identifying these markers

is crucial for improving patient outcomes and appropriately allocating scarce resources. Here, an
RNA-sequencing study was conducted on blood samples from unvaccinated, hospitalized patients
divided by disease severity; 367 moderate, 173 severe, and 199 critical. Using a bioinformatics
approach, we identified differentially expressed genes (DEGs), alternative splicing (AS) and alternative
polyadenylation (APA) events that were severity-dependent. In the severe group, we observed a
higher expression of kappa immunoglobulins compared to the moderate group. In the critical cohort,
a majority of AS events were mutually exclusive exons and APA genes mostly had longer 3'UTRs.
Interestingly, multiple genes associated with cytoskeleton, TUBA4A, NRGN, BSG, and CD300A, were
differentially expressed, alternatively spliced and polyadenylated in the critical group. Furthermore,
several inflammation-related pathways were observed predominantly in critical vs. moderate. We
demonstrate that integrating multiple downstream analyses of transcriptomics, from moderate,
severe, and critical patients confers a significant advantage in identifying relevant dysregulated genes
and pathways.
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IGV Integrated Genome Viewer

MXE Mutually exclusive exons

PBMCs Peripheral blood mononuclear cells
PDUI Distal polyA site usage index

PSI Percent spliced in

RT-qPCR Real-time quantitative PCR

RI Retained intron

RNA-seq RNA sequencing

SARS-CoV-2  Severe Acute Respiratory Syndrome Coronavirus 2
SE Skipped exon

UTR Untranslated region

In December 2019, the first case of Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China, caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus'. In March 2020, the situation evolved
to a global pandemic. As of September 9th, 2024, it had affected more than 775 million individuals worldwide
resulting in more than seven million fatalities according to the World Health Organization?. Originally
categorized as a respiratory infection, COVID-19 is now recognized as a multi-systemic disease. Approximately
80% of unvaccinated cases are either asymptomatic or will develop mild to moderate symptoms, while 15%
develop a severe disease and the remaining 5% face critical disease, which might lead to death’.

The use of transcriptomic techniques enables a comprehensive understanding of how gene expression can
vary between conditions. In the context of COVID-19, multiple differentially expressed genes (DEGs) have
already been identified. Transcriptomics also offers the ability to investigate post-transcriptional modifications,
such as alternative splicing (AS) and alternative polyadenylation (APA), crucial for diversifying and regulating
the proteome. AS involves differential exon and intron inclusion, creating diverse transcripts which can have
different functions based on their domains or results in non-functioning and altered proteins. There are five
subtypes of AS events: alternative 3’ splice site (A3SS), alternative 5 splice site (A5SS), mutually exclusive exons
(MXE), retained intron (RI) and skipped exon (SE). SE is the most prevalent subtype, accounting for around
40% of AS events in humans*. They are often found in protein domains and may affect the protein secondary
structure leading to altered interaction with other proteins. A3SS and A5SS often lead to more subtle changes to
the sequence at the beginning or end of the exon®. As for Rls, they may lead to preservation of a stop codon in
the intron, that normally should have been removed or it may have a less drastic effect and change the expression
of the resulting protein®. MXE is the rarest form of AS and around 65% of events are tissue-specific’®. MXEs are
also the most complex, keeping only one of two available exons by activating one and inactivating the spliced
one. This leads to a change in sequence from one exon to the other depending on the resulting isoform, but
not a change in structure like other AS types”. The study of AS in infectious disease is particularly interesting
as viruses can manipulate the spliceosome to aid their replication and evade host immune responses affecting
the host cell cycle!®. Moreover, a previous study suggested that the degree in which the spliceosome is altered
could serve as a predictor of severity in COVID-19 patients'®!!. APA, a less explored regulatory mechanism,
influences messenger RNA translation and stability by changing the 3’ untranslated region (UTR) length of the
poly(A) tail of a gene'2. APA is the last step in post-transcriptional modification and more than 70% of genes
are thought to be prone to APA". Like AS, APA also has some tissue-specific impact. For example, transcripts
in the blood tend to have shorter 3’ UTR, while the brain prefers longer 3 UTR'. The length of the 3’UTR can
have an important impact on gene expression by affecting the messenger RNA stability, degradation rate or
microRNA binding!'*!°. Most of the studies on APA were done in cancer cell lines. They found that genes with
longer 3’ UTR were associated with apoptosis and cell death, while genes with shorter 3> UTR were implicated
in cell cycle, metabolic pathways, glucose transport and antigen processing and presentation'>!®. Another study
on cancer cells, found that shorter 3 UTR increased gene stability and led to higher protein production in some
genes!”. In COVID-19, APA can up-regulate immune genes, and a global shortening of APA was observed in
moderate and severe patients with SARS-CoV-2 infection compared to non-infected controls'®. While AS and
APA have been studied in the context of COVID, there is, to our knowledge, no study that has integrated both
types of analyses in the context of COVID-19 severity. Since AS and APA can both influence gene expression,
it is important to study them in combination with DEGs to gain a comprehensive understanding of the changes
occurring between conditions. Those changes can also be seen by doing pathway enrichment. By using DEGs
as well as genes affected by AS and APA, pathways can be identified as being dysregulated according to different
COVID-19 severities. Some pathways are already of interest based on previous studies, including cytokine storm,
inflammation, cell cycle and cell death!*-2!. Identifying those relevant pathways could eventually lead to effective
treatment of each COVID-19 severity. Beyond transcriptional diversity, the Human Leukocyte Antigen (HLA)
protein complex emerged as a potential key factor in understanding COVID-19 pathogenesis since it had been
associated to viral infections in the past?>-*, Studies have identified HLA alleles related to both susceptibility and
severity of COVID-19 and found that those alleles are population dependent?.

