
Spherical multigrid neural operator 
for improving autoregressive global 
weather forecasting
Yifan Hu1,2, Fukang Yin2, Weimin Zhang2, Kaijun Ren2, Junqiang Song2, Kefeng Deng2 & 
Di Zhang2

Data-driven approaches for global weather forecasting have shown great potential. However, 
conventional architectures of these models struggle with spherical distortions, leading to unstable 
autoregressive forecasts. Although methods such as spherical Fourier neural operator (SFNO) based 
on spherical harmonic convolution can alleviate these problems, they face the challenge of high 
computational cost. Here, we introduce a spherical multigrid neural operator (SMgNO) that integrates 
spherical harmonic convolution and low resolution SFNO in the multigrid framework, effectively 
alleviating data distortions while requiring few computational resources. Experiments for spherical 
shallow water equations and medium-range global weather forecasting demonstrate the effectiveness 
and robustness of SMgNO. For 500 hPa geopotential height with a 7 days lead time, SMgNO achieves a 
9.31% and 6.83% improvement in anomaly correlation coefficient over IFS T42 and SFNO, respectively. 
Furthermore, SMgNO requires only 10% floating-point operations of SFNO for forward propagation 
and 30.90% less GPU memory than SFNO during training.
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Accurate and timely weather forecasting plays an important role in many aspects of human society. Numerical 
weather prediction (NWP) model is the predominant method for weather forecasting1,2, which simulates the 
future state of the atmosphere by solving the partial differential equations (PDEs) numerically3. Although NWP 
models are capable of producing accurate forecasts, they often exhibit slow processing speeds and require the 
support of high-performance computing systems1–4. Moreover, errors in initial conditions, approximations of 
physical processes in parameterizations, and the chaos of the atmosphere introduce uncertainties to NWP1,3.

Recently, deep learning has significantly transformed the domain of weather forecasting, facilitating the 
generation of timely forecasts. For instance, Rasp and Thuerey5 employed a deep residual convolutional neural 
network (CNN) known as ResNet6 to conduct continuous forecasts at a spatial resolution of 5.625° × 5.625°, 
achieving performance comparable to that of a physical baseline at a similar resolution. The FourCastNet7 
model firstly enhanced the resolution of data-driven global weather forecasting to 0.25° × 0.25°, but its accuracy 
remains slightly inferior to that of the most advanced NWP system (the operational integrated forecasting 
system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF)). Before long, data-
driven weather forecasting system have made significant advancements. For example, Pangu-Weather4 produces 
stronger deterministic forecast results than the operational IFS on many tested weather variables. Shortly 
thereafter, GraphCast2 outperformed the IFS on a broader range of variables and exhibited enhanced capabilities 
in predicting severe weather events. In 2023, a variant of the vision transformer known as FengWu8 addressed 
the medium-range forecasting challenge from a multi-modal and multi-task perspective, achieving state-of-
the-art performance for long-term forecast lead times. Furthermore, FuXi1 was published with performance 
comparable to that of the ECMWF ensemble mean (EM) in 15 days forecasts.

However, the errors of data-driven models tend to accumulate rapidly during autoregressive global forecasting. 
To address this issue, researchers have explored various strategies to mitigate error accumulation. Two popular 
methods include combining multiple models to reduce the number of autoregressive steps and employing fine-
tuning techniques to enhance multi-step forecasts. For example, Pangu-Weather4 trained four models across 
different lead times and employed a greedy hierarchical temporal aggregation strategy to minimize the number 
of autoregressive steps. Similarly, Fuxi1 optimized performance for both short and long lead times by utilizing 
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a cascade9,10 model architecture and fine-tuning the pre-trained models within specific 5  days forecast time 
windows. Furthermore, FengWu8 mitigated the intermediate input error during the autoregressive inference 
stage by using a replay buffer to store the predicted results from previous optimization iterations, which were 
then utilized as input for the current model.

