Table 6 Classwise comparative-analysis between proposed deep NNW and existing approaches34 for CCCS-CIC-AndMal-2020 dataset.
From: Multimodal malware classification using proposed ensemble deep neural network framework
Malware category | Precision | Recall | F1-Score | Accuracy | ||||
---|---|---|---|---|---|---|---|---|
Proposed | Existing | Proposed | Existing | Proposed | Existing | Proposed | Existing | |
Adware | 0.892 | 0.935 | 0.889 | 0.929 | 0.891 | 0.932 | 85.10 | 92.82 |
Backdoor | 0.912 | 0.721 | 0.948 | 0.643 | 0.930 | 0.680 | 94.80 | 59.93 |
Banker | 0.818 | 0.759 | 0.917 | 0.759 | 0.865 | 0.759 | 91.80 | 92.40 |
Dropper | 0.850 | 0.850 | 0.826 | 0.686 | 0.838 | 0.759 | 82.60 | 63.96 |
FileInfector | 0.778 | 0.909 | 0.880 | 0.789 | 0.826 | 0.845 | 88.00 | 70.31 |
PUA | 0.968 | 0.677 | 0.972 | 0.682 | 0.970 | 0.679 | 97.20 | 69.29 |
Ransomware | 0.920 | 0.798 | 0.931 | 0.944 | 0.926 | 0.864 | 93.10 | 91.98 |
Riskware | 0.949 | 0.963 | 0.939 | 0.967 | 0.944 | 0.965 | 92.80 | 96.55 |
SMS | 0.953 | 0.917 | 0.973 | 0.886 | 0.963 | 0.901 | 97.30 | 93.99 |
Scareware | 0.326 | 0.836 | 0.909 | 0.764 | 0.480 | 0.799 | 91.70 | 74.32 |
Spyware | 0.000 | 0.924 | 0.000 | 0.835 | 0.000 | 0.877 | 92.00 | 91.94 |
Trojan | 0.962 | 0.895 | 0.894 | 0.896 | 0.927 | 0.896 | 87.40 | 89.09 |
Overall Results | 0.799 | 0.841 | 0.865 | 0.813 | 0.850 | 0.825 | 91.40 | 82.99 |