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Comparison of marker-less 2D
Image-based methods for infant
pose estimation

Lennart Jahn2“, Sarah Fligge?, Dajie Zhang®*, Luise Poustka?, Sven Bolte>%7,
Florentin Wérgétter?, Peter B. Marschik3> & Tomas Kulvicius%3

In this study we compare the performance of available generic- and specialized infant-pose estimators
for a video-based automated general movement assessment (GMA), and the choice of viewing angle
for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500
annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 16 weeks.
To determine which pose estimation method and camera angle yield the best pose estimation accuracy
on infants in a GMA related setting, the error with respect to human annotations and the percentage
of correct key-points (PCK) were computed and compared. The results show that the best performing
generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from
using specific infant-pose estimators over the generic pose estimators on our infant dataset. However,
when retraining a generic model on our data, there is a significant improvement in pose estimation
accuracy. This indicates limited generalization capabilities of infant-pose estimators to other infant
datasets, meaning that one should be careful when choosing infant pose estimators and using them
on infant datasets which they were not trained on. The pose estimation accuracy obtained from the
top-down view is significantly better than that obtained from the diagonal view (the standard view for
GMA). This suggests that a top-down view should be included in recording setups for automated GMA
research.

Keywords Full body pose estimation, Infant motion analysis, Deep neural networks, GMA

Background

When classic biomarker approaches fail to detect developmental conditions early or predict neurodevelopmental
outcomes following pre- or perinatal brain lesions or complications during pregnancy, assessments of overt
neurofunctions come into play'~>. An early detection of biological markers of adverse outcomes or early diagnosis
of developmental conditions facilitates early intervention, when brain plasticity is at its peak, aiming to achieve
best possible long-term outcomes®. The Prechtl general movement assessment (GMA)® relies on human visual
gestalt perception to delineate the spontaneous motor repertoire which is continuously present from fetal life to
about 5 months post-term age®’. The fetus and the newborn move without sensory stimulation in age-specific
patterns, so called general movements (GMs). These movements involve the whole body, appear as writhing
movements from about 6-9 weeks post-term age and change their character to so-called fidgety movements
later on. Neurobiology has coined the term ‘central pattern generator’ (CPG) for the underlying neural circuitry
of endogenously generated activity that is not triggered by sensory stimulation but can be modulated by the
periphery. General movements that present with a variable sequence of arm, leg, neck, and trunk movements
have been studied through human and augmented Gestalt perception approaches®~!!. Over the last decades,
GMA widened its scope and applicability to serve as a general estimate of the integrity of the developing nervous
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system. It became a tool to look beyond the mere distinction of typical development vs. high risk for cerebral
palsy, e.g., to determine the impact of viral infections on postnatal neurodevelopment or describe the early
phases of neurodevelopmental conditions such as autism'%!3. This broad applicability was the reason we used the
multi-camera recording technique for a population based study which included the standard GMA perspective
as a use case!®1314, GMA is a gestalt-based observational tool to classify spontaneous infant motor functions in
the first months of life>. Infants up to 20 weeks of post-term age are positioned in supine position in a cot and
their spontaneous movements, i.e., unstimulated, are video-recorded. These movements can be analyzed and
classified into physiological or atypical movement patterns>*>®. Given its high sensitivity and specificity GMA
has become one tool of choice for the early detection of cerebral palsy in the early postnatal period®.

State of the art

Recently, efforts have been intensified to automate GMA using computers (for recent reviews see®*15-18) In early
studies, spontaneous movements in the first months of life were measured with sensors directly attached to the
infant!®2%. However, the required procedures and the presence of the sensors could potentially change motion’,
thus, efforts to augment or replace wearable sensors with non-invasive computer vision based methods have
become increasingly popular. Early camera based works used optical flow methods?*!~2* for motion detection.
With the advent of neural networks for pose estimation?>~28 current studies have switched to pose estimation
and skeleton keypoints for visual-based movement analysis and classification?®=>’. At first, most automated
GMA studies?®!31 used OpenPose?®4*%>. More recent approaches changed to newer pose estimators like
EfficientPose’?, the adaptable pose estimation framework DeepLabCut®?, or a derivative version of OpenPose
fine tuned on infant datasets>**.