In this study, we conducted a thorough unbiased analysis of transcriptional and post-transcriptional profiles
in COVID-19 patients exhibiting diverse clinical severities. Through this investigation, we aimed to pinpoint
essential post-transcriptional factors and their effect on gene expression based on hospitalized moderate, severe,
and critical COVID-19 patients. We also aimed to identify pathways affected by DEGs, AS and APA affected
genes, that contribute to the underlying pathophysiology of the disease within these distinct patient groups.

Results
To find differences in the transcriptional profile associated with COVID-19 severity, RNA from the blood of 367
moderate, 173 severe and 199 critical hospitalized patients was extracted and sequenced by the BQC19%. The
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cohort was divided by disease severity; moderate; severe; critical according to defined criteria (see Methods)
and cohort characteristics are resumed in Table 1. Comorbidities are included in Supplementary Table S1. Here,
transcriptomic downstream analyses were integrated, including DEGs, AS, APA, HLA typing, and pathway
enrichment analysis, to achieve a comprehensive atlas of COVID-19 changes in severe and critical patients
compared to moderate patients.

Critical COVID-19 patients have higher gene expression changes compared to severe
patients

For the DEG analyses, 29,921 genes were detected in the severe vs. moderate cohort, and 32,956 genes in the critical
vs. moderate cohort. After filtering for p-value <0.01, baseMean > 10, and an absolute value of log2FoldChange
greater than one, 90 DEGs were obtained in the severe vs. moderate comparison, 84 up-regulated and 6 down-
regulated (Fig. 1a, b). Similarly, the critical vs. moderate comparison yielded 674 DEGs, with 645 up-regulated
and 29 down-regulated (Fig. 1c, d).

In the severe vs. moderate group, four Immunoglobulin genes (IGKV4-1 (padj=3.75E-12), IGKV1-39
(padj=3.52E-11), IGLV9-49 (padj=1.26E-11), and IGLV3-19 (padj=3.75E-12)) were found in the top 10 up-
regulated genes, interestingly (Fig. 1a). Among the DEGs in severe vs. moderate, only IGKV4-1, IGKV1-39 and
IGLV3-19 genes showed significant (t-test; padj <0.05) higher expression in severe cases when compared to the
other groups (Fig. 1b).

Next, we focused on the DEGs from the critical vs. moderate cohort. In the top 10 up-regulated genes, two
genes are implicated in the S100 Calcium Binding Protein, SI00A9 (padj=1.23E-44) and S100A12 (padj=9.40E-
46)(Fig. 1c). Among the down-regulated genes, IL7R (padj=3.13E-30) was identified as a relevant gene.
Interestingly, one gene was in the top 10 up-regulated genes for both comparison: ZDHHCI19 (padj=3.28E-
11 for severe and 5.17E-54 for critical) (Fig. 1a, c). Significant DEGs between moderate and critical were also
significantly changed when comparing severe and critical (Fig. 1d). The differential expression for these genes is
consistent with severity. Changes in gene expression for SI00A9 and ZDHHCI9 were validated using Real-time
quantitative PCR (RT-qPCR). SI00A9 was found to be significantly higher in critical compared to moderate
(padj <0.05) and ZDHHC]19 was higher in critical compared to moderate (padj <0.001) and severe (padj<0.01)
(Supplementary Figure S1).

To compare the critical group to the severe group, the up-regulated, down-regulated, and not differentially
expressed (nonDE) genes in critical vs. moderate and severe vs. moderate were compared (Fig. le). To do
so, genes with pvalue<=0.01, log2FC>0 and baseMean>=10 were considered up-regulated, genes with
pvalue <=0.01, log2FC <0 and baseMean >=10 were considered down-regulated and genes with pvalue>0.01
or baseMean < 10 were nonDE. There were 3,598 genes up-regulated in common in both severe and critical,
while 2,826 genes down-regulated in common in severe and critical (Fig. le). A total of 5,260 (3,260 up- and
2,000 down-regulated) genes differentially expressed in critical vs. moderate were nonDE in severe vs. moderate.
On the other hand, only 660 (361 up- and 299 down-regulated) genes were differentially expressed in severe
vs. moderate and nonDE in critical vs. moderate. We confirmed this trend by comparing critical patients to
severe patients using DESeq2 (data not shown). A total of 161 DEGs were found, all were up-regulated, the most
dysregulated gene was GGT5. From this list of DEGs, 142 were also significant in critical vs. moderate. This
suggests that the degree of gene expression modulation is proportionate to COVID-19 severity.

Age, sex and comorbidities, can influence gene expression. To evaluate the impact of age and sex on our
results, we included them as covariates in our severe vs. moderate DEG analysis using DESeq2. This showed
that 75% of DEGs remained significant, including our main findings. Demonstrating that most DEGs are not
influenced by age and sex in severe vs. moderate specifically. In addition, we performed Pearson correlation
analysis between the gene expression of SI00A9 in the severe group and multiple covariables (age, sex, obesity,
diabetes, arterial hypertension and prior stroke), to assess if any could impact the DEG results. No significant
correlation was observed (Supplementary Figure S2).

A majority of MXE splicing subtype affects the critical COVID-19 patients
Next, we explored the effect of AS in the severe vs. moderate group compared to the critical vs. moderate group.
Events of type A3SS, A5SS, MXE, RI, and SE were identified in both cohorts with a p-value <0.01. Positive
events refer to events with more exon skipping and negative events refer to more exon inclusion in the severe or
critical cohort compared to moderate. In severe vs. moderate, 3,732 events were found: 1,421 positive and 2,311
negative, and in critical vs. moderate, 10,149 events were identified: 3,749 positive and 6,400 negative. Most
genes in severe vs. moderate were affected by SE while in critical vs. moderate, most events were MXE (Fig. 2a,
b). This was more evident in Fig. 2c, where negative MXE events in critical vs. moderate represented 78.1% of all
events. The high proportion of MXE in critical patients further supports greater transcriptional dysregulation in
accordance with COVID-19 severity.