Despite these approaches have yielded promising results, the models fail to account for the fact that the 
data are situated on a sphere, which leads to distortions. These distortions negatively impact the performance 
of autoregressive forecasts. To address these distortions and improve autoregressive global weather forecasting, 
some researchers have modified the model architecture based on prior knowledge, making it more suitable 
for predicting spherical dynamical processes. For instance, Weyn et al.11 introduced cubed-sphere remapping, 
which minimizes distortion on the cube faces and provides natural padding for convolution operations. Due to 
the improvements in long-term predictions brought by this cubed-sphere grid, Weyn et al.12 further employed 
this framework along with large multi-model ensemble techniques for sub-seasonal forecasting. Following Weyn 
et al.11, Lopez-Gomez et al.13 utilized the U-Net 3+ architecture14 on this cubed-sphere grid to generate forecasts 
of extreme surface temperatures. Although, achieving notable improvements, the cubed-sphere grid still suffers 
data distortion at high latitudes. Subsequently, McCabe et al.15 applied the double Fourier sphere (DFS) method 
to rectify the artificial discontinuities caused by the two-dimensional fast Fourier transform, resulting in reduced 
errors in long-term forecasting. However, the DFS method still introduces spatial distortions, a drawback that 
is not present when utilizing spherical harmonic basis functions. The spherical harmonic basis has isotropy 
and rotation invariance, using spherical harmonic transform (SHT) to process spherical data has natural 
advantages. To this end, Bonev et al.16 introduced the spherical Fourier neural operator (SFNO) based on SHT, 
demonstrating stable autoregression while maintaining physically plausible dynamics. Despite the improvement 
made by SFNO, it increases the amount of computation and requires more training resources.

To address these challenges, we introduce the spherical multigrid neural operator (SMgNO), which is based 
on both the MgNO17 and the SFNO16. The SMgNO employs convolutions based on spherical harmonic functions 
(CSHFs), similar to SFNO16, to mitigate distortions and ensure the stability of autoregressive global forecasting. 
Furthermore, inspired by MgNO17, SMgNO utilizes the multigrid framework instead of the Transformer 
framework to reduce computational costs. Experiments for shallow water equations (SWEs) and medium-
range global weather forecasting demonstrate the effectiveness and robustness of the proposed methods. The 
contributions of this work are summarized as follows:

•	 The instability produced by data distortions in data-driven global weather forecasting models is analyzed via 
experiments.

•	 Based on the MgNO17 and the SFNO16, we propose SMgNO, a novel data-driven weather forecasting frame-
work that improves autoregressive forecast accuracy while reducing computational costs.

•	 Experiments on spherical SWEs solving and medium-range global weather forecasting demonstrate the effec-
tiveness of the proposed framework.

The subsequent sections of this paper are organized as follows. Section “Methods” provides a succinct overview 
of the CSHFs and introduces the proposed SMgNO. Section “Data and experiments’’ details the datasets utilized 
and the experimental designs. Section “Results” describes some universal factors that lead to instability of 
autoregressive data-driven models and demonstrates the superior performance of the proposed SMgNO by 
spherical SWEs solving and medium-range global weather forecasting. Finally, Section “Discussion” concludes 
this work.

Methods
Learnable convolutions based on spherical harmonic functions
Let g (λ, φ) and k (λ, φ) be two real-valued functions defined on the unit sphere S2, where λ ∈ [−π, π] is the 
longitude, φ ∈ [0, π] is the colatitude. Then their convolution is defined as an integral over the three-dimensional 
rotation group SO(3)16,18:

	
(k ∗ g) (λ, φ) =

∫

R∈SO(3)
k (Rn) · g

(
R−1 · (λ, φ)

)
dR,� (1)

where ∗ represents convolution operation, n is the north pole, and R is the rotation to the north pole. According 
to the convolution theorem19, this convolution is equivalent to pointwise multiplication of harmonic coefficients:

	 (k ∗ g) (λ, φ) = F−1 (C (l) F (g) (l, m) · F (k) (l, 0)) ,� (2)

where F , F−1 are the SHT and inverse spherical harmonic transform (ISHT), C (l) = 2π
√

4π
2l+1 , l, m are the 

degree and order of harmonic functions, respectively. The learnable CSHFs was derived by substituting the filter 
kernel C(l)F (k) (l, 0) in Eq. (2) with a learnable kernel k̃θ(l):

	 (kθ ∗ g) (λ, φ) = F−1 (
F (g) (l, m) · k̃θ (l)

)
.� (3)

The spherical harmonic expansion of function g (λ, φ) is expressed as follows:
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g (λ, φ) =