Recent findings revealed ViTPose to be the best performing framework for human pose estimation using
the COCO dataset?®. However, all current pose estimators with large underlying datasets are trained on adults
and then used for infant pose estimation without modification. One of the reasons is that there are no large
public infant datasets available. The field of infant pose estimation for clinical applications in general faces a
complex data sharing issue which presents a true obstacle for all video-based clinical methods®*. Infant specific
models**~*2 are consequently mostly trained and tested on silo-datasets (patient data) and results have not
yet been compared on a common test-set. There are comparisons between related model architectures when
selecting the best model*®!, but they are all trained on the same data. There is also a comparison of different
existing models on infant data®?, however, there, no infant data was used in training. Thus, it is unknown if the
generalization capabilities of specialized infant pose estimators are sufficient for use on datasets the particular
models were not trained on.

Additionally, GMA, in its clinical application, is usually done with single 2D-RGB cameras in a diagonal
view!*%2, This viewing angle is uncommon for pictures of adults on which generic pose estimators are trained,
which might also have effects on the pose estimators’ performance on infant datasets.

Contribution
In this work, we compare various infant pose estimators (generic and infant specific) to evaluate the performance
increase using state of the art methods. We also analyze the generalization capabilities of infant specific pose
estimators on datasets different from training, and quantify the effect of different viewing angles on pose
estimation accuracy. This is important, as selection of the best pose estimator will directly influence the quality
of any task done on the extracted poses.

Specifically, we address the following four main research questions:

« Which generic pose estimator is best suited for infant pose estimation?
To test the generalization capabilities of generic pose estimation models, and to later compare those to the in-
fant specific models, we first analyzed four different pose estimation models, OpenPose?*4+4>, MediaPipe®’,
HRNet*®*° and ViTPose?. Specific reasons for the inclusion of all models are given in Section "Pose estima-
tion Frameworks". We find that ViTPose performs best.

Do other infant pose estimators generalize well enough such that they achieve better accuracy on our dataset,
or is specific retraining necessary?
We evaluated the infant-specific pose estimators AggPose?® and AGMA-HRNet48*! on our dataset. In a sec-
ond step, we retrained the best performing generic model ViTPose?® on our dataset and then compared the
retrained model to the two specific infant pose estimators. As detailed above, a comparison like this has not
yet been done for infants using data from a source different from the one used in training. We find that re-
training, as predicted, increases accuracy, but also that the infant-specific models do not generalize well and
only perform at or below the level of the best generic model.

o Is there a difference in pose estimation accuracy between viewing angles (classic diagonal GMA-perspective
vs. top-down)?
We studied the influence of the viewing angle on the pose estimation methods by splitting the analysis by
viewing angles. Since the data used in this study comes from a recording setup with multiple angles (see
Figure 1a) for later 3D-reconstruction, we can directly compare the different viewing angles that were com-
monly used in other works, a diagonal view and a top view (see Figure 1b,c), and quantify their influence on
pose estimation accuracy. We find better performance for the top view as compared to the diagonal (GMA
preferred) view.

« Is having a dedicated estimator per view angle better than one trained on multiple views?
We specifically retrained ViTPose on single view angles, to test if this further increases the accuracy, or at least
leads to equal performance on top-down and diagonal views (for single model, the diagonal view was worse
in any situation). We find that angle specific ViTPose models lead to no improvement over a unified model.
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a) overview

Zmbiagonal view

b) top view

c) diagonal view

Fig. 1. Overview of the recording setup (a) and its output (b) and (c). The cameras recording the infants
are circled in red. For this study, only the two cameras labeled diagonal/top view were used. Panels (b) and
(c) show example frames for infants of different age and pose complexity from the two different views. The
extracted pose keypoints are displayed as skeletons over the image. Note that neither the human annotators
nor any of the pose estimators could reliably determine the position of the fully covered ear in the rightmost
example.

Our findings provide useful guidelines for the optimal selection of camera angles and pose estimation models
for future projects on automated infant movement classification (such as GMA).