AS events, in general, have the potential to modulate gene expression. Thus, we combined AS results with
DEGs to see how each event type affects gene expression (Fig. 2d). We found that in severe vs. moderate,

Moderate Severe Critical Combined
(n=367) (n=173) (n=199) (n=739)
Age mean (interquartile range 25-75%) | 57.04 (42-73) | 67.79 (55-84) | 62.13 (54-72) | 60.93 (48-75)
Female (%) 182 (49.6%) | 98 (56.7%) 64 (32.2%) 344 (46.6%)

Table 1. Baseline information of the cohort.
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most of the genes affected by AS events were not significantly differentially expressed. However, in the critical
vs. moderate comparison, all AS types, especially the MXE subtype, lead mostly to an up-regulation of the
implicated genes (Fig. 2d). In severe vs. moderate, two positive events were identified, with a threshold of PSI of
0.1: one SE event in RGS3 (PSI=0.108; FDR=2.06E-11) and one MXE event in PTPRC (PSI=0.1; FDR=6.72E-
12). Visualization of the MXE event in PTPRC using the Integrated Genome Viewer (IGV) demonstrates the
differential expression of two exons between severe and moderate (Supplementary Figure S1). Events with a
positive PSI indicate that exons are more skipped in the severe group when compared to the moderate. These
two events were not detected in critical vs. moderate. No events met the threshold of PSI <= -0.1 in severe
vs. moderate. For critical vs. moderate, 20 events had a PSI higher than 0.1 and FDR < 1.0E-07. Among these
events, three were also found in severe vs. moderate but were not statistically significant: ADGRE2, IKZFI,
and ARAP3. Nine were also significant in severe vs. moderate but with lower scores : WSBI, WIPFI, IKBKG,
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«Fig. 1. Higher number of DEGs between critical vs. moderate when compared to severe vs. moderate. (a)
Volcano plot for severe vs. moderate. All the genes shown have a baseMean > 10. The red dots are up-regulated
genes with p-value <0.01 and log2FoldChange > 1. The blue dots are down-regulated genes with p-value <0.01
and log2FoldChange < -1. The top 10 genes are shown for up-regulated genes and the top6 genes are shown
for down-regulated genes. (b) Normalized gene count for a subset of genes in the top10 of DEGs in severe vs.
moderate. The expression is shown for the moderate, severe, and critical groups. (c) Volcano plot for critical vs.
moderate. All the genes shown have a baseMean > 10. The red dots are up-regulated genes with p-value<0.01
and log2FoldChange > 1. The blue dots are down-regulated genes with p-value <0.01 and log2FoldChange <
-1. The top 10 genes are shown for up- and down-regulated genes. (d) Normalized gene count for a subset of
genes in the top10 of DEGs in critical vs. moderate. The expression is shown for the moderate, severe, and
critical groups. (e) Upset plot (UpSetR v1.4.0 in R v4.2.1) for genes in common in the critical vs. moderate
(critical) and in the severe vs. moderate (severe) comparisons. The genes are separated in three categories for
each comparison, up-regulated (up; pvalue <=0.01, log2FC >0 and baseMean > = 10), down-regulated (down;
pvalue <=0.01, log2FC <0 and baseMean > =10) and not differentially expressed (nonDE; pvalue >0.01 or
baseMean < 10). All figures were made with ggplot2 (v3.4.3) in R (v4.2.1). All panels were assembled with
cowplot (1.1.1) in R (v4.2.1). Statistics are from a t-test. ns: padj>0.05; *: padj <=0.05; **: padj <=0.01; ***:
padj < =0.001; ***: padj < =0.0001.

AC098613.1, EPB41, AC005280.3, ARL4A, and two events in DDX3X. Finally, eight were only identified in
critical vs. moderate: BPTF, DHX30, BODILI, SON, U2AF1L4, ITFG2, FAM160B2, and MANBA. For negative
events in critical vs. moderate, four were identified in the following genes: PKIG, RPS24, CCDCI142, and AOAH.
Only the AOAH event was absent in the severe vs. moderate cohort. Overall, some AS events were exclusive to
specific severity levels and the majority of AS events in critical vs. moderate led to a differential expression of the
corresponding genes.

Longer 3’ UTR in the critical group led to a down-regulation of gene expression

To analyze the APA of different severity levels in COVID-19 patients, a comparison was made between the
lengthening (positive PDUI score) and shortening (negative PDUI score) of the 3’UTR in the severe vs moderate
and critical vs moderate groups. In severe vs moderate, 14 shortening events were observed in 12 unique
genes, and 18 lengthening events occurred in 13 unique genes (Fig. 3a). In critical vs moderate, there were 19
shortening and 131 lengthening events, involving 16 and 94 unique genes, respectively (Fig. 3a). The length of
the 3'UTR can have an important impact on gene expression by affecting the mRNA stability, degradation rate or
miRNA binding. An analysis was performed to explore the influence of APA on gene expression by integrating
these findings with DEGs. In severe vs moderate, no APA events led to down-regulation of gene expression,
and both lengthening and shortening of APA led to around one third of up-regulation of genes. (Fig. 3b). In
critical vs moderate, most APA events were also up-regulated, 76.9% for lengthening and 71.4% for shortening
events. Interestingly, the lengthening of poly(A) tail in critical vs moderate also led to a diminution of expression
in 1.9% of genes (Fig. 3b). The corresponding genes with longer 3> UTR and lower expression in the critical
patients are SARAF (log2FoldChange= -0.24; PDUI = 0.086; padj =9.69E-06) and PTMA (log2FoldCahnge=-0.2;
PDUI=0.048; padj =0.0018). This aligns with the fact that longer poly(A) tails should result in longer persistence
of the mRNA.