∞∑
l=0

l∑
m=−l

ĝlm · Ylm (λ, φ) ,� (4)

where

	
ĝlm =

∫

S2
g (λ, φ) · Ylm (λ, φ) dλ dφ,� (5)

is the associated coefficient of spherical harmonics Ylm. Consequently, the formulation of the learnable CSHFs 
is presented as follows:

	
(kθ ∗ g) (λ, φ) =

∞∑
l=0

l∑
m=−l

ĝlm · k̃θ (l) · Ylm (λ, φ) .� (6)

In practical implementations, it is often necessary to truncate the spherical harmonic expansion at a specific 
bandwidth L, which inevitably introduces truncation error. To address this problem, Ha and Lyu18 theoretically 
demonstrated that the truncated high-frequency information could be approximated by a scaled ISHT of ĝlm. 
As a result, Eq. (6) can be reformulated as follows18:

	
(kθ ∗ g) (λ, φ) ≈

L∑
l=0

l∑
m=−l

ĝlm · k̃′
θ (l) · Ylm (λ, φ) + αg (λ, φ) .� (7)

where k̃′
θ = k̃θ − α

C(l) , α is a learnable parameter, and αg (λ, φ) represents an impulse response at the north 
pole. For a detailed derivation, please refer to Ha and Lyu18.

Architecture of the SMgNO
The multigrid method20 is recognized as one of the effective numerical techniques for solving PDEs. Inspired by 
this method, He et al.17 introduced the MgNO, which achieved state-of-the-art performance in solving a variety 
of PDEs by parameterizing linear operators among neurons through multigrid structures. In this section, we will 
first provide a succinct overview of the multigrid method and the MgNO. Subsequently, we will introduce the 
SMgNO, which is based on both the MgNO17 and the SFNO16.

The pseudo-code for the multigrid method utilizing a V-cycle to solve the linear system Au = f  is presented 
in the supplementary information, where A is the system operator, u is the variables, and f  is the right-hand side 
of the equation. The primary components of the multigrid method can be categorized into the system operator 
A, smoothing operator S, restriction operator R, prolongation operator P , and solvers on the coarse grids. The 
MgNO17 framework employs the convolutions with a 3 × 3 kernel size and a 1 × 1 stride size to parameterize the 
system operator and smoothing operator. Additionally, it utilizes convolutions with a 3 × 3 kernel size and a 2 × 2 
stride size to parameterize the restriction operator, while the prolongation operator is parameterized using a 
transposed convolution operator with a 4 × 4 kernel size and a 2 × 2 stride size.

To address the issue of spherical data distortion, we implement the CSHFs described in Eq. (7) for the system 
operator and smoothing operator. We retain the same restriction operator as employed in MgNO17, while 
using periodic padding in the longitudinal direction to ensure continuity. Given that transposed convolution 
may lead to checkerboard artifacts21, we substitute it with pixel shuffle operations22. In the coarsest grid, how-
ever, the MgNO solely utilizes the smoothing mechanism without integrating an underlying solver. Conse-
quently, as illustrated in Fig. 1a, we incorporate the SFNO16 into the coarsest grid to enhance the accuracy of 
the solutions at this level. Furthermore, drawing upon the methodologies of LM-ResNet23 and MgNet24, we 
have modified the residual correction smoothing technique (lines 5–8 in Algorithm S1) to a semi-iterative 
smoothing approach (see Fig. 1b and lines 5–9 in Algorithm 1). The framework of SMgNO is described in 
Algorithm 1, where ul,i denotes the feature at grid level  that has undergone smoothing i times, Al and Sl are 
the discretions of the system operator and smoothing operator, Rl+1

l  and Πl+1
l  are restriction operators which 

transfer the feature from the fine grid (level  ) to the coarse grid (level l + 1), P l
l+1 is prolongation operator 

that converts the feature from the coarse grid (level l + 1) to the fine grid (level  ), kl is a learnable parameter, 
W  is a learnable projection matrix, and σ is a point-wise Gaussian error linear unit25, L and vl are constants, 
representing the maximum grid level and smoothing times, respectively.
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Fig. 1.  (a) Overview of the SMgNO architecture; (b) The semi-iterative smoothing operation. In the Figure, 
“CSHFs” is short for “convolutions based on spherical harmonic functions”.
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Algorithm 1.  SMgNO(u,f). The spherical multigrid neural operator with V-cycle.