Materials and methods

Dataset

We built a dataset of 4500 frames with COCO®* style labeling (keypoints: nose, eyes, ears, shoulders, elbows,
wrists, hips, knees and ankles). The recordings for this analysis were performed utilising a multi-angle marker-
less motion tracking setup, specifically designed to record young infants and include 75 recordings of 31
participants from 28 + 2 days to 112 + 2 days of gestational age. For this study, we chose the two most common
camera angles and relevant view points in the clinical use of GMA: straight down from right above the bed (top-
down view) and a view as for a human standing at the foot end of the bed (diagonal view; standard clinical GMA
view!?). Figure 1 shows an overview of the camera setup and its output.

Participants

Participants included in this study were prospectively recruited from 2021 to 2023 in Géttingen, Germany,
and its close surroundings. The umbrella project aims to investigate cross-domain ontogenetic development
in early infancy. To embrace the variability of the targeted dimension, i.e., spontaneous motor functions, 31
participants (17 female) were included. The gestational age at birth of the sample ranged from 34 to 42 weeks.
At the time of data analysis, no participant was diagnosed with a neurological or neuromotor deficit, nor any
neurodevelopmental impairment. All parents of the participating infants provided written informed consent
to study participation and publication of depersonalized data and results. The study was approved by the
Institutional Review Board (Ethics Commission) of the University Medical Center Géttingen (19/2019) and
performed in accordance with the relevant guidelines and regulations.

Infant movements recordings

Standard laboratory recordings of infant movements at three timepoints (T1 - T3) were included in the current
study. These were extracted from data of the umbrella project, assessments, among others, infants’ spontaneous
movements in a standard laboratory-setting from the 4th to the 18 th week of post-term age (PTA; corrected
age; from here on, ages refer to the post-term age if not otherwise specified). For the current study, available
laboratory recordings (n = 75) of the participants for the following timepoints are analyzed: T1: 28 + 2 days, T2:
84 + 2 days, and T3: 112 + 2 days of PTA. As known, infants at 4 weeks (corresponding to T1) present a different
spontaneous movement pattern than at 12 and 16 weeks (corresponding to T2 and T37°%). With standard
recordings from T1 to T3, we intended to cover the distinct age-specific spontaneous movement repertoires of
the young infants®.

Recording Setup

In total, four cameras were mounted to record infants lying in a cot: one from the top down, one diagonally
from the foot end and two from the sides. This provides robustness against occlusions and 3D-reconstruction
capabilities. The angles were fixed and did not change across the entirety of the dataset. The recordings were
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done at 1600 x 1200 pixels with a frame rate of 60 Hz. All cameras had global shutter and were triggered
synchronously for optimal 3D-triangulation capabilities.

For this study, we did not yet do 3D-triangulation, but first determined the optimal pose estimation method
on the 2D images alone. The setup also records two side views that are not used in standard GMA settings and
were not used for computer vision in this study as well.

Image selection and annotation

The 75 recordings were split into two parts of 50 and 25 which were annotated by one research assistant each,
using JARVIS Annotation Tool 1.2%. Additionally, 10% of the dataset, regardless of the split, were double-
annotated for human error and individual joint labeling difficulty estimation.

To select the video frames for the dataset from the available recordings, we first selected time ranges where the
infants were in a behavioural state suitable for GMA. From those, we extracted 30 frame-sets each, by k-means-
clustering (with k£ = 30) on sub-sampled versions of the videos. This yielded good coverage of the different
body poses displayed by the infants (see Figure 1 panels b) and c)). In summary, we therefore had 30 frame-sets
each obtained from 75 recordings, from which we took two different perspectives. In total, this corresponds to
30 - 75 - 2 = 4500 frames.

It is not always possible to see all of the keypoints in an image. While there are some instances of eyes,
shoulders or ankles being completely occluded, most of the occluded keypoints result from a physiological age-
specific ATNR pattern; asymmetric tonic neck reflex. Across the whole dataset, 11.2% of ears could not be seen,
because the head was turned on its side. Only counting infants of age smaller than 42 days, the percentage of
missing ears was 17.2%, compared to 7.5% for older infants.

