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The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in 
sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include 
video cameras and wearable sensors. However, the present methods involve measuring surface 
electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate 
gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-
made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog®5 sensors 
captured gait parameters from 18 participants under running as references. Four features including 
median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy 
(SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models 
(Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 
5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation 
of gait parameters. The results show that all models successfully estimated 20 gait parameters, 
all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of 
models significantly depends on the condition of muscle fatigue. This study represents a significant 
advancement in gait analysis, providing a comprehensive method for estimating gait parameters from 
sEMG signals, with important implications for mobile health applications.
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Human gait represents the coordinated lower limb movements observed during walking or running and 
is a tangible reflection of the human body’s dynamic motion characteristics. Gait analysis holds significant 
potential in diverse applications, encompassing the precise control of prosthetic limbs for individuals with 
lower limb amputations, the identification of individuals, the detection of fall risks, and the early diagnosis of 
neuromuscular disorders such as Parkinson’s disease1. Researchers have employed a variety of methodologies to 
analyze gait patterns measured by non-wearable and wearable systems2. All these systems require the recording 
of surface electromyograms (sEMG) to assess muscle activities. Non-wearable systems usually use charge-couple 
device (CCD) cameras to record three-dimensional (3D) kinematic movements over time and space as subjects 
walk along a designated path3,4. The force exerted by a subject’s feet on the floor is measured by floor sensors. 
Wearable systems use inertial sensors placed on several parts of bodies to capture signals characterizing human 
gaits5. Zahradka et al. evaluated video and sensor-based gait analysis systems for measuring terminal contact 
and initial contact in adults6.

sEMG is recorded by electrodes placed on the skin over muscles to capture the electrical activity of 
skeletal muscles when the muscles perform isotonic or isometric contractions7. The analysis of sEMG signals 
is primarily used to evaluate muscle activity, understand muscle geometry, measure muscle force8, and assess 
muscle fatigue9. Specifically, muscle activity measured by sEMG signals is particularly important in clinical gait 
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analysis10. The sEMG can identify muscle activities that do not play a crucial role in gait. These insights, together 
with clinical assessments, can provide valuable information for monitoring patients over time and designing 
targeted rehabilitation treatments post-surgery. Thus, unnecessary procedures can be avoided while reinforcing 
the unaffected structures, and ultimately achieving personalized optimal gait performance11. The sEMG for gait 
analysis usually focuses on force and joint angles. Previous studies utilized artificial neural networks to calculate 
the angles of knee joints and gait speed with sEMG measured from the muscles of lower limbs12–14.

Machine learning (ML) has demonstrated its efficacy in deciphering sEMG signals for various applications 
such as muscle fatigue15,16, motion estimation17, classifying gestures18,19, and predicting gait parameters20,21. 
Zhang et al.22 employed multilayer perceptron (MLP) neural networks to continuously detect lower limb angles 
from sEMG signals. Guo et al.23 used a combination of long-short term memory (LSTM) and a multilayer 
perceptron neural network to identify four different gait phases from sEMG signals. Morbidoni et al.24 explored 
an ML approach specially formulated for the binary classification of gait events. This approach aims to predict the 
timing of heel-strike (HS) and toe-off (TO) from sEMG signals in the walking patterns of hemiplegic children. 
Cheng et al.25 developed a method that integrates sEMG with accelerometer signals to identify dynamic activities 
by computing entropy values and acceleration. Morbidoni et al.26 proposed a deep learning approach using 
sEMG data for classifying walking phases and predicting foot-floor contact, applicable in natural, non-treadmill 
environments. Tigrini et al.27 introduced PHASOR, a phasor-based feature extraction approach that enhanced 
linear discriminant analysis (LDA) and support vector machine (SVM) performance in gait phase recognition. 
The study showed PHASOR outperformed state-of-the-art features, achieving 82% accuracy with a five-fold 
leave-one-trial-out testing approach using SVM. PHASOR, an efficient muscle synergy feature extraction 
method, also outperformed deep learning approaches with faster processing. Mengarelli et al.28 investigated 
estimating the vertical component of ground reaction force (VGRF) using thigh and shank muscle EMG signals. 
Their study found that EMG signals could reliably estimate VGRF, with shank muscles alone offering a viable 
solution for reduced recording setups. These findings suggest the feasibility of incorporating GRF information 
into EMG-driven control schemes for prosthetic devices to improve walking dynamics and comfort. The 
previous studies primarily focused on predicting HS, TO, speed, stance, and swing; while other critical gait 
parameters were generally neglected29,30. This oversight has led to a significant gap in the research in this area.

This study aims to estimate 23 gait parameters using sEMGs measured from the lower limbs, focusing on two 
primary muscles, the gastrocnemius and vastus lateralis, in either foot. A customized wireless sEMG device was 
developed to capture data during treadmill running, while reference gait parameters were measured using shoe-
worn GaitUp Physilog® 5 inertial sensors31. By using minimal sensors and analyzing sEMG features—median 
frequency (MDF), standard deviation (SD), simple entropy (SampEn), and waveform length (WL)—with 
machine learning models (Random Forest, CatBoost, and XGBoost), we demonstrate how a simplified wearable 
system can provide accurate gait parameter estimation. Additionally, this study evaluates how variations in 
muscle fatigue affect gait parameters, assessed through 5-fold cross-validation. This focus on power capacity of 
muscle adds depth to the analysis, highlighting its impact on gait parameter estimation. By minimizing sensor 
usage while maintaining accuracy, this work presents a practical approach for wearable devices in mobile health 
applications, offering insights into muscle engagement and real-time gait monitoring.