Data and experiments
Spherical shallow water equations
The SWEs on rotating sphere are a nonlinear hyperbolic PDEs system16. They are derived by integrating the 
Navier–Stokes equations over the depth of the fluid layer when the horizontal length scale is much larger than 
the vertical length scale. They are formulated as follows:

	




∂ς
∂t

= − 1
a cosθ

∂
∂λ

[(ς + f) u] − 1
a cosθ

∂
∂θ

[(ς + f) v cosθ] ,
∂δ
∂t

= 1
a cosθ

∂
∂λ

[(ς + f) v] − 1
a cosθ

∂
∂θ

[(ς + f) u cosθ] − ∇2 [
φ + 1

2

(
u2 + v2)]

,
∂φ
∂t

= − 1
a cosθ

∂(φu)
∂λ

− 1
a cosθ

∂(φv cosθ)
∂θ

− φδ.

� (8)

where f = 2Ω sin θ is the Coriolis parameter with Ω being the angular velocity of the sphere, ς, δ, φ, φ, u, v, a 
are vorticity, divergence, geopotential height, mean geopotential height, the λ- and the θ-components of the 
velocity vector in the spherical coordinates, and the radius of the sphere, respectively. As a simplification of the 
fluid motion equations, the SWEs are extensively utilized in various fields, including atmospheric dynamics, 
tidal motion, tsunami propagation, and the simulation of Rossby and Kelvin waves. The accuracy in solving the 
SWEs is a critical criterion for assessing the effectiveness and robustness of numerical solution methods.

In this study, we adopt the parameters of the Earth for the SWEs on a rotating sphere. The initial conditions 
for the geopotential height and velocity fields are generated using Gaussian random fields, with parameters 
consistent with Bonev et al.16: mean initial layer depth φavg = 103 g with a standard deviation φstd = 120g
, mean initial velocity is zero with a standard deviation of 0.2φavg , where g ≈ 9.81 m/s2 is the acceleration of 
gravity.

After establishing the parameters and initial values for SWEs, a classical spectral solver16,26 is employed to 
generate the numerical solutions with a spatial resolution of 128 × 256 and time steps of 60 s. The training dataset 
is generated from 24 initial conditions, while the testing dataset is generated from 8 initial conditions. Each 
initial condition is simulated for a duration of 240 h; however, the first 48 h are excluded to address the spin-up 
problem. Solutions are recorded on an hourly basis. The solutions from the previous hour serve as inputs for the 
model, while the solutions at the next hour are utilized as labels.

We allocated 20% of the training data as the validation data and subsequently trained the U-Net27, FourCastNet7, 
SFNO16, and SMgNO models on the remaining 80% of the training data. The primary hyperparameters of these 
models are presented in Table S1 in the supplementary information. The training process utilizes a batch size of 
16, with an initial learning rate set at 1.0 × 10–3, which decreases to 2.0 × 10–5 through cosine decay at the end of 
the training. The loss function employed is the weighted mean relative L2 norm loss on the sphere, which is as 
follows16:
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L2 [Fϑ [un] , un+1] = 1

3
∑

c∈channels

(∑
i∈ grid wi |Fϑ [un] (xi) − un+1 (xi)|2∑

i∈ grid wi |un+1 (xi)|2

) 1
2

� (9)

where Fϑ [un] is the predicted solutions and un+1 is the ground truth, wi is the product of the Jacobian sinλi 
and the quadrature weights.

All fields (geopotential height and velocity components) were standardized using z-score normalization 
before training, where channel-wise means and standard deviations are calculated from the training set. Each 
model was trained for 50 epochs using a consistent training strategy (refer to Table S2 in the supplementary 
information for details), and the optimal weights were saved based on the validation data. Subsequently, the 
performance of each model was evaluated using the testing data. All experiments were conducted on a single 
Nvidia GeForce RTX 4090 GPU with 24 GB of memory.

Data and experiment of global weather forecasting
The dataset utilized for autoregressive medium-range global weather forecasting is WeatherBench28, which is 
publicly available at https://github.com/pangeo-data/WeatherBench. WeatherBench contains regirded ERA529 
data from 1979 to 2018, with an hourly temporal resolution. It offers three spatial resolutions: 5.625° (32 × 64 
grid points), 2.8125° (64 × 128 grid points), and 1.40525° (128 × 256 grid points). Given the constraints of our 
computational resources, the 5.625° spatial resolution was selected. Following prior studies, a time resolution of 
6 h was adopted for the autoregressive forecasts.