Some of the pose estimation frameworks we compared support more or fewer keypoints than COCO, but
here we only evaluate the COCO-style keypoints. The annotation software is able to use the 3D calibration
information and reproject annotated points within the frame sets. So, although we only labeled the top-down
and diagonal views, we supplied the side views to the annotators to deal better with occlusions through re-
projection of annotations from the side views (if needed).

Pose estimation frameworks
Generic pose estimation
For comparison, we selected four different generic human pose estimation frameworks.

OpenPose?®*15 This was one of the first pose estimation frameworks used for extraction of movements for
analysis and classification of infant motor functions?*>*¢. We included this framework as a baseline method to
evaluate the performance gain of state-of-the-art models. We used the standard body 25 model available from h
ttps://github.com/CMU-Perceptual-Computing-Lab/openpose.

MediaPipe pose?®*” This framework is not primarily intended for accurate pose estimation, but rather for fast
inference on mobile devices. It was interesting for our comparison as Google advertises it as suitable for Yoga
and fitness applications and included 25000 images of fitness exercises, so we expected it to deal well with differ-
ent viewing angles and poses. We used version 0.9.2.1.

HRNet*** The HR in HRNet stands for high resolution. The particular version used (HRNet-w48 available
through MMPose®’, https://mmpose.readthedocs.io/en/latest/model_zoo/body_2d_keypoint.html#cid-hrnet-o
n-coco) has an input size of 512 x 512 pixels. Because our videos are of sufficient resolution and adequate qual-
ity with low compression artefacts, this could benefit the pose estimation accuracy.

ViTPose?® This model is the current best performing framework for human pose estimation on the COCO test-
dev dataset and uses a Vision Transformer architecture instead of the conventional CNN. We used the version
available through mmpose® of the “huge” variety (https://mmpose.readthedocs.io/en/latest/model_zoo/body_
2d_keypoint.html#topdown-heatmap-vitpose-on-coco).

Infant pose estimation

We also selected two pose estimation frameworks which were trained on infant images and tested them against
generic frameworks. In addition, we also included a ViTPose model which was retrained on our infant dataset
(see Section “Retraining”).

AggPose® The AggPose model is based on the Transformer architecture, like ViTPose, and is specifically
trained for infant pose detection on a proprietary dataset. In general, the images in the dataset also stem from
recordings used for GMA, with infants in supine position, like in our dataset. We used the version published by
the authors on github (https://github.com/PediaMedAl/AggPose).

AGMA-HRNet48*! Soualmi et al. also retrained infant pose estimation networks on a proprietary dataset of
GMA recordings. Compared to our dataset, the images contain clinical equipment (e.g., tubes, electrodes, ca-
bles), leading to more visual clutter in the scenes. The authors retrained multiple networks, of which we chose
the HRNet48, because it is the same architecture as the one we used for the comparison of the generic pose
estimation frameworks. We used the version published by the authors (https://drive.google.com/drive/folders/1
SEuTqrNdz6ubRGwMaUazil0BVOqf2cYw?usp=sharing).
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Retraining
We retrained the best performing framework ViTPose (see Section "Generic pose estimators") on our labeled
dataset using 5-fold cross-validation. We manually split the dataset such that all images of each infant were
contained in one fold only. This ensures the networks do not get better test results by overfitting on specific
infants, which are correlated across different recording dates. Each of the five splits therefore contained 900
frames, made up from 450 different situations recorded from two different angles. Because of the different
numbers of recordings done for each infant, four splits contained images from six different infants and one split
contained images from seven different infants. For training, we randomly split 10% of the training set off as
validation set, yielding a final training set size of 3240 frames in each fold. For each fold, we then retrained the
model using the default training parameters for ViTPose from the MMPose framework®”. Our graphics card did
not have enough memory to retrain ViTPose-huge, so we retrained the smaller version ViTPose-large instead.
We used the pretrained ViTPose model weights for initialization and employed a validation stop on PCK. We
then kept the model with the highest PCK on the validation set for evaluation on the test set. The fold with the
longest retraining took only 49 epochs until validation stop. Compared to the training of 210 epochs on the
substantially larger COCO dataset that went into the base model, this is a relatively inexpensive retraining. All
five models are published on Zenodo (https://doi.org/10.5281/zenodo.14833182).