In severe vs. moderate, no events respected the threshold of [PDUI| >= 0.1. In critical vs. moderate, the only
lengthening that respected this filter was in CIRBP (PDUI=0.13; padj=5.30E-05), as supported in IGV by a
higher expression of the longer 3’UTR in the critical group (Supplementary Figure S1). It was not significant
in the severe vs. moderate cohort. For the shortenings in critical vs. moderate, three events were found with a
PDUI <= -0.1 in the SECI4LI (PDUI=-0.13; padj=2.41E-06), KLF6 (PDUI=-0.11; padj 4.13E-11) and ACPI
(PDUI=-0.10; not significant after pvalue adjustment) genes. All events were not present in severe vs. moderate.

Interestingly, APA changes were observed in four HLA genes in the severe vs moderate comparisons (Fig. 3c).
One APA event in HLA-C was not significant in either cohort after filtering for p-value. Events in HLA-A and
HLA-B were significant in severe vs moderate only. Finally, the APA event in HLA-E is the only one that had a
significant p-value in both comparisons, with a slightly longer 3> UTR. It was also noted that the PDUI for each
group in the HLA-E|NM_005516 event increased with severity, p<=0.0001 and p <=0.001 for critical compared
to moderate and critical compared to severe, respectively (Fig. 3d). Following the findings of HLA genes affected
by APA, an analysis of HLA typing was conducted on the percentage of HLA alleles in those genes, but no
significant differences were found between patient groups (results shown for HLA-E; Fig. 3e).

Combining results from DEGs, AS and APA allows a global view of the transcriptome profiles

To compare genes dysregulated by different modifications, two Venn diagrams were generated, one for severe
vs. moderate (Fig. 4a) and one for critical vs. moderate (Fig. 4b). In severe vs. moderate, 121 genes affected by
multiple transcriptional modifications were identified; in critical vs. moderate, this number increased to 542
genes. Only one gene, EVI2B, was dysregulated in all analyses (DEGs, AS, and APA) in severe vs. moderate
(Fig. 4a). It had a log2FoldChange of 0.21, a PSI of -0.001, and a PDUI of 0.047, all with a pvalue adjusted under
0.007. This gene was also among the list of genes dysregulated by all analyses in critical vs. moderate, along
with ten other genes (Fig. 4b). The values for EVI2B in critical vs. moderate were 0.26, -0.002, and 0.052 for
log2Foldchange, PSI, and PDUI, respectively. The adjusted pvalues were all under 9.19E-07. The additional genes
dysregulated in all analyses in critical vs. moderate were: BCL6, IFITM2, TUBA4A, LYLI, TNFSF10, CCND3,
NRGN, BSG, CD300A, and GNAI2 (Fig. 4b). From the dysregulated genes that are differentially expressed,
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Fig. 2. The majority of AS are MXE events. Upset plot for AS events with p-value <0.01 in (a) severe vs.
moderate and (b) critical vs. moderate, showing the intersection of genes affected by one or multiple AS
types. Made with the upset (UpSetR v1.4.0) package in R (v4.2.1). (c) Table for number of AS events with
p-value <0.01 for each AS type with positive PSI (PSI>0) and negative PSI (PSI<0) for severe vs. moderate and
critical vs. moderate groups. Made with ggtexttable (ggpubr v0.6.0) in R (v4.2.1). (d) AS events in critical vs.
moderate and severe vs. moderate for both positive and negative PSI, separately with a p-value <0.01 separated
by type (A3SS, A5SS, MXE, RI and SE) that are also found in the DEGs. The grey bar represents the events that
were not significant (baseMean < 10 or p-value>0.01), the blue bar are down-regulated events (baseMean > 10,
p-value<0.01 and log2FoldChange < 0) and the red bar are AS events that are up-regulated (baseMean > 10,
p-value <0.01 and log2FoldChange > 0). Made with ggplot2 (v3.4.3) in R (v4.2.1). All panels were assembled
with cowplot (1.1.1) in R (v4.2.1).
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of 3UTR in severe vs. moderate and critical vs. moderate. (b) Pie chart for APA events with p-value <0.01 also
found in DEGs for severe vs. moderate and critical vs. moderate, in percentage. Red represents the APA events
up-regulated in DEGs (baseMean > 10, p-value <0.01 and log2FoldChange > 0), blue represents down-regulated
DEGs (baseMean > 10, p-value <0.01 and log2FoldChange < 0) and grey are not significant (baseMean < 10 or
p-value>0.01). Made with ggpie (ggpubr v0.6.0) in R (v4.2.1). (c) Bar chart of HLA genes with APA events in
severe vs. moderate and critical vs. moderate. The deltaPDUI score in shown for each comparison in each HLA
gene and transcript. (d) Violin plot showing the PDUI score of every sample in moderate, severe, and critical
groups for HLA-E for transcript NM_005516. Statistics from t-test. a), ¢) and d) are made with ggplot2 (v3.4.3)
in R (v4.2.1). All panels were assembled with cowplot (1.1.1) in R (v4.2.1).
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spliced and polyadenylated, pathways were identified. In total, 238 KEGG pathways were identified in the severe
vs. moderate comparison, including 25 affected by DEGs, AS and APA (Fig. 4c) and 264 pathways affected in
critical vs. moderate, including 90 that were found using DEGs, AS and APA results (Fig. 4d). Furthermore, 23
pathways were in common between the two comparisons and affected by all the downstream analysis (Fig. 4e).
Several of these pathways are related to infection, either bacterial or viral. While other pathways are related to
cancer and neurodegenerative diseases. In addition, generic pathways such as apoptosis, ubiquitin mediated
proteolysis, sphingolipid signaling pathway, regulation of actin cytoskeleton, rapl signaling pathway, platelet
activation, focal adhesion, phagosome and lysosome were also enriched. Moreover, the number of genes
present in the pathways was bigger in the critical and the FDR of the pathways is slightly lower in the critical
vs. moderate comparison (Fig. 4e). From the pathways in critical vs. moderate only, the Coronavirus disease-
COVID-19 is present, as well as pathways related to cytokines and immune response, including IL-17 signaling
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«Fig. 4. Integrating different transcriptomic analyses demonstrates differences between COVID-19 severities.

