Table 7 Class wise parametric analysis against Blended malware image dataset.
From: Multimodal malware classification using proposed ensemble deep neural network framework
Class | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
Adposhel | 1.0000 | 1.0000 | 1.0000 | 0.9606 |
Agent | 0.7014 | 0.8417 | 0.7652 | 0.9606 |
Allaple | 0.8611 | 0.9688 | 0.9118 | 0.9606 |
Alueron | 0.1736 | 1.0000 | 0.2959 | 0.9606 |
Amonetize | 0.9861 | 0.9660 | 0.9759 | 0.9606 |
Androm | 1.0208 | 0.9800 | 1.0000 | 0.9606 |
Autorun | 0.9236 | 0.9110 | 0.9172 | 0.9606 |
BrowseFox | 0.9444 | 0.9510 | 0.9477 | 0.9606 |
C2LOP | 0.1736 | 1.0000 | 0.2959 | 0.9606 |
Dialplatform | 0.1736 | 1.0000 | 0.2959 | 0.9606 |
Dinwod | 1.0208 | 0.9866 | 1.0034 | 0.9606 |
Elex | 1.0347 | 0.9933 | 1.0136 | 0.9606 |
Expiro | 0.8958 | 0.8543 | 0.8746 | 0.9606 |
Fakerean | 0.5208 | 1.0000 | 0.6849 | 0.9606 |
Fasong | 1.0417 | 1.0000 | 1.0204 | 0.9606 |
HackKMS | 1.0208 | 0.9866 | 1.0034 | 0.9606 |
Hlux | 1.0417 | 1.0000 | 1.0204 | 0.9606 |
Injector | 0.9167 | 0.9103 | 0.9135 | 0.9606 |
InstallCore | 1.0278 | 0.9867 | 1.0068 | 0.9606 |
Lolyda | 0.5903 | 1.0000 | 0.7424 | 0.9606 |
MultiPlug | 0.9722 | 0.9396 | 0.9556 | 0.9606 |
Neoreklami | 1.0347 | 0.9933 | 1.0136 | 0.9606 |
Neshta | 0.9028 | 0.8844 | 0.8935 | 0.9606 |
Regrun | 0.9375 | 1.0000 | 0.9677 | 0.9606 |
Sality | 0.8542 | 0.8255 | 0.8396 | 0.9606 |
Snarasite | 1.0417 | 1.0000 | 1.0204 | 0.9606 |
Stantinko | 1.0347 | 0.9933 | 1.0136 | 0.9606 |
VBA | 1.0417 | 1.0000 | 1.0204 | 0.9606 |
VBKrypt | 0.9722 | 0.9589 | 0.9655 | 0.9606 |
Vilsel | 1.0139 | 1.0000 | 1.0069 | 0.9606 |