Data from 1979 to 2015 was utilized as the training set, and data from 2016 was selected as the validation set. 
The out-of-sample data from 2017 to 2018 is employed as the testing set. This study incorporates 22 variables for 
autoregressive forecasting, which include 10U, 10V, T2M, U1000, V1000, Z1000, U850, V850, Z850, T850, RH850, 
U500, V500, Z500, T500, RH500, U250, V250, Z250, T250, T100, and Z50, respectively. The abbreviations and 
their corresponding descriptions are provided in Table S3 (see the supplementary information). Furthermore, 
the model input comprises two constant fields: the land-sea mask and the orography. The data was preprocessed 
using z-score normalization before training, and the evaluation metrics were calculated after de-normalization.

The models were developed using the PyTorch framework30, and the training workflow was provided by 
ClimaX31. The training procedure is similar to FourCastNet7, which consists pre-training steps and fine-tuning 
steps. During the pre-training steps, we employ supervised training to predict a single time step in the training 
dataset. In the fine-tuning steps, we start from the previously best pre-trained model and optimize the model 
to predict three time steps. The loss function utilized in this experiment is the latitude-weighted mean squared 
error (MSE), which is defined as follows:

	
MSE [Fϑ [un] , un+1] = 1

C × H × W

C∑
c=1

H∑
i=1

W∑
j=1

wi (Fϑ [un] (xc,i,j) − un+1 (xc,i,j))2� (10)

where C, H, W  are the number of channels, grid points in latitude, grid points in longitude, respectively. 
Fϑ [un] (xc,i,j) and un+1 (xc,i,j) are the predicted and ground truth at time step of n + 1. wi is the weighting 
factor for the latitude, which is calculated as follows:

	
wi = cos (lat (i))

1
H

∑H

i
cos (lat (i))

� (11)

where cos is the cosine function. Both the pre-training and fine-tuning steps utilize the Brain Floating Point 
half-precision format and the AdamW32,33 optimizer with parameters β1 = 0.9, β2 = 0.99 and a weight decay 
of 1.0 × 10–5.

The pre-training process was conducted over 100 epochs with a batch size of 80 and the initial learning 
rate was 2.0 × 10–4, accompanied by a linear warmup schedule for 6 epochs, followed by a cosine-annealing 
schedule34 for the subsequent 94 epochs. The fine-tuning process was carried out over 10 epochs with a batch 
size of 32 and the initial learning rate was 2.0 × 10–4, accompanied by a linear warmup schedule for 1 epochs, 
also followed by a cosine-annealing schedule34 for the remaining epochs. The best weights for each model were 
saved according to the latitude-weighted root mean square error (RMSE) on the validation data. The evaluation 
metrics on the testing data, namely latitude-weighted RMSE and anomaly correlation coefficient (ACC), which 
were calculated as follows5,28:

	

RMSE = 1
Nforecasts

Nforecasts∑
n

√√√√ 1
Nlat Nlon

Nlat∑
i

Nlon∑
j

wi (fn,i,j − tn,i,j)2� (12)

	

ACC =
∑

n,i,j
wif

′
n,i,j t′

n,i,j√∑
n,i,j

wif ′2
n,i,j

∑
n,i,j

wit′2
n,i,j

� (13)

where f  is the model forecast and t is the ERA5 truth, wi is the latitude weighting factor for the latitude at 
the i-th latitude index, the prime ′ denotes the difference to the climatology and the climatology is defined as 
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climatologyi,j = 1
Ntime

∑
ti,j . The primary hyperparameters utilized in this study are presented in Table S1. 

All models were trained on a single NVIDIA GeForce RTX 4090 GPU, employing a consistent training strategy. 
For further details, please refer to Table S2 in the supplementary information.