The results presented for "Retrained ViTPose” are the combined test set estimations of the five individual
models, which in total yield the full dataset.

Quantification metrics
We used two main evaluation metrics to assess the performance of the pose estimation methods: the difference
between predicted keypoint position and the human annotation, d,, in pixels, and the percentage of correct
keypoints (PCK).

Our dataset is not biased to any specific side (left or right) of the infants. Moreover, labeling left and right
sides of hands, knees, etc., is not inherently different. Therefore, we merged the evaluation results for keypoints
of the left and right side variety into one.

Pose estimation error
The difference between model prediction and the human annotation (d,) is the Euclidean distance between the
predicted and human label in pixels:

da = \/(pz —hz)? + (py — hy)?, (1)

where p, /, are the network predictions and h;/,, the human labels for a keypoint.

Percentage of Correct Keypoints (PCK)

For PCK®8, all keypoint predictions are classified as either correct or incorrect, based on their distance to the
label (as given above). The PCK score is then defined as the fraction of correct keypoints out of all keypoints. The
distance threshold to be considered correct is defined as a percentage of the apparent torso length of the infant
in the frame, measured as the distance between the left shoulder and hip. In this work we considered the PCK at
5%, 7.5% and 10% of the torso size, denoted by PCK@0.05, PCK@0.75 and PCK@0.1, respectively.

Relation to real-world distance
It is not possible to transform any of the quantification measures directly into real-world distances without
using 3D triangulation, which was not done in this work, or assuming the points are on the same plane, which
is untrue because the infants frequently lift their extremities. For better intuition, we can still provide an upper
limit estimation (i.e., the real world distance can not be greater than this) to relate our evaluation metrics to the
real-world distance in our recording setup. In our setting, the size of one pixel on the plane of the bed, always
corresponds to a distance < 0.8 mm (in any camera view). Therefore, 80% of the pixel difference is an upper
bound to the real-world distance in mm. Considering the mean torso length of 306 pixels, PCK@0.1 yields the
percentage of points that were detected within approximately 2.5 cm of the ground truth.

Although both metrics cannot be directly used for real-world-distances, they are fully appropriate for relative
comparisons between the pose estimation frameworks.

Statistical tests

When comparing the results with respect to the difference d,, we tested the statistical significance of model
differences with a paired sample t-test on all keypoints in the dataset (or sub-sets of keypoints if indicated). For
PCK, where each point is either correct or incorrect, we used a Pearson’s chi-squared test on the frequencies of
the outcomes (correct detection or not) to test if the samples for each pose estimation model could come from
the same distribution.

Results
Variability in human labeling
Figure 2 shows the mean pixel difference between the two annotators for each keypoint. The results show that
the keypoints that were hardest to label are the hips and shoulders.

When comparing the two viewing angles, there is a difference between the diagonal and top-down views.
The error for the diagonal view is consistently higher than for the top view. Except for the nose keypoint, the
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Variability in human annotations
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Fig. 2. Difference between two annotators, additionally split by viewing angle. Error bars represent confidence
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Fig. 3. Difference to annotation d, in pixels for different subjects, evaluated on our dataset and grouped

by key point. Error bars represent confidence intervals of mean (95%). (a) Mean d,, of the different generic
frameworks, human for comparison. (b) Mean d,, for the infant pose estimators. Generic ViTPose is also
shown for comparison to non-retrained results. Note that AggPose does not estimate the positions of nose and
ears.

confidence intervals of the means never overlap. For the hip keypoint, which has the highest error overall, the
relative difference between top and diagonal view is also highest.

Generic pose estimators

All four generic pose estimation models were used to estimate keypoints in the whole dataset. The difference
between the predictions and the ground truth is shown in Figure 3a. The human labeling difference as presented
in Section "Variability in human labeling" is added for comparison. Table 1 shows the corresponding PCK values.

The qualitative result is very close to the difference between human annotators, with the hips having the
highest error. But in contrast to the human annotations, the shoulder error is relatively lower, compared to
the hip error. Because of the size of the dataset, the differences between the pose estimation models are all
statistically significant with p < 0.001( paired sample t-test on all keypoints).