Result
After preprocessing, the number of samples for each gait parameter of left and right feet was 1496. These samples 
were split into training sets and test sets in a ratio of 8:2. This research used an Intel i7-10700 CPU and an 
NVIDIA GeForce RTX3070 graphics card, and 64 Gbytes of 2933 MHz of RAM.

Performance evaluation of regression models
Three ML models – RF, CB, and XGB – were used to predict gait parameters. There are 20 gait parameters that 
demonstrate a high level of consistency, each exhibiting a PCC value above 0.800 for both feet, to ensure the 
reliability and accuracy of our gait analysis in assessing locomotive function. Table 1 displays their PCC values 
for both feet. The RF model proved to be the most accurate, achieving PCC values of 0.898 ± 0.028 for the left 
foot and 0.895 ± 0.031 for the right foot. XGB, while slightly less precise, still delivered robust results with PCC 
values of 0.896 ± 0.032 for the left foot and 0.892 ± 0.024 for the right foot. CB, although the least accurate of the 
three, demonstrated substantial accuracy with PCC values of 0.869 ± 0.029 for the left foot and 0.869 ± 0.033 for 
the right foot.

The training time of three models, RF, CB, and XGB, was 0.49 s, 4.78 s, and 13.74 s, respectively. For prediction 
times, CB was the quickest at 0.01 s, followed by RF at 0.02 s, and XGB at 0.05 s. These results highlight the 
efficiency of trade-offs between these models, offering insights into selecting an appropriate algorithm based on 
time constraints in edge computing.

About the memory sizes of three models. RF model exhibited a moderate memory footprint of 12.76 MB, 
indicating its suitability for environments with average memory availability. CB, with its notably smaller size of 
1.77 MB, is particularly advantageous for memory-constrained environments. Conversely, XGB, at 21.28 MB, 
has the highest memory requirement, potentially limiting its use in environments with restricted memory 
resources. The calculation of memory space in this study is crucial for the proposed method’s application 
in edge computing, where memory efficiency is key. Edge computing environments require models that are 
both accurate and lightweight, as they often process large data volumes in real-time with limited resources. 
Understanding the memory requirements of these models allows for informed decisions on their suitability in 
such resource-constrained settings.

This study also calculated MPE, RMSPE, and MAPE for 20 gait parameters using CB model, shown in Table 2. 
The MPE outcomes revealed slight underestimations, measuring − 0.94 ± 2.03 for the left and − 0.68 ± 1.30 for the 
right foot, which could suggest a systematic bias in the measurement technique or model used. For RMSPE, the 

Scientific Reports |        (2025) 15:12575 2| https://doi.org/10.1038/s41598-025-95973-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Name

MPE (%) RMSPE (%)
MAPE 
(%)

L R L R L R

GCT 0.15 0.09 2.96 2.62 0.02 0.02

Cadence -0.39 -0.28 2.96 2.66 0.02 0.02

Stance 0.05 0.02 1.65 1.73 0.01 0.01

Swing -0.20 -0.17 2.34 2.56 0.02 0.02

LDr -1.41 -0.57 11.88 11.45 0.08 0.08

FFr -0.80 -0.69 5.17 6.67 0.04 0.04

PR 0.11 -0.49 5.29 5.64 0.04 0.04

DS -0.80 -1.05 10.88 10.36 0.06 0.06

SL 0.15 0.01 3.06 2.79 0.02 0.02

Peak Swing 0.24 -0.04 4.14 2.86 0.03 0.02

SMTC 0.05 -0.07 1.74 1.55 0.01 0.01

HSP -0.26 -0.26 9.90 10.41 0.07 0.07

TOP 0.01 -0.19 3.88 3.55 0.03 0.03

SW -7.47 -2.31 34.9 17.01 0.18 0.12

Step Length 0.04 -0.04 3.56 2.96 0.03 0.02

3D PL 0.01 -0.01 0.50 0.43 0.00 0.00

Max HC -0.12 -0.03 3.44 3.19 0.03 0.02

Max TC1 -2.82 -1.20 13.39 12.09 0.10 0.09

Min TC -5.38 -5.65 32.03 31.61 0.15 0.18

Max TC2 -0.03 -0.67 10.04 9.81 0.07 0.07

Mean -0.94 -0.68 8.19 7.10 0.05 0.05

SD 2.03 1.30 9.43 7.33 0.05 0.04

Table 2.  Comparative analysis of CB model for both left and right feet.

