Table 3 Performance metrics of machine learning algorithms on balanced and imbalanced datasets using blind test evaluation.

From: A predictive model for damp risk in english housing with explainable AI

ML Algorithms

Data sets

Blind test performance

Accuracy

Precision

Recall

(Sensitivity)

F-measure

AUC

1. Neural Network

Balanced Data

0.613

0.617

0.659

0.637

0.666

Imbalanced Data

0.787

0.50

0.234

0.319

0.585

2.Decision Tree

Balanced Data

0.578

0.577

0.674

0.622

0.432

Imbalanced Data

0.787

0

0

0

0.50

3.XGBoost

Balanced Data

0.585

0.592

0.628

0.610

0.604

Imbalanced Data

0.787

0.50

0.280

0.359

0.701

4.Random Forest

Balanced Data

0.636

0.640

0.742

0.657

0.676

Imbalanced Data

0.793

0.533

0.242

0.333

0.716

5.Support Vector Machine (SVM)

Balanced Data

0.656

0.619

0.863

0.721

0.656

Imbalanced Data

0.784

0.40

0.030

0.056

0.645

6.Logistic Regression

Balanced Data

0.601

0.598

0.689

0.640

0.649

Imbalanced Data

0.782

0.20

0.007

0.014

0.499

7.Nearst Neighbours (KNN)

Balanced Data

0.560

0.591

0.666

0.626

0.653

Imbalanced Data

0.792

0.529

0.204

0.295

0.6