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We present an efficient method for determining the T-matrix of axisymmetric particles using the 
finite element method (FEM) in conjunction with an analytical approach that expands the scattered 
field using vector spherical harmonics (VSHs). To tailor the response of nanoparticles under complex 
optical field excitation, we design the incident field based on the T-matrix, which comprehensively 
describes the relationship between the incident and scattered fields. The sensitivity of scattering 
field to environmental refractive index can be effectively controlled by introducing the concepts 
of principal modes (PMs) and anti-principal modes (anti-PMs), which used to be utilized to control 
frequency dispersion of multi-channel light scattering. Our approach diverges from previous research 
by emphasizing the manipulation of refractive index sensitivity in Mie particles, rather than focusing 
on controlling scattering response in the frequency domain. Additionally, we employ an inverse 
design method to determine the light field distribution on the entrance pupil plane, which can be 
used to generate the designed PMs and anti-PMs after tightly focusing by high-NA objective. This 
work presents new degrees of freedom for controlling light-matter interactions in modern optics It is 
expected to find wide-ranging applications in the fields of optical sensing and measurement.
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The T-matrix method, originally introduced by Peter C. Waterman in the 1960s, is a powerful numerical technique 
for solving light scattering problems1, particularly suitable for addressing scattering problems involving non-
spherical and complex-shaped particles. The T-matrix method solves the scattering problem by establishing 
relationships between the incident field, scattered field, and internal field through boundary conditions, 
significantly enhancing computational efficiency and applicability2. The extended boundary condition method 
(EBCM) is commonly used for analytical T-matrix calculations. However, it requires high numerical accuracy 
and is prone to non-convergence. Additionally, calculating the T-matrix through numerical methods involves 
complex three-dimensional scattering computations, which demand substantial computational resources and 
processing time. Today, the T-matrix method can be used to study the scattering and absorption characteristics 
of aerosol particles in the atmosphere3, aiding in a better understanding and prediction of climate change; it can 
be applied in optical coherence tomography and other imaging techniques to simulate light scattering by cells 
and other microstructures in biological tissues4; and it can investigate the light scattering properties of material 
surfaces to develop materials with specific optical characteristics5.

In the study of light-particle interactions, early research primarily focused on optimizing scattering effects by 
adjusting parameters such as the geometry, size, and material properties of the particles. For instance, the shape 
design of nanoparticles (e.g., nano-disk) can effectively enhance the excitation of anapole modes, generating 
non-radiative modes6. However, this approach often relies on fixed particle parameters, making dynamic control 
of the scattered light field challenging. In recent years, research has gradually shifted towards the manipulation 
of the incident light field itself. For example, by controlling the polarization, phase, and amplitude of the incident 
light field, it is possible to enhance the excitation of specific modes, such as the anapole mode, under fixed 
particle structures7. This can enhance circular dichroism signal measurements of chirality without changing 
the particles themselves8, thereby effectively controlling the interaction between light and matter to achieve 
specific optical responses. At the same time, light field manipulation techniques have been used to improve 
the resolution of microscopes, breaking the diffraction limit of conventional optical microscopy9. Light field 
manipulation techniques can be also utilized to capture and manipulate tiny particles or biomolecules10. 
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Dynamic control is also of significant importance in sensing and measurement, enabling real-time monitoring 
of environmental parameters such as temperature, pressure, and gas concentration11. Moreover, dynamic light 
field manipulation is used to enhance the resolution and sensitivity of biomedical imaging, allowing for real-
time monitoring of biological processes12. In quantum metrology, dynamic light field manipulation is employed 
to improve measurement precision and reduce noise interference13. In the field of refractive index sensing 
research, responses sensitive to refractive index can be achieved by manipulating the physical and chemical 
properties of sensing particles14. Furthermore, specific optical responses can be achieved by modulating the 
frequency domain characteristics of the fiber transmission matrix. The principal modes (PMs) and the anti-
principal modes (anti-PMs)15are the means of such regulation. This theory originates from the field of quantum 
scattering, particularly from studies on the time dynamics of wave scattering in complex systems, encompassing 
quantum mechanics, nuclear physics, acoustics, and optics16. Most research has focused on the statistics of delay 
times, specifically the eigenvalues of the Wigner-Smith time delay matrix17. Subsequently, the Wigner-Smith 
eigenstates18 were introduced into multimode fibers (MMF) as a generalization of the polarization principal 
states in single-mode fibers, referred to as PMs in MMF to suppress modal dispersion16. Tight focusing systems 
are commonly used to manipulate optical fields, which has many advantages in characterizing light fields, 
allowing light to be focused into a very small volume, thus achieving high spatial resolution19. It also enables 
precise control over the phase, amplitude, and polarization of the light field, facilitating complex light field 
manipulation and control20. Additionally, tight focusing can effectively reduce background noise, improving the 
quality and reliability of the signal21. The interaction between particles and tightly focused light fields is highly 
significant, such as conventional optical tweezers and near-field optical trapping, which are highly popular in 
bio-sciences22,23. However, studies on designing light fields from this interaction24 are relatively scarce. Since 
tightly focused light fields can be expanded using vector spherical harmonics, the T-matrix method serves as 
a powerful and effective tool for this research. Moreover, the introduction of the concept of PMs within the 
T-matrix framework is both practical and efficient. This innovation opens up a new dimension in light field 
manipulation.