 

Name

Left Foot Right Foot

RF CB XGB RF CB XGB

GCT 0.91 0.87 0.91 0.92 0.90 0.91

Cadence 0.91 0.87 0.91 0.92 0.89 0.91

Stance 0.89 0.87 0.90 0.86 0.82 0.86

Swing 0.89 0.87 0.90 0.86 0.82 0.87

LDr 0.89 0.86 0.88 0.89 0.86 0.88

FFr 0.92 0.90 0.92 0.90 0.87 0.91

PR 0.90 0.88 0.89 0.91 0.88 0.91

DS 0.90 0.88 0.91 0.88 0.85 0.87

SL 0.90 0.87 0.90 0.91 0.88 0.90

Peak Swing 0.90 0.90 0.91 0.93 0.92 0.92

SMTC 0.91 0.89 0.91 0.92 0.90 0.91

HSP 0.95 0.91 0.94 0.92 0.89 0.91

TOP 0.92 0.90 0.94 0.94 0.91 0.93

SW 0.91 0.87 0.91 0.91 0.89 0.90

Step Length 0.88 0.84 0.88 0.89 0.86 0.88

3D PL 0.91 0.88 0.91 0.91 0.90 0.90

Max HC 0.83 0.80 0.82 0.85 0.83 0.88

Max TC1 0.83 0.80 0.82 0.82 0.80 0.84

Min TC 0.89 0.86 0.86 0.89 0.85 0.89

Max TC2 0.91 0.86 0.90 0.86 0.85 0.86

Mean 0.898 0.869 0.896 0.895 0.869 0.892

SD 0.028 0.029 0.032 0.031 0.033 0.024

Table 1.  PCC of gait parameters for left and right feet estimated by ML.
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values of 8.19 ± 9.43 for the left foot and 7.10 ± 7.33 for the right foot were noted, indicating substantial variability 
in the gait parameter estimations, possibly reflecting the inherent complexities in gait dynamics or measurement 
inaccuracies. Finally, the MAPE values, standing at 0.05 ± 0.05 for the left foot and 0.05 ± 0.04 for the right foot, 
demonstrated a generally high level of accuracy in the absolute terms of the model’s estimations.

Conditions of muscle fatigue
In this study, we conducted an analysis of the MDF of muscle fatigue in both the left and right calves and thighs 
across various experimental groups. The MDF, a crucial parameter in sEMG, serves as an indicator of muscle 
fatigue32. When the subjects finished a six-minute run, we hypothesized that they would exhibit signs of muscle 
fatigue.

Table 3 displays both the mean and SD of the MDF values for each muscle across all groups. The mean values 
provide an average metric of muscle fatigue, essential for understanding the typical performance of the muscles 
under this study. The SD, on the other hand, shows the variability or consistency of these measurements across 
each group. We find that, except for the calf muscle of the right foot, the MDFs of all muscles approach a lower 
frequency from group I to V. Statistical analysis reveals significant differences between several groups for both 
the calf and thigh muscles of the foot. For the calf muscle of the left foot, the MDF in group I compares with them 
in groups II, III, and IV, suggesting significant differences with a p-value of less than 0.05. The MDFs in groups I 
and V indicate a highly significant difference, likely corresponding to a p-value of less than 0.001.

The MDFs in groups I and III show a significant difference in the thigh muscle of the left foot, with a p-value 
of less than 0.05. Comparing group, I to groups IV and V yields significant results with p-values below 0.001. For 
the thigh muscle of the right foot, the MDFs in groups I and II differ significantly with a p-value of less than 0.05. 
With p-values below 0.001, group I comparisons to groups III, IV, and V is highly significant.

5-Fold cross validations
Table 4 presents the results of gait parameter estimation using five-fold cross-validation, with Pearson Correlation 
Coefficients (PCCs) for both left and right feet. Focusing on the fold-specific results, Fold 1 shows relatively 
lower PCC values compared to the other folds, with the best result for the left foot being 0.813 (RF) and for 
the right foot being 0.826 (RF). Fold 2 shows a noticeable improvement in performance, with the RF model 
achieving 0.889 for the left foot and 0.900 for the right foot, marking this fold as one of the better ones for gait 
estimation. Fold 3 maintains good performance, with RF achieving 0.904 for the left foot and 0.891 for the right 
foot. Although slightly lower than Fold 2 for the right foot, the results are still strong overall. Fold 4 stands out 
with the best results across all folds, where RF achieves the highest PCC values of 0.913 for the left foot and 0.928 
for the right foot, indicating that this fold provides the most accurate gait parameter estimation. Finally, Fold 5 
shows a slight decline in performance compared to Fold 4, with RF achieving 0.859 for the left foot and 0.858 for 
the right foot. Although these values are still solid, they are lower than those observed in Fold 4. In conclusion, 
Fold 4 provides the best overall results for both left and right feet, offering the most reliable gait parameter 
estimation, with Fold 2 also showing strong performance, particularly for the right foot.

Discussion
The development of wearable devices has become a critical issue in mobile health (mHealth) because these 
devices handle various health services, including monitoring chronic disease conditions, reducing healthcare 

Fold

Left Foot Right Foot

RF CB XGB RF CB XGB

1 0.813 ± 0.041 0.776 ± 0.051 0.804 ± 0.056 0.826 ± 0.044 0.815 ± 0.043 0.818 ± 0.047

2 0.889 ± 0.043 0.873 ± 0.049 0.881 ± 0.049 0.900 ± 0.042 0.873 ± 0.049 0.883 ± 0.048

3 0.904 ± 0.026 0.894 ± 0.030 0.898 ± 0.030 0.891 ± 0.046 0.882 ± 0.052 0.883 ± 0.046

4 0.913 ± 0.024 0.890 ± 0.025 0.899 ± 0.033 0.928 ± 0.021 0.896 ± 0.034 0.911 ± 0.038

5 0.859 ± 0.042 0.832 ± 0.045 0.851 ± 0.044 0.858 ± 0.060 0.850 ± 0.057 0.848 ± 0.051

Table 4.  Five-fold Pccs of gait Estimation (Mean & SD) for both left and right feet.

