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Brain-computer interface (BCI) systems allow users to communicate with external devices by 
translating neural signals into real-time commands. Convolutional neural networks (CNNs) have been 
effectively utilized for decoding motor imagery electroencephalography (MI-EEG) signals in BCIs. 
However, traditional CNN-based methods face challenges such as individual variability in EEG signals 
and the limited receptive fields of CNNs. This study presents the Multi-Scale Convolutional Transformer 
(MSCFormer) model that integrates multiple CNN branches for multi-scale feature extraction and 
a Transformer module to capture global dependencies, followed by a fully connected layer for 
classification. The multi-branch multi-scale CNN structure effectively addresses individual variability 
in EEG signals, enhancing the model’s generalization capabilities, while the Transformer encoder 
strengthens global feature integration and improves decoding performance. Extensive experiments 
on the BCI IV-2a and IV-2b datasets show that MSCFormer achieves average accuracies of 82.95% (BCI 
IV-2a) and 88.00% (BCI IV-2b), with kappa values of 0.7726 and 0.7599 in five-fold cross-validation, 
surpassing several state-of-the-art methods. These results highlight MSCFormer’s robustness and 
accuracy, underscoring its potential in EEG-based BCI applications. The code has been released in 
https://github.com/snailpt/MSCFormer.
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Brain-computer interface (BCI) technology has opened new avenues for direct communication between 
the brain and external devices1. BCI systems predominantly rely on various neural signal technologies, 
such as functional magnetic resonance imaging, electroencephalography (EEG), electrocorticography, and 
magnetoencephalography, to monitor and interpret brain activity patterns2. EEG technology, which records 
electrical activity in the brain via electrodes placed on the scalp, is particularly valued for its high temporal 
resolution, non-invasiveness, cost-effectiveness, and ease of use3. The motor imagery (MI) BCI paradigm is 
particularly noteworthy as it enables control of external devices through the mental simulation of specific 
movements (e.g., hand or foot movements) without actual execution. The MI-EEG paradigm has become a key 
technology in neurorehabilitation4, prosthetic control5, and human-computer interaction6.

Despite its promising applications, the MI-EEG paradigm faces significant challenges in accurately decoding 
user intentions7. EEG signals have a very low signal-to-noise ratio and are highly susceptible to interference, 
including electromyographic noise, environmental electromagnetic interference, and ocular artifacts, all of 
which degrade signal quality and decoding accuracy8. Additionally, when imagining the same motor task, EEG 
signals exhibit significant variability not only between individuals but also within the same individual at different 
times.

Traditional machine learning techniques have been widely applied to MI-EEG classification, typically 
employing a two-stage pipeline of feature extraction and classifier training. Among these, common spatial pattern 
(CSP) and its extension, filter bank CSP (FBCSP), are widely used for spatial filtering and frequency-specific 
feature extraction9,10. Other feature extraction methods, such as power spectral density, wavelet transform, and 
short-time Fourier transform (STFT), have been explored to characterize EEG signals in different domains11–13, 
while non-linear measures like approximate entropy and fractal dimension aim to capture signal complexity14,15. 
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Classification is then performed using machine learning algorithms, including support vector machines, linear 
discriminant analysis, and k-nearest neighbors16–18.

Despite their effectiveness, traditional approaches heavily rely on handcrafted features, making them sensitive 
to inter-subject variability and limiting their adaptability. Furthermore, the separation of feature extraction and 
classification hinders joint optimization, potentially reducing classification performance19,20. Deep learning 
(DL)-based approaches overcome these limitations by automatically learning task-relevant features from raw 
EEG signals, enabling end-to-end optimization and reducing reliance on manual feature engineering21–23.