In this work, we proposed an optical field manipulation method, which can modify the response of scattered 
field by nanoparticle to the environmental refractive index. The main contribution of this work is to introduce 
the concepts of PMs and anti-PMs during Mie scattering processes. As discussed above, T-matrix is a powerful 
tool to analyze the scattering effect of Mie particle. Our study combines the finite element method (FEM) and 
vector spherical harmonics (VSHs) expansion to calculate the scattering coefficients, providing an efficient 
and accurate approach for determining the T-matrix of particles. Subsequently, in the study of light-matter 
interactions, we have moved beyond the conventional approach of modifying particle properties to affect optical 
responses. Instead, we focus on dynamically controlling these responses by manipulating the high-degree-
of-freedom characteristics of the incident light field. Our study builds upon the theoretical framework of the 
Wigner-Smith time delay matrix, traditionally used to describe time delay relationships between different 
scattering channels in multi-channel systems. We extend this concept by modifying the matrix to account for 
changes in the refractive index of the medium, thus enabling the control of refractive index sensitivity, which 
is a novel degree of freedom in describing light-matter interactions. Through the analysis of eigenvectors of the 
matrix, we identify a light field (PMs) that is insensitive to refractive index changes, thereby suppressing the 
influence of refractive index changes in the medium on particle scattering effects. Simultaneously, by making 
a series of alterations and optimizations to the aforementioned matrix, we can further identify anti-PMs that 
is sensitive to refractive index changes, used to enhance the impact of refractive index variations on particle 
scattering effects. Ultimately, we propose a method to apply the PMs and anti-PMs fields upon Mie particles, 
which is implemented utilizing a tightly focused system. To perform inverse design of the incident paraxial 
beam, we establish the M-matrix of the tightly focused system to describe its optical properties, enabling the 
realization of these two modes within specific optical systems. This work marks a substantial advancement in the 
dynamic manipulation of light fields, holding great potential for applications in sensing, imaging, measurement, 
and other advanced technologies.

Results and methods
T-matrix of particles
In this section, we primarily discuss the calculation method for the T-matrix of axisymmetric particles. According 
to Lorenz-Mie theory, the expressions for the incident field and the scattered field are as follows25:

	
Einc(r, θ, ϕ) =

νmax∑
ν=1

ν∑
µ=−ν

[aµνRgMµν(k0r, θ, ϕ) + bµνRgNµν(k0r, θ, ϕ)],� (1)

	
Esca(r, θ, ϕ) =

νmax∑
ν=1

ν∑
µ=−ν

[pµνMµν(k0r, θ, ϕ) + qµνNµν(k0r, θ, ϕ)],� (2)

where k0 is the wave number in the surrounding medium,aµνandbµνare the coefficients of the incident field, 
pµνandqµνare the coefficients of the scattered field. The VSH functionsRgM and RgN are regular (finite) at the 
origin, while the VSH functions M and N which include a singularity respectively, are infinite at the origin. The 
specific relationship between the T-matrix and the incident and scattered fields is as follows:

Scientific Reports |        (2025) 15:11634 2| https://doi.org/10.1038/s41598-025-95949-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

[
pµν

qµν

]
= T

[
aµν

bµν

]
,� (3)

the dimension of the T-matrix depends on the values for maximum order of ν (i.e. νmax).
For spherical particles, we can use theoretical formulas combined with numerical calculations to obtain 

the T-matrix. For non-spherical particles, we can use simulations combined with numerical calculations to 
determine the T-matrix.