 

Group

MDF Left Calf MDF Right Calf MDF Left Thigh MDF Right Thigh

Mean ± SD (Hz) Mean ± SD (Hz) Mean ± SD (Hz) Mean ± SD (Hz)

I 49.9 ± 4.8 60.4 ± 5.2 49.4 ± 6.8 49.3 ± 7.0

II 51.7 ± 4.6* 52.5 ± 5.2 48.6 ± 6.6 48.6 ± 6.5*

III 49.1 ± 5.2* 60.3 ± 5.2 47.7 ± 7.0* 48.0 ± 6.3**

IV 49.1 ± 4.7* 60.3 ± 5.1 47.3 ± 7.2** 47.4 ± 6.6**

V 49.0 ± 4.4** 60.4 ± 5.2 46.8 ± 7.0** 47.0 ± 7.0**

Table 3.  The mean and SD of MDF for both left and right feet. * represents p-value < 0.05, ** represents 
p-value < 0.001.
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costs, empowering patients and families to manage their daily health, and providing direct access to health 
services regardless of time and place33. Consequently, many studies over the past decade have focused on 
developing innovative wearable devices for patient care and health management. For example, the Apple Watch 
not only measures calories and steps but also detects arrhythmias via electrocardiogram and monitors blood 
oxygen saturation34. Liu et al. proposed an sEMG patch that measures the MDF in real-time to evaluate muscle 
fatigue conditions35. In this study, four features extracted from sEMG—MDF, WL, SD, and SampEn—were used 
to predict twenty gait parameters, achieving PCC values above 0.80, using ML models.

Comparison of spatiotemporal gait parameter Estimation accuracy based on ML models
The PCC values, as presented in Table  1, indicate strong correlations between the estimated and actual gait 
parameters for all three models, with most values exceeding 0.85, signifying a high level of agreement. Among 
the models, XGB consistently showed the highest PCC values, suggesting superior performance in capturing the 
relationships between the input features and gait outcomes. RF performed similarly to XGB, with only minor 
differences observed in performance. While CB also provided strong correlations, it demonstrated slightly lower 
PCC values compared to RF and XGB. However, these differences were not substantial enough to undermine 
the model’s overall effectiveness.

When comparing the models using MPE (Table  2), XGB exhibited some variability, particularly for 
parameters such as “Step Length” and “Swing,” where it slightly underestimated the true values, as indicated by 
negative MPE values. Despite this, XGB maintained reliable performance across most parameters. The CB model 
demonstrated lower MPE values for the right foot, particularly for parameters like “FFr” and “PR,” suggesting it 
slightly underpredicted these values relative to the true measurements. The RMSPE values further corroborated 
XGB’s superior performance, showing lower errors, especially for parameters like “GCT” and “Cadence.” This 
suggests that XGB not only captured the patterns more effectively but also provided more precise estimates of 
gait parameters. Although CB and RF exhibited slightly higher RMSPE values, they still provided reasonable 
predictions, confirming their utility for gait parameter estimation. Finally, the MAPE values, which quantify the 
relative percentage error of predictions, were low across all models, reflecting their overall accuracy. CB showed 
particularly strong results for the left foot, with MAPE values close to zero for parameters such as “3D PL” and 
“Cadence,” indicating minimal deviation from the true values.

Analysis of ground clearance parameter Estimation stability of each model
We evaluate the stability of ground clearance parameter estimation (Max HC, Max TC1, Min TC, and Max 
TC2) across three ML models. The PCC values in Table 1 show strong correlations between the estimated and 
actual values for all parameters, with most values exceeding 0.80. XGB consistently outperformed RF and CB, 
particularly for the right foot, where it achieved the highest PCC values, especially for ‘Max HC’ (0.88) and ‘Max 
TC1’ (0.84). RF and CB also demonstrated strong performance, with PCC values ranging from 0.80 to 0.83, 
indicating that these models captured the ground clearance parameters well, although XGB showed slightly 
better consistency.

Regarding MPE (Table 2), all models exhibited slight underestimations of the ground clearance parameters, 
with negative MPE values, particularly for ‘Min TC,’ where values ranged from − 5.38% to -5.65%. XGB displayed 
greater stability in MPE across both feet, with slightly less underestimation compared to RF and CB. Notably, 
CB showed a larger underestimation for the ‘Max TC2’ parameter on the left foot (-0.67%). The RMSPE values 
indicated that XGB generally provided the most precise estimates, with lower errors for parameters such as ‘Max 
HC’ (3.19% for the right foot). While RF and CB had slightly higher RMSPE values for parameters like ‘Max 
TC1’ and ‘Min TC,’ their error rates were still within an acceptable range, demonstrating reliable performance in 
estimating ground clearance. Finally, the MAPE values confirmed low relative errors across all models, further 
validating their accuracy in estimating ground clearance parameters. XGB again performed the best, with near-
zero MAPE values for most parameters, reflecting minimal deviation from actual measurements.

Impact of muscle fatigue on gait parameter Estimation
Since sEMG signals were used to estimate gait parameters, we analysed the power capacity of muscle to assess its 
impact on model performance. The experiment segmented the data into five groups to capture muscle contraction 
dynamics over time. One key parameter, Median Frequency (MDF), used to detect muscular fatigue32, showed 
lower frequencies across most muscles, except for the right calf (Table 3). Significant differences (p < 0.001) were 
observed between groups I and V, indicating changes in muscle function due to fatigue or adaptation.