Venn diagram for genes identified as DEGs (p-value <0.01 and baseMean > 10), AS (p-value <0.01) and APA
(p-value<0.01) in (a) severe vs. moderate and (b) critical vs. moderate. The genes in common from all analysis
(middle of Venn) are shown in a table next to the Venn diagram. Made with ggvenn (v0.1.10) and ggtexttable
(ggpubr v0.6.0) in R (v4.2.1). Venn diagram of pathways affected by DEGs, AS genes and APA genes in (c)
severe vs. moderate and (d) critical vs. moderate. Made with ggvenn (v0.1.10). (e) Pathways identified with
DEGs, AS and APA in common in severe vs. moderate and critical vs. moderate. The dot represents the
severe vs. moderate group, the triangle represents the critical vs. moderate group, the size represents the Fold
Enrichment of the pathway, the color scale represents the -log10(FDR), with a higher value (lighter color)
meaning a more significant pathway (lower FDR). The x axis represents the Gene ratio (number of genes
dysregulated divided by total number of genes implicated in the pathway), and the y axis are the pathways.
Made with ggplot2 (v3.4.3) in R (v4.2.1). All panels were assembled with cowplot (1.1.1) in R (v4.2.1).

pathway, chemokine signaling pathway, T cell receptor signaling pathway, Toll-like receptor signaling pathway,
TNF signaling pathway and NOD-like receptor pathway. Overall, this suggests that the critical group may exhibit
a more pronounced immune response to the SARS-CoV-2 virus.

Discussion

To our knowledge, this is the first study combining multiple transcriptional and post-transcriptional analyses
across varying degrees of severity of COVID-19. RNA-seq of 367 moderate patients, 173 severe patients and
199 critical patients from the BQC19, a unique biobank from Quebec, was used to obtain information from
DEGs, AS, APA, HLA typing and pathway enrichment. Interestingly, we observed more significant up-regulated
DEGs in both comparisons, demonstrating an overexpression of genes in severe and critical cases following
COVID-19 infection. In the splicing analysis, MXEs were the most common AS events, and in APA, the number
of lengthening events in critical vs. moderate was higher compared to severe vs. moderate. Multiple pathways
identified from genes with altered expression, splicing and polyadenylation were related to immune response,
inflammatory response, viral life cycle, and various signaling pathways. Genes and pathways corresponding
to each severity are discussed in the sections below. Overall, this study highlights the global transcriptomic
dysregulation associated with COVID-19 severity.

The small number of significant events in the severe vs moderate group demonstrated that the transcriptomic
profiles of severe and moderate patients are closer than in critical and moderate patients. In total, 84 DEGs
were up-regulated, while only six were down-regulated (Fig. 1a). From the top 10 up-regulated genes, the kappa
immunoglobulins, IGKV4-1 and IGKVI-39, and lambda immunoglobulin IGLV9-49 had higher expression in the
severe group, while the other lambda immunoglobulin such as IGLV3 — 19, was not significantly changed across all
severities (Fig. 1b). Immunoglobulins play a role in the immune response via antigen binding and can neutralize
viruses by removing foreign material from cells?®?”. Abnormal levels of kappa and lambda immunoglobulins
are associated with an excessive inflammatory response?®. Different kinds of immunoglobulins may have
distinct effects on adaptive immunity thus, kappa immunoglobulins could be important for severe COVID-19
infection?. These results are in line with another study showing that kappa free light chain concentration in
serum was the best for distinguishing severe and moderate illness®®. The only two significant AS events in
severe vs moderate where exons were more skipped in severe patients were in the RGS3 and PTPRC genes, both
playing a role in response to chemokines and regulation of cytokine receptor signaling, respectively’"*2. Both
chemokines and cytokines are implicated in cytokine storms that cause an inflammatory response proportional
to severity, following COVID-19 infection'®**3, The small number of genes alternatively spliced demonstrated
either minimal differences between moderate and severe patients at the spliceosome level or high heterogeneity
in these groups. For APA, the number of shortening and lengthening of the 3° UTR region was similar in severe
vs moderate, with 12 and 13 genes affected, respectively (Fig. 3a). No event reached the threshold fixed for
PDUI, showing that APA is even less altered than AS in severe vs moderate. Of note, for both AS and APA in
severe vs moderate, the events identified mostly did not lead to a significant change in expression of the affected
genes (Figs. 2d and 3b)*. Despite the lack of global expression changes, we cannot exclude the possibility that
isoform-specific expression could be altered. Furthermore, AS and APA could have a functional impact without
affecting gene expression by changing the protein structure, functional domains, or cellular localization. From
our combined analyses in severe vs moderate, only one gene, EVI2B, was differentially expressed and had AS,
and APA events (Fig. 4a), representing global changes in severe COVID-19 patients. EVI2B was also observed
in critical vs moderate. The EVI2B gene plays a role in granulocyte differentiation and is involved in immune
system processes. Previous studies have identified EVI2B as a DEG in COVID-19 patients; however, no emphasis
on this gene in the context of COVID has been made previously*®¥’. In cancer, EVI2B has been identified as a
prognostic biomarker associated with interferon-gamma gene signature and immune infiltration®***°. Given the
global transcriptomic dysregulation of EVI2B in our study, EVI2B could be of importance to diagnose severe
COVID-19 patients.