Firstly, we define the particle to be analyzed. As shown in Fig. 1(a), we consider a hollow cylinder particle 
with a high refractive index of n1 = 3, which is placed in a medium with n2 = 1.33. The inner and outer diameters 
of the particle are represented by Rin and Rout. The height of the particle is L. According to the definition of 
T-matrix, each column of T-matrix representing the expansion coefficients of the scattered field obtained by 
exciting the particle with a specific VSH as the incident field. Therefore, to determine the T-matrix, the first step 
is to solve the scattering field under the incidence of each regular VSH field (i.e. RgMµν or RgNµν). Then, the 
second step is to calculate the corresponding expansion coefficients by decomposing the scattering field using 
orthogonal relation between VSHs. Finally, the T-matrix can be reconstructed by all its columns obtained from 
the expansion coefficients. During the calculation of T-matrix, a large number of three-dimensional scattering 
problems need to be solved. For nonspherical Mie particles, these scattering problems are difficult to handle with 
analytical methods. Enhancing the calculation efficiency of the T-matrix is crucial for advancing the application 
of this method.

In this work, we use FEM to solve the scattering problem. For the axisymmetric three-dimensional particles 
as shown in Fig. 1(a), when the incident field possesses an azimuthal angle dependence of e− iµφ, the azimuthal 
order µ is conserved in the scattering process, meaning that the scattered field also exhibits the same µ-order. 

Fig. 1.  Schematic diagram of the T-matrix calculation method for axisymmetric homogeneous medium 
particles. (a) Schematic diagram of the hollow cylindrical particle. (b) dimensional reduction: from a three-
dimensional axisymmetric model to a two-dimensional model for enhanced computational efficiency. (c) The 
calculated T-matrix of the particle (only the part with ν = 1, 2, 3 is shown). (d) Relationship graph between 
scattering cross-section of the particle and the incident light frequency, verifying the accuracy of the T-matrix.
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Within the cylindrical coordinate system (ρ, φ, z), considering the axisymmetric condition, the electric field E(ρ, 
φ, z) should be expressed as E(ρ, z)e− iµφ. Thus, the three-dimensional scattering model can be simplified to a 
two-dimensional model, which only requires determining the field components that depend on ρ and z as shown 
in Fig. 1(b). To integrate the VSH field as the incident field in the model, the coordinate transformation between 
spherical and cylindrical coordinates, as outlined in Eq. (4), must be taken into account.

	

[nρ

nφ

nz

]
=

[
sin θ cos θ 0

0 0 1
cos θ − sin θ 0

] [nr

nθ

nϕ

]
� (4)

In this manner, the scattering field of the particle can be simulated, the corresponding scattering coefficients 
can be calculated, and the T-matrix for the particle can ultimately be obtained. We selected a maximum order 
of νmax = 10 to adequately describe the scattering characteristics of the particle. In Fig. 1(c), we present a 
portion of the T-matrix only including the VSH order with ν = 1, 2, 3. For the VSHs with larger 3, the scattering 
efficiencies become much lower than the first orders. Each column in the figure corresponds to the scattering 
coefficients obtained from the incident field of the corresponding vector spherical harmonic with unit amplitude.

Subsequently, we verified the accuracy of the derived T-matrix by calculating the scattering cross-section at 
different frequencies, as shown in Fig. 1(d). The blue line represents the actual scattering cross-section values 
obtained from simulations under the illumination of a y-polarized plane wave propagating in the x-direction at 
a vacuum wavelength of 970 nm, while the yellow squares indicate the scattering cross-section values calculated 
from the already obtained T-matrix (with νmax = 10). It is evident that the results closely match the simulation 
values, thereby validating the accuracy of our approach to solving the T-matrix problem. In the supplementary 
material, the scattered field is reconstructed using the scattering coefficients derived from T-matrix method. This 
reconstructed field was then compared to the scattered field generated by the finite element method, providing 
additional validation for the accuracy of our method of determining the T-matrix of particles.