This study employed 5-fold cross-validation with time-sequenced data splitting to ensure robust evaluation 
of muscle fatigue during running. The lowest PCC values in groups I and V (Table 4) highlight the complex 
relationship between muscle fatigue and gait, suggesting that muscle fatigue or adaptation leads to transitions 
that the model struggles to capture accurately. These findings emphasize the need for more advanced models that 
account for the dynamic shifts in muscle function and their effect on gait.

Optimizing sensor and model size for edge computing
A key advantage of our approach is the use of a minimal number of sEMG sensors, which is crucial for 
improving the feasibility of integrating sEMG-based gait analysis into wearable systems. Previous studies often 
relied on larger sensor arrays or additional signal sources, increasing the complexity of experimental setups. 
By minimizing the number of sensors while still achieving high prediction accuracy, our study demonstrates 
the potential for simplified and practical wearable applications for real-time gait assessment. This reduction 
in sensor usage is particularly important for practical applications in both clinical and daily-life settings. A 
similar effort to reduce sensor dependency was presented by Mobarak et al.36, who showed that proximal sensor 
placements can effectively estimate gait kinematics. Our study further supports the idea that sEMG-based gait 
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analysis can be achieved with fewer sensors while maintaining robust accuracy, making the technology more 
accessible for real-world deployment.

The findings also underscore the feasibility of developing compact, efficient wearable devices that provide 
deep insights into muscle fatigue and gait dynamics. Models such as XGB and CB demonstrated close PCC 
values, but considerations of model size, training, and prediction times are critical for practical use. The XGB 
model, with a large memory requirement of 21.28 MB, might limit its use in edge computing environments 
with limited resources. The RF model showed well-rounded performance but required 12.76 MB of memory, 
which could pose challenges for deployment in edge computing due to its size. In contrast, the CB model, with 
its minimal 1.77 MB size, emerges as a more feasible choice for applications where memory and processing 
constraints are a concern. This highlights the balance between performance and computational efficiency 
needed for wearable devices.

Comparison of results with previous studies
Furthermore, compared to Liu et al.37, who also utilized sEMGs to predict gait parameters but achieved PCC 
values above 0.80 for only fourteen gait parameters, our method demonstrated improvements in prediction 
accuracy across a wider range of parameters. The inclusion of WL as a critical feature in our analysis contributed 
to this improvement. Additionally, because all features in our study were extracted from sEMG signals, the 
overall signal processing complexity was lower than in previous studies.

Previous study29 evaluated gait metrics by analyzing EMG signals with the aid of an extreme learning machine 
(ELM). The validity of the procedure was confirmed by evaluating sEMG data from the Tibialis Anterior and 
Gastrocnemius Lateral muscles during walking in a group of 18 healthy participants. Inertial sensors and video 
cameras were used to gather measurements of gait speed and the phases of stance and swing. The results showed 
RMSPE for the stance percentage of 7.62%, gait speed of 11.86% and swing percentage of 6.07%, respectively. 
However, in Table 2, our study reports that the RMSPE of left and right feet for the stance parameter are 1.65% 
and 1.73%, and for swing parameter are 2.34% and 2.56%, which are better than those reported in previous 
studies.

Zhang et al.38 utilized wearable sensors to estimate three distinct gait parameters—stride velocity (SV), stride 
length (SL), and foot clearance (FC)—using support vector regression to analyze both running and walking. 
The research involved 14 participants across two separate sessions dedicated to these activities. The findings 
indicated error rates for running at 2.91% for SV, 2.59% for SL, and 5.13% for FC. Hao et al.39 estimated the SL 
and stride width (SW) in their gait analysis using an IMU-based sensor. They used nine participants, recording 
error percentages of -0.24% for SL and − 0.02% for SW. In contrast, the current study has demonstrated that 
the application of the CB model significantly reduces the error percentage of statistical metrics to 0.08% for 
SL. Previous studies focused on specific aspects of gait analysis for estimation, limiting their scope to certain 
parameters rather than providing a comprehensive analysis. In contrast, our study successfully estimated 20 gait 
parameters, offering a more complete analysis.

This study’s methodology has the potential benefit for utilizing in clinical environments to evaluate the gait 
parameters of patients with the gait-related illnesses, including Parkinson’s disease, cerebral palsy, and multiple 
sclerosis. Furthermore, incorporating a compact CB model designed for the edge computing will allow real-time 
data processing on wearable devices, enabling instant analysis and feedback for the users.

Conclusions
In this research, we propose a sEMG device to collect data from the muscles of both feet, utilizing ML to predict 
gait parameters. Since gait parameters were estimated using sEMG, the proposed method can be applied not only 
to gait analysis but also to assess muscle fatigue, motion classification, evaluating muscle fatigue, and measuring 
muscle force. Moreover, our work contributes to exploring the relationship between muscle fatigue conditions 
and the performance of gait parameter estimation. This study also has some limitations, such as the inability to 
accurately predict HS, speed and TA. Additionally, there is a concern about the size of the ML models. In future 
studies, we will attempt to improve the results and reduce the size of the models. Furthermore, combining the 
sEMG patch with edge computing techniques will be applied in mHealth.