Results
Spherical shallow water equations
We begin by experimentally demonstrating that conventional convolution models cause distortions when 
processing spherical data. The widely used U-Net27, FourCastNet7 and MgNO17 were selected as the baseline 
models for conventional convolution, while SFNO16 was chosen as the baseline model for spherical convolution. 
As illustrated in Fig. 2a–e, the relative errors of geopotential height forecasted by U-Net are notable near the 
poles and along the east–west boundary, even at the first iteration. The primary contributors to these errors are 
the distortions at the poles and the zero-padding at the boundaries. These errors will propagate from the poles to 
mid and low latitudes and from the east–west boundary to the interior regions across autoregressive steps, and 
gradually affecting the entire domain. Despite performing better than U-Net, MgNO has comparable difficulties 
(see Fig. 2k–l). Furthermore, because MgNO uses transposed convolution as the upsampling method instead 
of interpolation, it suffers from checkerboard distortions21. These checkerboard artifacts have more severe 
effects as the number of autoregressive steps increases, which exacerbates the polar distortion (see Fig. 2m–o). 
The discrete Fourier transform (DFT) in FourCastNet ensures continuity at the east–west boundary, making it 
exhibit lower relative errors than U-Net and MgNO. However, due to the implicit periodicity in the meridian 
direction and the flat assumption of the DFT, FourCastNet still suffers data distortion, leading to a rapid increase 
in relative errors across autoregressive steps (see Figs. 2f–j and S1 in the supplementary information). To mitigate 
these distortions, SFNO incorporated SHT into the data-driven model, which maintains the continuity of the 
east–west boundary and reduces spherical distortions, thereby significantly enhancing stability and performance 
(see Fig.  2p–t). The SMgNO, similar to SFNO, which employs CSHFs to alleviate spherical distortions, also 
demonstrates stable autoregressive forecasts (Fig. 2u–y).

Despite the improvements made by SFNO, it requires more computational resources than FourCastNet. To 
quantify these computational demands, we calculated the number of floating-point operations (FLOPs) for each 
model using the calflop35 package and measured peak GPU memory consumption during training via a function 
in PyTorch30. As indicated in Table 1, when the number of parameters is similar, SFNO demands approximately 
63.43% more FLOPs for forward propagation than FourCastNet. Furthermore, SFNO requires 2.32 times more 
GPU memory than FourCastNet during training. The MgNO, on the other hand, has the lowest number of 
FLOPs and requires the lowest GPU memory for training. Due to the integration of CSHFs, the computational 

Fig. 2.  Spatial distribution of relative errors for geopotential height in spherical shallow water equations. The 
smaller the absolute value, the better the performance. Columns from left to right corresponding to 1, 6, 48, 96 
and 144 autoregressive steps respectively. Rows from top to bottom represent the U-Net, FourCastNet, MgNO, 
SFNO, and SMgNO respectively. The mean relative error (MRE) for each example was given in the subFigure 
title. This Figure was created using Matplotlib library version 3.8.4 (https://matplotlib.org/) on Python 3.10.13 
(https://www.python.org).
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costs of SMgNO are slightly higher than MgNO, but greatly smaller than SFNO which benefits from a multigrid 
framework.

To further illustrate the performance of the model, Fig. 3 presents the weighted mean relative losses for solving 
the SWEs on the rotating sphere at a temporal resolution of one hour and a spatial resolution of 128 × 256. As 
depicted, the losses of U-Net accumulate rapidly across autoregressive steps. The MgNO outperforms the U-Net, 
even has a slightly lower relative losses than the FourCastNet in the intermediate autoregressive steps. However, 
it is still difficult to control the accumulation of errors for MgNO. Generally speaking, the FourCastNet performs 
better than the U-Net and the MgNO, but does not match the performance of the SFNO. The proposed SMgNO 
combines the advantages of SFNO and MgNO, it mitigates spherical distortion (Fig. 2u–y) and has the best 
autoregressive performance (as depicted in Fig. 3) while requiring low computational costs (see Table 1).

Ablation experiments
To validate the contributions of individual components within our architecture, we conducted a systematic 
series of ablation studies. By progressively removing or modifying key modules and evaluating their impacts on 
relative L2 norm losses, we quantified the role of each component. The results, summarized in Fig. 4, show that 
incorporating the SFNO in the coarse grid significantly enhances the stability and accuracy of autoregressive 
forecasts while greatly increasing the number of model parameters and FLOPs (see Table S4 in the supplementary 
information). The second improvement is attributed to periodic padding in the longitudinal direction. When 
the number of autoregressive steps is small, the error introduced by zero padding is not evident; however, as 
the number of autoregressive steps increases, the errors become substantial. Guarantee the continuity of the 
east–west boundary through periodic padding in the longitudinal direction prevents the outbreak of errors. 
Moreover, altering the padding mode does not increase the number of parameters and FLOPs. Another efficient 
improvement is made by the learnable pulse at the poles, which only slightly increases the number of model 
parameters and FLOPs. This indicates that the truncation error associated with SHT does influence the stability 