Principal modes
In this work, we introduce the Wigner-Smith operator into the T-matrix theory to manipulate the refractive 
index sensitivities of particles during optical scattering process, which is defined as Q16. The specific expression 
is as follows:

 

	
Q = −iT−1 ∂T

∂n
,� (5)

where T represents the previously calculated T-matrix, and n is the refractive index. The Q operator can be 
derived by T-matrix and the first-order derivative of T-matrix. Then, the eigenvectors of Q operator provide the 
incident field for the PMs. These are the unique input states, and the first-order derivative of the output field with 
respect to the refractive index vanishes at a specific refractive index. To enhance the interaction between incident 
light and the particle considered in the work, only VSHs with ν = 1, 2 and 3 are used to construct the PMs, which 
can eliminate the influence of high order VSH field25. To verify the properties of the PMs, the accurate scattering 
field is calculated by the full T-matrix with νmax = 10. Furthermore, according to the T-matrix in Fig. 1(c), the µ-
order VSH fields are decouple from other components with different azimuthal orders (i.e. µ≠µ)25. In our work, 
the incident light field are only composed of VSHs with µ = 1, so the expansion of VSHs of PMs and anti-PMs in 
Eq. (1) can be simplified as:

	
Einc(r, θ, ϕ) =

3∑
ν=1

[aνRgMν(k0r, θ, ϕ) + bνRgNν(k0r, θ, ϕ)]� (6)

In Eq.  (6), the expansion coefficients of aν and bν are from the eigen vector of Q operator in Eq.  (5). In the 
following discussion, we use these expansion coefficients to represent the incident states, which is denoted by 
Ξ=[aν, bν]T. Meanwhile, the scattering field is denoted by Ψ=[pν, qν]T in the similar way. The T-matrix is altered 
when there is a change in the environmental refractive index, and the scattering field, which is dependent on the 
index, can be computed using Eq. (7).

	 Ψ(n) = T(n)Ξ� (7)

To evaluate the variation of scattering field versus refractive index, the self-correlation function is defined in Eq, 
(8).

	
C(n, n0) = |Ψ(n)Ψ(n0)|

|Ψ(n)||Ψ(n0)| ∈ [0, 1]� (8)

In Eq. (8), the self-correlation function is determined by the normalized scattering coefficient vector, hence its 
value should fall within the range of [0, 1]. When the function attains its maximum value of one, it signifies that 
the two vectors of Ψ(n) and Ψ(n0) are identical.

In the simulation model, we use the obtained PMs at a vacuum wavelength of 970 nm to illuminate the 
particle immersed in a medium with variable refractive index from 1.33 to 1.35 and obtain a set of scattering 
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field coefficients. After that, we select a y-polarized plane wave propagating in the x-direction and the same 
frequency to illuminate the same particle immersed in a medium with varying refractive index from 1.33 to 1.35, 
resulting in another set of scattered field coefficients. The self-correlation functions calculated from the two sets 
of scattered fields and their correlation function under different refractive index are shown in Fig. 2(a).

It can be clearly seen from Fig. 2(a) that due to the vanishing of the first-order derivative of the PM, the 
correlation function curve becomes extremely flat. Compared with the plane wave, PMs make its influence 
of the refractive index on scattered field almost negligible, thereby demonstrating the effectiveness of the 
aforementioned method.

Anti-principal modes
Building upon the concept of utilizing PMs to render the scattering field insensitive to refractive index variations, 
we now propose an approach that achieves the opposite effect, making the scattering field highly sensitive to 
changes in environmental refractive index. To achieve this goal, the concept of anti-PMs is proposed based on 
the optimization method. When we use the anti-PM field as the incident field on the particle, the decorrelation 
of scattering field is maximized as soon as the refractive index deviates from its original value. The determination 
of these anti-PMs will be facilitated by employing a standard optimization technique in the following part. To 
carry out the optimization process, we define the loss function as shown in Eq. (9).

	

Γ(Ξ) =
∫

dn[1 − C(n, n0)2]W (n) =
∫

dn[1 − |Ψ†(n) · Ψ(n0)|2

|Ψ(n)|2|Ψ(n0)|2 ]W (n)

=
∫

dn[1 − |Ξ†T†(n)T(n0)Ξ|2

|T(n)Ξ|2|T(n0)Ξ|2 ]W (n)
,� (9)

In this loss function, the effective range of refractive indices is defined by the weight function W (n), which 
is chosen to be a stepwise continuous function starting from n0 = 1.33 ​, as shown in Fig. 2(b). To obtain the 
refractive index-sensitive anti-PMs, the scalar value of Γneeds to be maximized based on gradient descent 
algorithm. The derivative of Γ with respect to the incident field can be expressed as Eq. (10).