When comparing the critical and moderate groups, a higher number of DEGs, AS and APA events were
identified, showing that the overall transcriptome is more altered in critical patients compared to severe patients.
This is highlighted in Fig. le, where 9.9% of genes are differentially expressed in critical vs moderate but not in
severe vs moderate. The most frequent AS type in our study was MXEs, which is known to be a rare subtype
of AS (Fig. 2b)*’. It represented up to 78.1% of AS events with a p-value lower than 0.01 and a negative PSI,
meaning more exon inclusion, in the critical vs moderate comparison (Fig. 2c). To our knowledge, no prior
studies identified such high levels of MXEs in COVID-19 patients. Other studies identified a majority of SE
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events, the most common AS type!®341. Two studies on lung tissue, found MXE to be either the second most
common in moderate, severe and critical patients!® or the least common in SARS-CoV-2 infected cells !. A
third study where they used peripheral blood mononuclear cells (PBMCs) from moderate and severe patients,
also found MXE events to be the least common . Since MXEs are often tissue-specific, the higher abundance of
MXE events could be due to our samples coming from whole blood”. The difference between whole blood and
PBMCs might be due to the fact that RNA from whole blood was found to yield more transcripts than RNA
from PBMCs only*? or it might be due to the fact that some sequencing platform have a bias toward finding
more MXEs*®. These results require further investigation. Importantly, the effects of MXEs are less understood
compared to other AS types, as they were thought to have little or no functional impact®. More recent studies
however, demonstrated that amino acid changes resulting from MXE events can lead to important functional
shifts by changing protein binding or structure’. Generally, AS events in critical vs moderate led mostly to an up-
regulation of the affected genes (Fig. 2d). In AS, three events found only in critical vs moderate, were associated
with neurological diseases, MANBA, SON and BPTF**~*°. In line with this, is data showing that the risk of
developing a neurological disorder increases with COVID-19 disease severity*’; which could explain why genes
associated with neurological illnesses are dysregulated in critical patients. As time progresses, it will be important
to gain more information on the impact of COVID-19 on the brain, particularly in critical patients, since it was
found that around 2% of patients in intensive care developed dementia, particularly Alzheimer’s disease, after
infection®s. A study from An et al., 2021'% on APA in COVID-19, reported that there was an average shortening
of 3 UTR length following COVID-19 infection in PBMCs of moderate to severe patients, but we found no
difference in average UTR length in our study. We did identify 94 genes that had longer 3> UTRs while 16 genes
had a shortening, in critical patients compared to moderate patients (Fig. 3a). One study found that longer
poly(A) tail lead to increased mRNA expression®’, which aligns with our results that most APA events were up-
regulated in critical vs moderate (Fig. 4b). On the other hand, shortening of the 3'UTR is often observed during
proliferation of cells or in response to viral infection®. This is coherent when considering that three significant
APA events had shorter 3’'UTR in critical vs moderate only: SECI4L1, KLF6 and ACPI. The SECI4LI gene is
known to play a role in innate antiviral signaling via the inhibition of RIG-I (retinoic acid-inducible gene-I),
a molecule necessary for induction of the type 1 interferon members®*2 It was also shown that SARS-CoV-2
replication was higher after downregulation of RIG-I>*. KLF6 has already been identified as a gene of interest
for cytokine and inflammation activation following COVID-19 infection®®. On the other hand, ACP1, from the
phosphotyrosine protein phosphatase family, could impact lymphocytes, inflammatory response and cytokines
and chemokines®. In the combined results of critical vs moderate, multiple significant genes and pathways were
related to actin cytoskeleton (Fig. 4b, e). Indeed, multiple DEGs that were also affected by AS and APA were
linked to changes in cytoskeleton: TUBA4A, NRGN, BSG, and CD300A%¢-%. The cytoskeleton is particularly
important in neuron functions. The actin filaments that are a part of the cytoskeleton have a role in development
and assembly of neurons. SARS-Cov-2 can change the cytoskeleton structure to enter the nervous system and
cause brain tissue damage®. In another study, neurodegenerative biomarkers have been identified to correlate
with severity of COVID-19, including levels of tau, associated with Alzheimer’s disease®°2. Thus, supporting
the previous findings that critical patients are more at risk of developing neurological illnesses, particularly
Alzheimer’s disease®>®’. Knowledge of how SARS-CoV-2 interacts with the actin cytoskeleton is still limited but
is being investigated as a potential therapy for COVID-195364,

To validate the DEGs identified above, an analysis of critical vs. severe was carried out. This identified 161
significant DEGs that were all up-regulated, meaning all more expressed in critical compared to severe. 88% of
these DEGs were also significantly up-regulated in critical vs. moderate. This demonstrates that the transcriptomic
profiles of critical and severe are close, but the dysregulation in critical patients is more pronounced. The top
DEG was GGT5, a gene that is known to regulate the immune system. It is also a member of the gamma-glutamyl
transferase (GGT) family, where high levels of GGT are associated with more severe forms of COVID-195>66,

Transcriptomic profiles reveal dysregulation of multiple biological processes. Pathway analysis showed 25
pathways globally changed by all analysis in severe vs. moderate (DEGs, AS and APA) (Fig. 4c). Twenty-three
of those were also found in critical vs. moderate, representing pathways involved in COVID-19 pathogenicity
regardless of severity (Fig. 4e). Most of these pathways have already been linked to COVID-19, including
apoptosis®’, lysosome®®, platelet activation®, sphingolipid signaling pathway’® and ubiquitin mediated
proteolysis’!. From pathways only present in critical vs. moderate, many relate to signaling pathways like MAPK,
NOD-like receptor, TNF, Toll-like receptor, IL-17 and chemokine. All these members of the inflammasome are
responsible for the cytokine storm often observed in critical patients®*”2-74, This leads to tissue damage, like
lung injury, often observed in patient with need for mechanical ventilation while hospitalized or impaired lung
function after recovery”.