Fig. 3.  Weighted mean relative L2 norm losses for the shallow water equations on the rotating sphere 
at a spatial resolution of 128 × 256 and a temporal resolution of 1 h. In the   Figure, the x-axis represents 
autoregressive steps (1 to 144) i.e. lead times (1 h to 144 h), and the y-axis is the values of weighted mean 
relative L2 norm losses. The lower the weighted mean relative losses the better the performance. (a) mean 
relative losses of geopotential height; (b) mean relative losses of vorticity; (c) mean relative losses of divergence.

 

Models

Spherical shallow water equations Medium-range global weather forecasting

Params (M) FLOPs (G) Peak GPU memory (MB) Params (M) FLOPs (G) Peak GPU memory (MB)

U-Net 34.53 65.44 768.87 – – –

FourCastNet 9.78 35.19 435.49 23.59 1.47 559.18

MgNO 8.99 4.26 210.33 – – –

SFNO 9.97 57.51 1008.31 21.07 38.90 713.03

SMgNO 7.94 8.46 350.43 20.63 3.84 492.68

Table 1.  The number of model parameters and computational costs for spherical shallow water equations 
and medium-range global weather forecasting. In the table, “FLOPs” refer to the number of floating-point 
operations required for a model’s forward propagation; peak GPU memory was measured when the batch size 
was set to 1 during training; “–” indicates not applicable. The peak GPU memory of the medium-range global 
weather forecasting shown in the table is for the pre-training. For clarity, the smallest value is in bold and the 
second smaller is underlined.
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and accuracy of autoregressive forecasts. Substituting the transposed convolution with pixel shuffle does reduce 
the relative errors of muti-step autoregression. Furthermore, using the semi-iteration smoothing slightly 
improves the autoregressive performance.

Medium-range global weather forecasting
For medium-range global weather forecasting, we train the FourCastNet7, the SFNO16, and the proposed 
SMgNO model utilizing data from WeatherBench28 and employing a consistent training methodology. Each 
model has approximately 21 million parameters (see Table 1 for more information), and their performance is 
evaluated in comparison to the IFS T42 model using the testing dataset.

Figure 5 presents the geopotential at the 500 hPa pressure level predicted by the SMgNO and baseline models, 
which are all initialized at 2017-03-012T00:00:00 UTC. It can be seen that with the increase of autoregressive 
steps, the RMSE increases gradually. FourCastNet is comparable to that of the SFNO at the initial autoregression 
but falls behind as the number of autoregressive steps increases. The DFT employed in FourCastNet introduces 
distortions near the poles, which adversely affect the accuracy and stability of autoregressive forecasts. Therefore, 
FourCastNet needs to tune the parameters or improve the autoregressive strategy. SFNO incorporated the SHT 
in data-driven models, mitigating the effects of spherical data distortion and achieving superior autoregressive 
performance compared to FourCastNet. Compared with these baseline models, the proposed SMgNO model 
has the best autoregressive performance. The temperature at the 850 hPa pressure level illustrated in Fig. S2 (in 
the supplementary information) shows similar results.

Figure  6 illustrates the globally-averaged latitude-weighted ACC of various models across different lead 
times of three surface variables (T2M, U10, and V10), four upper-air variables (Z500, T500, U500, and V500) 
at the 500 hPa pressure level, and five upper-air variables (Z850, T850, U850, V850, and RH850) at the 850 hPa 
pressure level. The ACC of FourCastNet is comparable to that of the other models during the early stages of 
autoregression. However, it experiences a rapid decline as the number of autoregressive steps increases. For 
instance, the geopotential at the 850 hPa pressure level predicted by FourCastNet initially surpasses that of the 
IFS but falls behind when the lead time exceeds four days (consistent with the findings of Pathak, Subramanian7). 
Despite the SFNO having superior performance compared to FourCastNet, it incurs higher computational costs 
(refer to Table 1), and the accuracy of the velocity field at the 500 hPa pressure level remains inferior to that 
of the IFS T42. The proposed SMgNO not only outperforms both the IFS T42 and SFNO but also reduces 
computational expenses. For instance, the ACC of SMgMO for geopotential height with a 7  days lead time 
increases by 9.31% and 6.83% compared to IFS T42 and SFNO, respectively. Meanwhile, SMgNO requires only 
10% FLOPs of SFNO for forward propagation and 30.90% less GPU memory consumption during training than 
SFNO (see Table 1 for details). Furthermore, SMgNO even requires 11.89% less GPU memory than FourCastNet 
during training, despite having a comparable number of model parameters (see Table  1). Figure  S3 in the 
supplementary information presents the globally-averaged latitude-weighted RMSE, further demonstrating that 
SMgNO has better autoregressive forecasts than the bassline models.