Methods
Figure 1 illustrates the workflow of gait-parameter estimation using the sEMG signals from the thigh and 
calf muscles, captured with GaitUp Physilog® 5 sensors. The method involves the sEMG signals of booth feet 
measured by the self-made boards, gait parameters measured by GaitUp sensors as the target output, extraction 
of sEMG parameters, MDF, WL, SD, and SampEn as the input features, and data partitioning for model training 
and testing. This system also demonstrates how sensor technology and ML can be integrated effectively to 
estimate the gait parameters.

Experimental protocol
The experiment was conducted with voluntary participants, primarily involving healthy adult females. The 
study included 18 participants, aged 19 to 23 years, with an average age of 20 ± 1 years. The participants had an 
average height of 156 ± 4.6 cm, an average weight of 45.9 ± 5.7 kg, and an average shoe size of 23.9 ± 0.6 cm. Prior 
to participation, each participant completed a self-health assessment to ensure eligibility for the experiment, 
and informed consent was obtained from all participants before the experiment. This study was approved by 
the Institutional Review Board of Chung Shan Medical University Hospital, Taichung City, Taiwan, under the 
reference number CS2-22210.
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All methods were performed in accordance with the relevant guidelines and regulations, including the 
Declaration of Helsinki and ICH-GCP requirements. The first step of the experimental protocol was to place 
electrodes on the vastus lateralis and gastrocnemius muscles on both feet of participants, as shown in Figs. 2 (a) 
and (b), for measuring the sEMG signals of calf and thigh muscles. The circuit board was placed in a waist pack, 
which was positioned in a way that would not interfere with natural movement. We avoided the belly position 
and shifted the electrodes to a higher position. The surface electrodes used for the EMG recording were Ag/
AgCl with a 10-mm diameter on self-adhesive supports. The electrode arrangement ensured negligible crosstalk 
between adjacent muscles. The positions of the electrodes for each subject were recorded, and the electrodes 
were placed at the same position. The self-made boards were attached to the participants’ thighs. Cardboard was 
stuck on the back of the board to protect it and decrease uncomfortableness. The second step was to place the 
GaitUp Physilog®5 wearable inertial sensors on the tongue of each shoe, ensuring stability and uninterrupted 
data integrity, as shown in Fig. 2(c).

The third step was to request participants to walk or run on a treadmill at a consistent speed of 5 km per 
hour for 6 min, as shown in Fig. 2(d). This speed was based on established practices in endurance and gait 
analysis research40,41. This specific speed and duration are frequently employed to strike a balance between 
acquiring ample data for statistical robustness and mitigating the risk of participant fatigue. Additionally, these 
parameters closely reflect the typical walking speeds and endurance capabilities observed in the healthy adult 
population. During this period, subjects could request to decrease the speed when they felt tired. There were four 
measurements whose recording interval was at least one week to avoid muscle fatigue. The detailed procedure 
was described in the study of Liu et al.37.

Experimental device
The self-made wireless device measured the sEMG signals from both feet at a sampling rate of 1000 Hz. This 
device consists of two boards: a slave board and a master board, each placed on one foot, as shown in Fig. 2(a). 
The XBee S2C modules (Digi International XBee®, Hopkins, USA) were used for data exchange between the 
two boards, while the HC-05 Bluetooth module was employed to transmit the acquired sEMG data from the 
master board to a personal computer (PC). This setup enabled the synchronous recording of sEMG signals from 
both feet. The sEMG circuit was designed following the study by Liu et al.35. The passband was 33.9–482.5 Hz, 
using second-order Butterworth filters, and the total gain was 550 V/V. The motion signals from each foot were 
measured using both the sEMG and GaitUp sensor signals. To prevent data loss from the slave board to the PC 
terminal, a down-sampling technique was implemented. The slave board sent data to the master board at a rate 
of 1000 Hz, and the master board relayed the data to the PC terminal at 500 Hz. This approach successfully 
prevented any data loss from the slave board.

Gait parameters
Figure 2(c) depicts the gait analysis device, Physilog® 5 (GaitUp SA, Sweden), utilized in the study. The Physilog® 
5 is an advanced auxiliary tool designed to capture objective, quantitative data regarding gait conditions. It 
enables the collection of pre- and post-analysis data, which supports clinicians in identifying gait deficiencies 
and assessing potential risks. For this research, the GaitUp Lab gait analysis system (Fig. 3) was used to extract 
comprehensive gait parameters for both the left and right feet of the subjects.

The gait parameters encompass a total of 23 distinct measurements. These include 9 temporal parameters, 9 
spatial parameters, 4 pertaining to ground clearance analysis, and 1 dedicated to turn analysis. Time parameters 
include ‘heel strike time’ (HS), ‘gait cycle time’ (GCT), ‘double leg support’ (DS), ‘Cadence’, ‘stance phase’ (stance), 
‘swing period’ (swing), ‘load ratio’ (LDr), ‘foot flat ratio’ (FFr), and ‘push ratio’ (PR). Spatial parameters cover 
‘step length’ (SLength), ‘stride length’ (SL), ‘gait speed’ (Speed), ‘maximum angular velocity during swing’ (Peak 
Swing), ‘foot speed at minimal toe clearance’ (SMTC), ‘heel strike angle’ (HSP), ‘toe off angle’ (TOA), ‘swing 
width’ (SW), and ‘3D path length’ (3D PL). Turn analysis includes ‘turning angle’ (TA), and ground clearance 
analysis features ‘maximum heel clearance’ (Max-HC), ‘maximum toe clearance 1’ (Max-TC1), ‘minimum toe 

Fig. 1.  Workflow diagram for the estimation of gait parameters by sEMG signals.
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clearance’ (Min-TC), and ‘maximum toe clearance 2’ (Max-TC2). The sEMG signal consisted of 180,000 data 
points recorded over 6 min of running.