Fig. 2.  (a) The relationship between the correlation functions and the refractive index of the external medium 
surrounding the particles under the incidence of PM, anti-PM and plane wave. (b) The wight function in 
the loss function to optimized the anti-PM field. (c–f) The distributions of the scattered field of particle in 
environments with different refractive indices (i.e. n = 1.33 and n = 1.8) and under various incident light (i.e. 
PM and anti-PM).
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∂Γ
∂Ξ† =

∫
dn[T†(n)T(n0)]Ξ −Ξ†T†(n0)T(n)Ξ

|T(n)Ξ|2|T(n0)Ξ|2

+ T†(n0)T(n)]Ξ−Ξ†T†(n)T(n0)Ξ
|T(n)ξ̂|2|T(n0)ξ̂|2

+ T†(n)T(n)]Ξ |Ξ†T†(n)T(n0)Ξ|2

|T(n)Ξ|4|T(n0)Ξ|2

+ T†(n0)T(n0)]Ξ |Ξ†T†(n)T(n0)Ξ|2

|T(n)Ξ|2|T(n0)Ξ|4 ]W (n)

,� (10)

The update equation of the optimization algorithm can be represented as follows:

	
Ξt+1 = 1

Nt+1
(Ξt − ∂Γ

∂Ξ† |Ξt ∆s),� (11)

where ∆s is the appropriate step size, t is the number of iterations, and Nt+1 is the normalization constant 
ensuring|Ξt+1| = 1. The initial incident field coefficient Ξ is iteratively selected from the previously obtained 
PMs. When the loss function Γ approaches a constant value, we can obtain the anti-PMs that enhances the 
influence of refractive index variations on scattering. Under the illumination of PMs field, we can obtain a set 
of scattering field coefficients for the particle immersed in medium of different refractive index. By substituting 
these coefficients into the correlation function defined in Eq. (9), we can compute the curve shown in Fig. 2(a). 
One can note that the curve exhibits a more pronounced decline with changes in the refractive index when 
compared to the case of plane wave incidence. The key to obtaining PMs and anti-PMs lies in manipulating 
the expansion coefficients Ξ of the incident field. After that, the expansion coefficients Ψ of the scattered field 
can be obtained using Eq. (7). Finally, the desired incident and scattered fields can be reconstructed by linearly 
superimposing the corresponding VSHs using these coefficients. In Fig. 2(c-f), the scattered distributions of the 
particle under PM and anti-PM as incident fields in different refractive index environments can be observed 
more intuitively. Since our method can only describe the scattering field outside a sphere surrounding the particle 
of a specified radius25, a blank circle appears in the center of the images. Specific details and discussions are 
presented in the supplementary materials. The result verifies design method of the PMs, achieving a sensitivity 
to the environmental refractive index changes in the scattering of axisymmetric Mie particles.

Method of generating PMs and anti-PMs
PMs and anti-PMs obtained above are both expressed as the combination of VSHs. Meanwhile, the tightly 
focused light field26 can also be expanded by VSHs. In this work, we consider to generate PMs and anti-PMs 
by tightly focusing the paraxial beam by high-NA optical system. In order to achieve this goal, it is necessary to 
shape the wavefront of the paraxial beam on the pupil plane of the optical system to apply the desired field of 
PMs and anti-PMs on the Mie particle at the focusing point. In this work, we propose a convenient method to 
inversely design the paraxial beam by determining the relationship between paraxial beam and focusing field. 
Considering the complexity of PMs and anti-PMs, the distributions of amplitude, phase and polarization of the 
paraxial beam should be manipulated at the same time. Therefore, we represent the paraxial beam by radially 
polarized and azimuthally polarized components20, which is expressed as follows:

	
Ep(r, ϕ) =

βmax∑
β=1

β∑
m=−β

Lαβ(r)eiαϕ [uαβnr + vαβnϕ] ,� (12)

where nr and nϕ are the unit vectors along radial and azimuthal directions. Therefore, the paraxial beam consists 
of two kinds of vector modes. (α, β) represent the mode orders of each vector mode. Lαβ(r) is a function that 
includes Laguerre polynomials27, uαβ  and vαβ  are the expansion coefficients for the radially polarized and 
azimuthally polarized components, respectively. When the theoretical model is considering for the particles 
with axially symmetry, the azimuthal order of light field should be conserved. The designed light fields of PMs 
and anti-PMs are both characterized by the specific azimuthal order with µ = 1. Therefore, only the terms in 
Eq. (12) with α = 1 need to be included in the design of paraxial beam. Therefore, the expansion in Eq. (12) can 
be simplified as:

	
Ep(r, ϕ) =

βmax∑
β=1

Lβ(r)eiϕ [uβnr + vβnϕ]� (13)

After passing through the high-NA system, the propagating directions and power distributions are modified. 
The paraxial beam in cylindrical coordinates is converted into a tightly focused beam in spherical coordinates 
after it passes through the lens, where nr  is transformed into unit vector nθalong polar angle direction. Then, we 
can obtain the far field angular distribution of the focusing field after passing through the aberration-correction 
objective.
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E∞(θ, ϕ) =

βmax∑
β=1

Pβ(θ)eiϕ [uβnθ + vβnϕ] ,� (14)

wherePβ(θ) is the apodization function28, representing the amplitude distribution of the light field, which can 
be calculated byLβ(r)in Eq. (13).

To solve for the paraxial beam, the expansion coefficients uβ  and vβ in Eq.  (13) should be determined. 
Considering that the coefficients aν  and bν  for the PMs and anti-PMs are already obtained, we need to establish 
a M-matrix to express the relationship between two sets of coefficients, which depends on the characteristics of 
the high-NA optical system. The relationship can be expressed in Eq. (15).
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� (15)

With the inverse of the M-matrix, we can then use the focal field coefficients aν  and bν , which correspond to 
the PMs and anti-PMs, to compute expansion coefficients uβ  and vβ  of the paraxial beam on pupil plane. The 
process of solving the M-matrix is similar with that for T-matrix discussed above. The key point is to determine 
the output modes after focusing process for each term of input field in Eq. (13).

We separately calculate the focal field distribution generated by the radially polarized and azimuthally 
polarized components. According to the Richards-Wolf vector diffraction integral formula26, the electric field 
near the focus can be obtained by integrating over a spherical wavefront with a radius equal to the focal length29:

	

E(ρ, φ, z) = ikfe−ikf

2π

θmax∫

0

2π∫

0

E∞(θ, ϕ)eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕdθ,� (16)

where (ρ, φ, z) are the spatial coordinates near the focus. θmax is the numerical aperture angle of the lens, and 
E∞(θ, ϕ) has been provided in Eq. (14).

To further expand the tightly focusing field by VSHs field, the vector field should be expressed in spherical 
coordinates rather than cylindrical coordinates. Then, the focal field distribution can be expanded using Eq. (13). 
In this way, the coefficients aν and bν can be derived based on orthogonality relation between two VSH field, 
thereby M-matrix can be solved. The corresponding paraxial vector beams to generate PMs and anti-PMs can 
be obtained. The amplitude and phase distributions of the x- and y-polarized components of the paraxial beam 
are shown in Fig. 3(b)-(i). To validate the inverse design method, we directly calculated the focusing fields of 
the paraxial beams depicted in Fig. 3 using the Richards-Wolf vector diffraction integral formula. The resulting 
expansion coefficients for aν​ and bν were found to be in agreement with the results for both PM and anti-
PM fields. In practical experiments, we can employ Spatial Light Modulator (SLM) to generate the engineered 
incident light field30 as derived above. However, it is crucial to consider the aberrations in the optical components 
and the environmental noise in real-world experiments.

Conclusion
Our research has discovered a new efficient and accurate method for solving the T-matrix of axisymmetric 
particles and, through high-degree dynamic control of the light field, designs light fields that are sensitive or 
insensitive to refractive index changes. This allows us to enhance or suppress the impact of changes in the 
refractive index of the medium on the scattering effects of the particles. Additionally, we have calculated and 
determined the transmission matrix of the tightly focused system, enabling us to find specific incident vector 
beams from known focal field obtained by vector spherical harmonic expansion through the inverse design. 
The introduction of PMs and anti-PMs in the field of particle scattering alters the traditional understanding in 
frequency-domain manipulation of these modes. The PMs can be used to reduce the influence of environmental 
refractive index or other factors on particle scattering effects. The anti-PMs can enhance sensitivity in sensing 
applications. Moreover, the new solutions for the T-matrix of axisymmetric particles and the inverse design 
through the tightly focused system provide new insights and greater degrees of freedom for basic optical research 
and experimentation.
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