A limitation from our study is the lack of adjustment for confounding factors as covariates in the DEG, AS
and APA analyses. Given that the APA analysis tool (DaPars) does not support covariate adjustment, we decided
to exclude them from all analyses to ensure unbiased comparisons. However, comorbidities are provided in
Supplementary Table S1. Future studies incorporating age, sex, and comorbidities as covariates will be important
for strengthening the validity of our findings in severe and critical COVID-19 patient groups.

Overall, we believe that neither DEGs, AS or APA alone could act as a better predictor of severity in
COVID-19. Unlike many studies that focused on single factors, our approach involved combining downstream
analyses of RNA-seq to uncover potentially overlooked genes or pathways relevant to COVID-19. By examining
patients across different severity levels, we gained a nuanced understanding of how the transcriptome changed
with COVID-19 severity. This differentiation is crucial, especially for those requiring mechanical ventilation and
facing lower chances of survival. The use of blood in this study is also an advantage since it is easily accessible and
can lead to a faster diagnosis. Validation of the genes and pathways identified here is essential before considering
these findings for COVID-19 therapeutic approaches. With approximately 70% of the global population
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vaccinated, it will be intriguing to assess its impact on moderate, severe, and critical patients separately. We also
anticipate that this in-depth transcriptomics approach could be extended to other complex diseases.

Methods

Sample selection

In response to the COVID-19 pandemic, Quebec launched a Biobank program on March 26, 2020 to collect,
store and share data collected during the pandemic?. The “Biobanque québécoise de la COVID-19” (BQC19)
has recruited 6,272 participants, children, and adults, from 11 hospitals and research centers across Quebec,
Canada. Inclusion criterion to take part in BQC19 was to undergo polymerase chain reaction testing for SARS-
CoV-2, to confirm or infirm the diagnosis. Patients were recruited from emergency rooms and hospitals in the
acute phase of the infection, or from outpatient clinics following the contagious period. Informed consent was
obtained from all participants in the BQCI19 and ethical approval for the biobank was granted by the CHUM
research ethics board (REB approval number MP-02-2020-8929). Participants contributed plasma, serum,
PBMC:s, stool, and whole blood to the biobank. DNA and RNA were extracted from whole blood, as described
previously!®?>76. The RNA samples were sequenced and made available for downstream analysis.

RNA-sequencing

For this study, we selected RNA collected between April 2020 and August 2021 from unvaccinated individuals,
for a total of 1,465 RNA-sequencing (RNA-seq) samples. The sequencing was previously done with Illumina
NovaSeq PE100 2500 M reads using mRNA stranded library and NEBNext dual adapters. We filtered to keep
the samples that had severity and clinical data available, which left 1,279 samples from 739 unique individuals.
We analyzed only the first collected sample after symptom onset to minimize sample variability. We separated
samples by severity into three groups: 367 moderate samples, 173 severe samples and 199 critical samples. The
moderate group were patients that did not need supplemental oxygen, the severe group required only low-flow
nasal cannula for oxygen and the critical group needed either high-flow oxygen by nasal canula, non-invasive
ventilation or mechanical ventilation!®. The cohort characteristics are described in Table 1 and comorbidities are
described in Supplementary Table S1.

Bioinformatics pipeline

The 739 RNA-seq samples went through the same bioinformatics pipeline for further analysis. The reads were
trimmed using fastp (v0.20.0) to remove the adapters”’. Next the reads were aligned to the hg38 reference
genome using the HISAT2 (v2.2.1) aligner’®. The gene expression was obtained with FeatureCounts (v2.0.1)
for downstream analysis”®. Once all the samples were ready, we did the following analysis for the severe group
compared to the moderate group (severe vs. moderate) and the critical group compared to the moderate group
(critical vs. moderate). That way we could identify differences between severe and critical patients compared to
moderate patients, which are used as controls. We looked at different aspects of transcriptomics to have a global
view of each profile. We looked at DEGs, AS, APA, HLA genes, and pathway enrichment. The methods are
resumed in Fig. 5a, and each section is explained below in more detail.

Differentially expressed genes

To obtain a list of DEGs, we used the DESeq?2 (v1.38.3)%" package in R (v4.2.1). The input files were the count
matrix obtained from FeatureCounts, they were merged per group (moderate, severe, and critical). The matrices
for the severe vs. moderate and critical vs. moderate are available in Supplementary Tables S2 and S3, respectively.
We filtered to keep only genes that had at least five counts across all samples in each comparison, severe vs.
moderate, critical vs. moderate, and critical vs. severe. We normalized the counts using the median ratio from
DESeq2. Next, we used the DESeq function to get the differential expression results. The Principal Component
Analysis in Fig. 5b shows the variance observed between the severity groups according to the gene expression.
The DEGs results were filtered to keep only genes with a p-value <0.01, a baseMean > 10, and an absolute value
of log2FoldChange higher than one. A log2FoldChange higher than zero for a gene A means that, in a severe
vs. moderate comparison for example, the gene A is up-regulated in the severe group (with higher expression)
compared to the moderate group. The normalized counts of certain genes were compared across groups using a
t-test from the rstatix (v0.7.2) package in R (v4.2.1).