Signal processing
Figure 4 illustrates the schematic diagram of the signal processing procedure. After recording the complete 
signal, the sEMG measurement device captured a signal length of 180,000 data points over 6 min during the 
experiment. Since the sEMG multi-channel measurement device used in this study is compatible with the 
GaitUp Physilog 5 system, which operates differently, the data was cut at specific time points. The starting time 
for data cutting was determined by the point when the initial force of the sEMG was recorded, aligned with the 
moment when the activity first became visible in GaitUp Lab.

To eliminate any potential effects of gait variability at the beginning and end of the experiment, 7.5 s were 
removed from both the start and end of the signal, resulting in a total removal of 15 s. After this adjustment, the 
signal length was reduced to 172,500 data points. For the signal segmentation, both the sEMG measurement 
device and GaitUp Physilog® 5 were set to segment the data into 30-second window (with blue block), and a 
15-second shift (with green block)42, shown in Fig. 4(a). This approach generated 22 samples per experiment. 
Gait parameters from the recorded GaitUp Physilog® 5 data were then extracted using the described method in 
GaitUp Lab.The first and last 7.5 s of sEMG and GaitUp sensor signals were removed. This choice was guided by 
the need to capture meaningful variations in gait and the power capacity of muscle over time, while maintaining 
a sufficient number of segments for statistical analysis. The selected window size ensures that transient variations 
do not dominate the extracted features, while still providing an appropriate temporal resolution for tracking 
changes in gait parameters across different time intervals.

Fig. 2.  (a) Electrode positioned on vastus lateralis muscle. (b) Electrode positioned on gastrocnemius muscle. 
(c) Gait analyzer attached to shoe tongue. (d) Walking on a treadmill.
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After segmentation, the data were categorized into five groups based on the time sequence. Specifically, Group 
1 included segments 1–5, Group 2 included segments 6–9, Group 3 covered segments 10–13, Group 4 contained 
segments 14–17, and Group 5 comprised segments 18–22, as shown in Fig. 4(b). The gait parameters for both 
feet in each segment were calculated using GaitUp Lab, leading to a total of 1,496 segments per foot for analysis.

To prevent any data leakage during model evaluation, each segment’s data was strictly separated manually 
during the cross-validation process, ensuring that no data from the testing set overlapped with the training data. 
This careful partitioning minimizes the risk of data leakage, which could otherwise lead to overly optimistic 
performance metrics and negatively affect the model’s ability to generalize.

Feature extraction of sEMG signal
Feature extraction from sEMG signal is crucial for maintaining key neural information by removing non-
essential elements and interference. This simplifies the original signal into a concise set of features reflecting 
muscle contraction intensity and neuromuscular activation for depicting muscle contraction physiology43. The 
sEMG features of the proposed method covered both time-domain and frequency-domain components carried 

Fig. 4.  (a) Signal data segmentation. (b) Five groups of the segment.

 

Fig. 3.  GaitUp Lab gait analysis system.
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out separately44. Previous studies showed that the median frequency (MDF), waveform length (WL), standard 
deviation (SD), and sample entropy (SampEn) were the common features45–47.

MDF represents the point at which half of the signal’s power spectrum is distributed, as in (1).

	

∑
MDF
j=0 pj =

∑
M
j=MDF pj = 1

2
∑

M
j=0pj � (1)

where pj is the jth spectrum density, and M is the Nyquist frequency.
WL quantifies the sEMG signal complexity, representing the total waveform length over a time segment. In 

(2), ‘s’ denotes sEMG signal amplitude, ‘N’ the number of data points, and ‘i’ is an index from 1 to N − 1, used for 
calculating amplitude differences between successive points.

	
W L =

∑
N−1
i=1 |si+1 − st|� (2)

SD is calculated as Eq. (3).

	
SD =

√
1
2

∑
N
i=1

(
s1−

−
s
)

� (3)

Sample Entropy (SampEn) serves as a measure for evaluating consistency and complexity in a time series of 
signals. A greater entropy value signifies more complexity in the time series. To compute SampEn, define the 
dimension m and select a suitable value for r.

The signal segments represented Sm, according to the following process:

	 Sm (i) = {si, si+1, si+2, . . . , si+m−1}� (4)

Equation (5) represents the expression of SampEn

	
SampEn = −In

A

B
� (5)

	 A = d [ Sm+1 (i) , Sm+1 (j)] < r� (6)

	 B = d [ Sm (i) , Sm (j)] < r� (7)

where A represents the count of pairs of sequences of length n + 1 that are within a tolerance r and B represents 
the count of pairs of sequences of length n that are within the same tolerance r. These counts are used to calculate 
SampEn, which measures the complexity of the dataset. r = SD × 0.2, m = 2, and d is the Euclidean distance.

In this research, sEMG signals were collected from both the thigh and calf muscles, and a total of 8 features 
were extracted from the sEMG signals for each foot.

Algorithm 1.  Pseudo Code for CatBoost.
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Algorithm 3.  Pseudo Code for XGBoost.