The current state of the art model on the COCO dataset, ViTPose-huge, is also the best performing model
on our dataset. However, the relative distance to the second best, HRNet-w48, is only 2.4% for PCK@0.1.
For high accuracy requirements, e.g., PCK@0.05, the relative distance is only 0.6%, but the difference is still
statistically significant with p = 0.0312( Pearson’s chi-squared test). OpenPose, although being an older model,
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Model PCK@0.1 | PCK@0.075 | PCK@0.05
ViTPose-huge 84.6 75.49 59.50
HRNet-w48 82.6 73.92 59.12
MediaPipe 70.97 58.91 39.99
OpenPose 79.48 70.15 53.74
Retrained ViTPose | 93.89 89.82 79.64
AggPose 75.60 67.02 52.43
AGMA-HRNet48 | 84.32 75.12 59.41

Table 1. PCK values for pose estimation with the different models for the complete dataset. Upper section:
generic models, lower section: retrained models. Values of best performing models of their class (generic/
specific) are in bold.
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Fig. 4. Pose estimation errors for the generic pose estimation models, split by viewing angle. Error bars
represent confidence intervals of mean (95%).

still achieved better results than MediaPipe, which did never achieve a mean error of less than 10 pixels, not even
for the clearly defined keypoints like eye and nose.

Infant pose estimators

We evaluated the retrained pose estimation models in the same way we evaluated the generic ones. Figure
3b shows the position estimation errors for the different models with the non-retrained ViTPose network for
comparison. The corresponding overall PCK results are displayed in Table 1.

Retraining significantly improved the ViTPose model, with the PCK increasing by 20 percentage points in
PCK@0.05 (p < 0.001, Pearson’s chi-squared test). The mean difference to annotation for the hips is decreased
by 61%. All other keypoints also showed significant improvements (all p < 0.001, individual paired sample
t-tests on keypoints).

The other two infant pose estimators Aggpose*® and AGMA-HRNet48*! exhibit different behaviour. Both
perform significantly worse than our retrained network (p < 0.001, paired sample t-test on all keypoints),
with AggPose even performing worse than the non-retrained ViTPose (p < 0.001, paired sample t-test on all
keypoints). The difference between ViTPose and AGMA-HRNet48 is not statistically significant (p = 0.66 for
dq, paired sample t-test on all keypoints, and p = 0.59 for PCK@0.05, Pearson’s chi-squared test). Regarding the
hips, AGMA-HRNet48 improves the accuracy over generic pose estimation, while AggPose is significantly worse
(both p < 0.001, paired sample t-test on all keypoints).

Influence of the view angle
Figure 4 shows the pose estimation error as Figure 3a, but split into top and diagonal view.

The errors in case of the diagonal view are higher than in the case of the top view. All top-down/diagonal
view differences are statistically significant with p < 0.001( paired sample t-test on all keypoints). The most
pronounced difference is between the hip position estimation errors. In the top view, the difference is not only
lower than in the diagonal view, but also lower as compared to the errors of the other keypoints. This is consistent
with the results for the difference between human annotators shown in Figure 2.

MediaPipe does not show any benefit from being designed for fitness applications. In contrary, its performance
decreases the most for the diagonal view.
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Fig. 5. Mean difference from annotation (dq) for retrained ViTPose models separately evaluated on diagonal
or top view images. Different models have been trained on all, only diagonal view or only top view images,
respectively. Error bars represent confidence intervals of mean (95%).

Model ViTPose-huge | HRNet-w48 | MediaPipe | OpenPose | Retrained ViTPose | AggPose | AGMA-HRNet48
Inference speed | 1 fps 1.2 fps 3 fps (CPU) | 11.5 fps 1.1 fps 2.7 fps 3 fps

Table 2. Inference speed in frames per second (fps), on a NVIDIA GTX 2080 Ti, for each included model.
This is the average speed over processing the 4500 frames of the dataset.

Retraining for individual view angles

As was shown in Section "Influence of the view angle", there is a significant difference between the diagonal and
top views. We retrained ViTPose models only on the individual viewing angles, to see if specializing on them
helps to improve the performance. The results are presented in Figure 5.