Discussion
Recent advancements in data-driven global weather forecasting systems1,2,4,8 have demonstrated superior 
deterministic forecasting capabilities compared to the ECMWF’s IFS36. However, conventional convolution- and 
Transformer-based models introduce geometric distortions when handling spherical data, causing instability in 

Fig. 4.  Weighted mean relative L2 norm losses for ablation experiments. In the Figure, the x-axis represents 
autoregressive steps (1 to 144) i.e. lead times (1 h to 144 h), and the y-axis is the values of weighted mean 
relative L2 norm losses. The lower the weighted mean relative losses the better the performance. (a) mean 
relative losses of geopotential height; (b) mean relative losses of vorticity; (c) mean relative losses of divergence. 
In the Figure “w/o” is short for “without”.
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autoregressive forecasts. SFNO can alleviate such distortions but needs expensive computational costs. To address 
these challenges, we propose SMgNO, which integrates convolution based on spherical harmonic functions 
(CSHFs) to preserve geometric fidelity and employs a multigrid framework to reduce computational costs. 
Experiments on spherical SWEs and medium-range global weather forecasting demonstrate the superiority of 
SMgNO. For 500 hPa geopotential height forecasting with a 7 days lead time, SMgNO achieves a 9.31% and 
6.83% improvement in ACC over IFS T42 and SFNO, respectively. Notably, these performance gains are attained 
with substantially reduced computational demands, for which SMgNO requires only 10% FLOPs of SFNO for 
forward propagation and 30.90% less GPU memory consumption during training than SFNO.

Despite the promising performance of SMgNO, some limitations remain. First, the model is trained 
through a mean squared error (or L2) loss function, which may smooth the information of fine scales through 
a “double penalty” effect—where biases in the location of phenomena are penalized twice. Second, although 
SMgNO requires fewer computational resources than SFNO, the introduction of CSHFs inevitably increases 
computational costs compared to MgNO.

In future work, we will develop a spectral or multi-scale loss function to alleviate the double-penalty effect 
and improve the forecast performance of fine scales. Furthermore, we will reduce computational overhead 
by implementing spherical convolutions with Hierarchical Equal Area isoLatitude Pixelization (HEALPix)37 
discretization and evaluate its performance on different resolutions. Finally, we will explore how to balance the 
computational cost and forecast accuracy of the proposed method in operational applications.

Fig. 5.  Visualization of forecast results for geopotential (m2/s2) at the 500 hPa pressure level. Columns from 
left to right correspond to 1 day, 3 days, 5 days, and 7 days of lead time, i.e., 4, 12, 20, and 28 autoregressive 
steps, respectively. Rows from top to bottom represent the ERA5 (ground truth), IFS T42, Fourcastnet, SFNO, 
and SMgNO models. In the Figure, RMSE is the abbreviation of root mean square error. For all cases, the input 
time is 00:00 UTC on 12 March 2017, and the spatial resolution is 5.625° × 5.625°. This   Figure was created 
using Matplotlib library version 3.8.4 (https://matplotlib.org/) and Cartopy library version 0.23.0 ​(​​​h​t​t​p​s​:​/​/​s​c​i​t​o​
o​l​s​.​o​r​g​.​u​k​/​c​a​r​t​o​p​y​​​​​) on Python 3.10.13 (https://www.python.org), with coastline data from Natural Earth public 
domain datasets (https://www.naturalearthdata.com/).
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Data availability
Data for Shallow Water Equations on the rotating sphere is generated through the code at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​N​
V​I​D​I​A​/​t​o​r​c​h​-​h​a​r​m​o​n​i​c​s​​​​​. WeatherBench is publicly available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​a​n​g​e​o​-​d​a​t​a​/​W​e​a​t​h​e​r​B​e​n​c​h​​​​​.​​
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