Alternative splicing

To capture AS events, we used rMATS (v3.1.0) on the bam files obtained from the alignment®. rMATS is an
extension of MATS?? that allows the use of replicates. We used default parameters for paired-end and added the
--readLength 101 parameter. We checked for events in critical vs. moderate and severe vs. moderate groups. We
kept the JCEC output files for each AS event mentioned. The output files were further filtered to keep events
with a p-value smaller than 0.01. We used the exon inclusion level or percent spliced in (PSI) as a measure of
alternative splicing between the two conditions in each comparison. It is measured using “I” as the number
of counts where the isoform includes the alternatively skipped exon and “S” the number of counts where the
isoform skips the alternatively spliced exon. The PSI is calculated as shown in Eq. (1).

1
= 1
PSI 715 (1)

To compare each condition, the inclusion level difference is calculated as the average PSI from all the replicates
in condition 1 minus the average of PSI from replicates in condition 2. For example, if we compare the severe
group to the moderate group and the PSI is positive, it means that the isoform with the skipped exon is more
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Fig. 5. Study flowchart. (a) Bioinformatic pipeline for downstream analysis of RNA-seq samples. From our
739 samples, we compared two sets of groups, severe vs. moderate and critical vs. moderate. For each group,
we looked at DEGs, AS and APA events, using DESeq2, rMATS and DaPars, respectively. From the significant
events, we looked at pathways affected by these events. Every event and pathway were compared between
groups. In parallel, we compared HLA allele frequencies between moderate, severe, and critical patients. Made
with draw.io from diagrams.net (v21.6.8). (b) Principal Component Analysis of expression in moderate, severe
and critical. Made with ggplot2 (v3.4.3) in R (v4.2.1).
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common in the severe group. We combined all the AS event types in a single file and filtered the absolute PSI to
keep events with a score higher than 0.1 to keep the most significant events.

For the APA events, we obtained results from DaPars (v0.9.1) for the two comparisons®. DaPars is a de novo
tool to estimate the expression of long and short 3° UTR usage due to APA in RNA-seq. The bam files for each
sample were converted to bedgraph to use as input. For each comparison, we ran the tool with the bedgraphs
from condition 1 and condition 2, we used a minimum coverage of 20, a threshold of 5 samples that passed the
coverage in each group. We also set the threshold for the FDR at 0.05, distal poly(A) site usage index (PDUI)
at 0.5 and fold change at 0.59, as proposed by the documentation. The PDUI is measured as presented in Eq. 2,
where “L” is the expression of the long 3> UTR and “S” is for the short 3> UTR expression level. The mean PDUI
is calculated for each condition using all the replicates and the PDUI group difference that we use for further
analysis is the mean PDUI from condition 1 minus the mean PDUI from condition 2.

L
PDUI = —— 2
v L+S @

If the resulting delta PDUT is positive, it represents a lengthening of the 3° UTR expression level in condition 1.
Otherwise, there is a shortening of 3> UTR if the delta PDUI is negative in condition 1. The output was further
filtered to keep events with a p-value smaller than 0.01 and a delta PDUT higher than 0.1 or lower than —0.1.

HLA typing

For HLA typing, we used the arcasHLA (v0.5.0) tool with the bam files and default options®*. arcasHLA allows
for detection of HLA genes to three digits. The first field is the gene and the first digit is the allele group, the
second digit is the HLA protein and the third is the synonymous mutation®. arcasHLA uses Kallisto®® for
pseudo-alignments and quantification of HLA genes from chromosome 6. The IMGT/HLA database was used to
obtain the HLA sequences to help in the quantification®’. For each HLA gene the allele abundance is calculated
and the most abundant allele pair is inferred as the genotype. The tool was run on every sample separately and
the results were merged into three different files for moderate, severe, and critical groups. The allele frequency
was quantified by counting the number of alleles for each gene and dividing by the total number of alleles in
each group.

Pathway enrichment

For pathway enrichment, we used the online tool ShinyGo (v0.8) and selected KEGG pathways®®-0. The
default parameters were used. In brief, an FDR cut-off for a pathway considered significant is less than 0.05, the
minimum of genes in pathways is set at two and the maximum is set at 2000. To select the genes, we used the
results from the DEGs, AS and APA analysis experiment. For the DEGs, we selected the genes with p-value <0.01
and baseMean > 10. For the pathways affected by AS, genes with a p-value <0.01 were selected and for APA, a
p-value <0.01 was also used to select genes.

Correlation analysis
The correlation analysis to detect correlation between age, sex, and comorbidities and gene expression was done
in R (v4.2.1), using the corrplot package (v0.95) and the Pearson’s correlation coefficient to measure significance.

Real-time quantitative PCR

cDNA was prepared using superscript IV VILO (Thermo Fisher Scientific). Real-time quantitative PCR was
performed using Tagman master mix (Applied Biosystems) on the QuantStudio7 (Applied Biosystems).
Tagman primers (Thermo Fisher Scientific): 18 S (Hs99999901_s1), SI00A9 (Hs00610058_m1), ZDHHC19
(Hs00376116_m1). A total of 20 moderate patients, 18 severe patients and 18 critical patients were used. Delta
Ct was calculated by normalizing the gene expression of each target mRNA to the expression levels of the
housekeeping gene 18 S that was found to be stable across experimental conditions.

Data availability
The datasets analysed during the current study are available through the “Biobanque Québécoise de la COV-
ID-19 (BQC-19)” (Quebec COVID-19 Biobank) data repository. Access can be requested at info@bqc19.ca, or
for more information, visit https://en.quebeccovidbiobank.ca. Further inquiries can be directly addressed to the
corresponding author.
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