There is no significant difference between the model that was trained on both views versus the ones trained
on individual views (p = 0.25 for diagonal, p = 0.54 for top view, both paired sample t-tests on all keypoints),
if evaluated against the respective views that were used in training. The results for the respective views that were
not used in training, however, are significantly worse (p < 0.001, paired sample t-test on all keypoints). This
means there is no gain in specializing models to certain viewing angles in our case. However, training on a view
that is different from the one used in inference leads to worse performance.

Regarding the general difference in performance between the viewing angles (without specialized models),
we again observe worse results in the diagonal view. Even with retraining, it is not possible to achieve the same
accuracy of the diagonal view as of the top view.

Inference speed
Since the focus of our study is not on real-time pose estimation for real time applications, we did not optimize
the pose estimators (e.g., architectures and/or meta parameters) for inference speed.

All models can be executed on any recent GPU with at least 4GB of memory (for model complexity please
see the respective original publications). Table 2 lists the observed inference speed on a NVIDIA GTX 2080 Ti.
Those speeds were obtained by using the demonstration scripts of the respective models and adapting them to
process our dataset. The results show that all models have acceptable and reasonable inference speed with the
ViTPose being the slowest (but the most accurate), and OpenPose the fastest model.

Discussion

There is a wealth of tools for infant movement classification available that are all trained and tested on silo-
datasets mostly using one camera view, and thus not directly comparable*!. We therefore used a newly designed
multi-view dataset that allowed for a direct comparison of the available models.

Generic pose estimators The state of the art models ViTPose and HRNet show clear improvements compared
to the older model OpenPose. The gain in PCK@0.05 of 5.76 percentage points is small compared to the gain
later achieved by retraining, but still statistically significant (p < 0.001, Pearson’s chi-squared test).

In addition to the position accuracy, the reliability of keypoint detection also increases with newer models (see
Figure S1). A discussion is given in the Appendix.
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Infant specific pose estimators The comparison with the other infant pose estimators showed that the general-
ization capabilities of neural networks are overestimated in this field of study. Our results show that the special-
ized infant pose estimators do not perform substantially better on our infant dataset than the generic ViTPose
model. AGMA-HRNet48 showed no significant overall difference to generic ViTPose, but improved on the hip
keypoint. AggPose however, performed worse for all keypoints.

While the AGMA-HRNet48 does improve pose estimation accuracy of the hip, other keypoints get worse, so
there is no statistically significant difference between AGMA-HRNet48 and generic ViTPose (p = 0.66, paired
sample t-test on all keypoints). It has to be noted that the training data of this model and our training data were
both derived from a GMA setting. They differ in the amount of visual clutter in the image (compare with Figure
3 in1), but otherwise closely resemble each other. The infant specific retraining improved the HRNet48 by 0.29
and 1.72 percentage points in PCK@0.05 and PCK@0.1 on our dataset, respectively, putting AGMA-HRNet48
on the same performance level as the generic ViTPose. Note, that the AGMA-HRNet48 model is not the best
performing one from its original paper®!. Their DarkPose32 model scored 2.23 and 0.55 percentage points
higher than HRNet48 at PCK@0.05 and PCK@0.1, respectively. Since the non-retrained DarkPose32 model
performed worse than the non-retrained HRNet48 in!, we do not expect it to yield a significant improvement
over the generic pose estimation on our data either.

AggPose also uses Vision Transformers, like ViTPose, but is trained on a substantially larger dataset than our
retrained model (20748 images*’,), still it performs even worse than generic ViTPose, which suggests it is also
overfit and cannot sufficiently generalize to our (and potentially to other) infant dataset although the underlying
dataset is also from a GMA related setting. AggPose has been compared to other generic pose estimators by Yin
et al. (see*?, Tables 1, 2 and 3), where it also performs worse than the generic pose estimators on different infant
pose datasets.

To date, there are no publicly available infant datasets suitable for GMA (mostly due to patient data privacy
issues; see*!), so we could not evaluate our model on data from a different setup. This is probably further
contributing to the general overfitting situation we identified, because there is no training set available that
covers multiple GMA related setups. See the Appendix for a comment on a preliminary analysis with the SyRIP
dataset™.