 

Algorithm 2.  Pseudo Code for Random Forest.
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Machine learning models
Three distinct types of ensemble ML regression models – CB, RF, and XGB – were used to estimate various 
gait parameters. These models were chosen for their proven efficacy in handling complex datasets, and their 
application aimed at providing more nuanced insights into the dynamics of human gait.

Catboost
CatBoost (CB)48,49 is particularly adept at processing categorical data seamlessly with minimal preprocessing, 
owing to its unique approach to transforming categorical values into numerical inputs. This algorithm enhances 
robustness against overfitting through its use of ordered boosting, a methodology that introduces randomness 
in the way training data is fed to the model, thus improving generalization. Additionally, CB algorithm begins by 
accepting a dataset D comprising S samples and their corresponding target values, alongside hyperparameters 
such as the number of iterations, , learning rate, , maximum tree depth, d, and choice of loss function, L. 
Following initialization, where the ensemble model is initialized as an empty list and the base model as the mean 
of the target variable, the algorithm iterates through each iteration from  = 1 to . Within each iteration, gradients 
are computed for each sample in D based on the current ensemble model’s predictions, guiding the construction 
of a decision tree DT t aimed at predicting these gradients.

After scaling the predictions of DT t by the learning rate and incorporating them into the ensemble model, 
the algorithm continues to update the ensemble by integrating the predictions of the newly added tree. Upon 
completion of all iterations, the final output is the ensemble model consisting of decision trees, DT t, which 
collectively represent the combined knowledge extracted from the dataset. Algorithm 1 presents the pseudo-
code implementation of the CB algorithm discussed.

Random forest
Random Forest (RF)50,51 is prominent for its straightforward application and robust performance across diverse 
datasets and problem types. This algorithm aggregates predictions from a multitude of decision trees to mitigate 
the overfitting issues typical of individual trees. The robustness of RF extends to its handling of both classification 
and regression tasks, making it a versatile tool in predictive analytics. Nevertheless, the model’s complexity can 
lead to substantial memory consumption and slow prediction times when the ensemble includes a large number 
of trees.

Algorithm 2 outlines the process of building RF tasks. Initially, it accepts a dataset with samples, along with 
parameters such as the number of trees ( ntree) the number of features (, and the minimum samples in a leaf 
node ( nleaf ). It then proceeds to build each DT in the RF by iteratively selecting bootstrap subsets from the 
dataset. Within each tree-building process, a subset of features is randomly chosen, and the tree is recursively 
partitioned based on optimal attribute selection until leaf nodes contain a minimum number of samples. To 
predict a new data point, the algorithm averages the predictions of all decision trees in the ensemble.

XGBoost
XGBoost (XGB)52 stands out for its scalability and execution speed, driving its popularity in the ml community, 
particularly for competitive data science. It incorporates advanced regularization techniques, which help in 
reducing overfitting, thereby enhancing the predictive accuracy of the model53.

XGB employs a series of decision trees, termed base learners, to sequentially refine its predictions in a ml 
context. Initiated with an ensemble prediction (ŷ) set to zero, the algorithm proceeds to calculate the residuals 
(R), which represent the discrepancies between the observed values (y) and the current predictions ( ŷi). Each 
tree is trained on these residuals, targeting the specific errors of the preceding model. The predictions from 
each base learner are then scaled using a predefined learning rate ( lrate) and subsequently integrated into the 
overall ensemble prediction (ŷ). This iterative process, repeated for a defined number of iterations ( nestimators), 
cumulatively adjusts the model, aiming to minimize the residuals and enhance accuracy. The final ensemble 
prediction (ŷ) represents the cumulative adjustments made by all the base learners. Algorithm 3 outlines the 
process of building XGB tasks.

Evaluation metrics
The study conducted a comprehensive evaluation of ML model, utilizing metrics such as Pearson correlation 
coefficient (PCC), Mean Percentage Error (MPE), Root Mean Squared Percentage Error (RMSPE), and Mean 
Absolute Percentage Error (MAPE).

	a)	 MPE calculates the average of percentage discrepancies between the estimated values and the actual values. 
Equation (8) represents the MPE equation.

	
MP E = 1

n

∑ n

i=1

xi − yi

xi
× 100%� (8)

	b)	 RMSPE measures estimation accuracy by calculating the square root of the average squared percentage 
errors between estimated and actual values.

	
RMSP E =

√
1
n

∑ n

i=1

(
xi − yi

xi

)2
× 100%� (9)

	c)	 MAPE evaluates the mean of the absolute percentage errors through a comparison between the predicted 
and actual values.
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MAP E = 1

n

∑ n

i=1

∣∣∣xi − yi

xi

∣∣∣ × 100%.� (10)

In (8), (9) and (10), xi is the actual value and yi is the estimated value.

	d)	 The PCC, commonly represented as ‘r’ or Pearson’s r, was employed in the testing data to determine the con-
nection between predicted gait parameter values and the actual target gait parameter values. The PCC is a 
statistical measure used to assess the linear association between two continuous variables, providing insight 
into both the strength and direction of their relationship. Equation (11) for calculating the PCC between two 
variables, yi and ŷi, with n data points, my  and m

ŷ
represent the respective average values of the yi and ŷi

variables.

	

r =

∑
n
i=1 (yi − my)

(
ŷi − m

ŷ

)
√∑ n

i=1(yi − my)2 ∑ (
ŷi − m

ŷ

)2 � (11)
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