Table 7 Class wise parametric analysis against Blended malware image dataset.

From: Multimodal malware classification using proposed ensemble deep neural network framework

Class

Precision

Recall

F1-Score

Accuracy

Adposhel

1.0000

1.0000

1.0000

0.9606

Agent

0.7014

0.8417

0.7652

0.9606

Allaple

0.8611

0.9688

0.9118

0.9606

Alueron

0.1736

1.0000

0.2959

0.9606

Amonetize

0.9861

0.9660

0.9759

0.9606

Androm

1.0208

0.9800

1.0000

0.9606

Autorun

0.9236

0.9110

0.9172

0.9606

BrowseFox

0.9444

0.9510

0.9477

0.9606

C2LOP

0.1736

1.0000

0.2959

0.9606

Dialplatform

0.1736

1.0000

0.2959

0.9606

Dinwod

1.0208

0.9866

1.0034

0.9606

Elex

1.0347

0.9933

1.0136

0.9606

Expiro

0.8958

0.8543

0.8746

0.9606

Fakerean

0.5208

1.0000

0.6849

0.9606

Fasong

1.0417

1.0000

1.0204

0.9606

HackKMS

1.0208

0.9866

1.0034

0.9606

Hlux

1.0417

1.0000

1.0204

0.9606

Injector

0.9167

0.9103

0.9135

0.9606

InstallCore

1.0278

0.9867

1.0068

0.9606

Lolyda

0.5903

1.0000

0.7424

0.9606

MultiPlug

0.9722

0.9396

0.9556

0.9606

Neoreklami

1.0347

0.9933

1.0136

0.9606

Neshta

0.9028

0.8844

0.8935

0.9606

Regrun

0.9375

1.0000

0.9677

0.9606

Sality

0.8542

0.8255

0.8396

0.9606

Snarasite

1.0417

1.0000

1.0204

0.9606

Stantinko

1.0347

0.9933

1.0136

0.9606

VBA

1.0417

1.0000

1.0204

0.9606

VBKrypt

0.9722

0.9589

0.9655

0.9606

Vilsel

1.0139

1.0000

1.0069

0.9606