Influence of the view angle There is a significant influence of the viewing angle on pose estimation accuracy.
Every performance, human, generic and retrained models, is worse on the diagonal view than on the top-down
view. We see two main reasons for this.

One reason for the reduced performance is a lack of training data from the corresponding view angle. For
everyday situations like those in the COCO dataset, the viewing angle of the diagonal camera corresponds to
placing the camera very close to the floor. This is uncommon. We included the MediaPipe framework in our
evaluation, because it is marketed towards fitness applications and for the use on mobile devices, a common
application in GMA®. This suggested to us that it might be trained on images with uncommon view angles (e.g.,
mobile phone put on the ground to observe the fitness-workout). The training dataset even contained 25000
frames from fitness exercises®’. However, the model performed worse compared to all others, with no beneficial
effect on the diagonal angle. It has to be said though, that MediaPipe is a small model (with respect to the
number of parameters) designed for inference on mobile devices and as such not as potent as the other models.

Another reason for the better results of the top view angle is occlusion of features. The anatomy of the baby
makes it easy to align the arms and legs with the sight line axis of the camera when lifting them, blocking the
view on body keypoints like knee, wrist, shoulder or hip (see the second example from the left in Figure 1b,c). It
might be preferable for computer vision to use a diagonal angle from the head end of the bed, instead of the foot
end, to make the extremities lift into an orthogonal direction to the camera sight line.

Retraining for individual viewing angles Even when retraining the model to the specific view angle, we could
not achieve the same performance on the diagonal view as on the top view (see Figure 5). We suppose this is be-
cause the human variation in the training data was still higher in the diagonal view (see Figure 2), because of oc-
clusions. An interesting follow-up would be to only indirectly label both top and diagonal view via reprojection
from the side views (which might be hard to do, as they are only the supporting views for occlusion resistance)
and see if the significant difference between the view angles persists.

Conclusion
We compared four different generic pose estimation frameworks on our dataset of 4500 frames recorded with
a multi-view camera setup designed for automated GMA. The current best performing model on COCO test-
dev, ViTPose, also achieved the best results on our infant dataset. Retraining the best performing network on
our dataset, expectedly, increased the performance, especially on the keypoint that is most difficult to detect,
the hips. In comparison with the other infant pose estimation frameworks, we achieved 20 percentage points
better PCK@0.05 than the second best model, AGMA-HRNet48, on our dataset. The other models performed
below or on the level of the best generic pose estimator. This suggests that, if possible, one should always retrain
on the specific dataset to achieve the best pose estimation accuracy. If retraining is not possible, a state-of-the-
art generic pose estimator should be used, unless the dataset is very similar to the training data of a specialized
infant pose estimator.

We also compared the pose estimation error between different viewing angles. There is a significant difference
in accuracy between the diagonal and top views in both human annotation and neural network pose estimation.
Therefore, the results strongly suggest that the top view should be preferred in any setup for automated GMA

Scientific Reports |

(2025) 15:12148 | https://doi.org/10.1038/s41598-025-96206-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

with only one camera. Since the different viewing angles lead to different accuracy, we tested if specialized pose
estimators trained on particular views would improve the accuracy, however, no significant effect was found.

In summary, our study suggests that pose estimation accuracy would benefit from the utility of the top
view and the pose estimator being trained on the specific dataset. However, a generic pose estimator should be
preferred over a specialized pose estimator trained on a different dataset, if retraining is not feasible. Whether
potentially also movement classification accuracy would be improved with more accurate pose estimation
remains a question, which needs to be addressed in future work. While the standard GMA method uses a
diagonal view for assessment, clinical setups aiming to generate data for AI and computer vision approaches
should in future consider top-down viewing angles for recording new data.

Data availability

The authors do not have permission to share the infant video recording data. Derived data, like the annotations
and pose estimation data are available from the corresponding author upon reasonable request. The five re-
trained ViTPose models are published on Zenodo (https://doi.org/10.5281/zenodo.14833182).
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