CNNs have become the dominant architecture in DL-based MI-EEG decoding, with recent studies 
investigating various convolution techniques, kernel sizes, and network depths. For instance, Schirrmeister et 
al.20 developed end-to-end ConvNets that outperformed FBCSP-based methods by directly learning hierarchical 
feature representations from raw EEG signals. Lawhern et al.24 introduced EEGNet, a compact CNN architecture 
with strong generalization across multiple BCI paradigms. To enhance feature extraction, Mane et al.25 proposed 
a filter-bank CNN that applies bandpass filtering (BPF) to EEG signals, while Wang et al.26 and Lee & Choi27 
explored transform-domain CNNs, leveraging short-time Fourier transform (STFT) and continuous wavelet 
transform for MI-EEG classification.

Recent advancements show that while single-scale CNNs (SSCNNs) perform well in MI-EEG decoding, their 
limited ability to capture the complex spatiotemporal characteristics of EEG signals makes them less effective in 
handling inter-individual variability. Additionally, their restricted receptive field may limit the capture of long-
range dependencies, potentially affecting decoding accuracy. LSTM-based models28 address this limitation by 
capturing temporal dependencies, but their sequential nature prevents efficient parallelization and can suffer 
from vanishing gradients in long EEG sequences. Meanwhile, Transformer-based models29,30 effectively capture 
global dependencies, but they may struggle to extract fine-grained local features, which are crucial for MI-EEG 
classification. Furthermore, training DL models require large amounts of labeled data, yet obtaining high-quality 
MI-EEG data is both time-consuming and resource-intensive due to the lengthy experimental protocols and 
high demands on subjects.

To tackle these challenges, this study proposes the Multi-Scale Convolutional Transformer (MSCFormer), 
which leverages CNNs for local spatial-temporal feature extraction and a Transformer encoder for global 
dependency modeling. The multi-scale CNN module addresses inter-subject variability by extracting features at 
different temporal scales, while the Transformer module mitigates CNN’s receptive field limitations by modeling 
long-range dependencies. Furthermore, data augmentation techniques are incorporated to enhance model 
generalization given the limited availability of EEG training data. Extensive experiments on the BCI IV-2a and 
IV-2b datasets validate the effectiveness of MSCFormer, demonstrating superior classification accuracy and 
robustness compared to existing methods. The following are the main contributions of this study:

	(1)	 This work proposes a novel end-to-end hybrid deep learning architecture that improves MI-EEG decoding 
performance by combining the local feature extraction of multi-scale CNNs with the global dependency 
modeling of the Transformer’s self-attention mechanism, capturing both detailed local features and broader 
dependencies.

	(2)	 This work outperforms multiple state-of-the-art (SOTA) methods in decoding performance on the BCI 
Competition IV-2a and IV-2b datasets, demonstrating its potential as a new benchmark for EEG decoding.

	(3)	 Comprehensive experiments were conducted to examine the impact of the hyperparameters in the convo-
lution and Transformer modules, as well as data augmentation.

	(4)	 To promote reproducibility and support further research, the MSCFormer source code has been made 
publicly available at https://github.com/snailpt/MSCFormer.

The rest of this paper is organized as follows: Sect. 2 provides a comprehensive review of related work. Section 3 
introduces the datasets, data preprocessing methods, and data augmentation techniques, followed by a detailed 
description of the proposed model architecture. Section  4 evaluates the performance of the model through 
extensive experimentation. Section 5 discusses our main findings, and finally, conclusions are drawn.

Related work
In this section, we describe the key techniques involved in our proposed method, including multi-scale CNN 
(MSCNN)-based approaches and Transformer-based networks. A comparative summary of representative 
works is provided in Table 1.

MSCNN-based approaches
Over the past decade, CNNs have achieved remarkable success in computer vision, largely due to their ability 
to autonomously learn both local and global features through convolution operations. When processing EEG 
sequence signals, convolution operations are also effective in capturing temporal and spatial features, which are 
critical for decoding brain signals. Consequently, CNNs have been widely applied in BCI31,32. CNN-based MI-
EEG decoding methods encompass both SSCNNs and MSCNNs. SSCNNs extract features from EEG signals 
using a single temporal and spatial convolution scale. However, MI-EEG signals inherently exhibit complex 
spatiotemporal patterns and multi-band frequency characteristics, which cannot be fully captured by a fixed-
scale temporal convolution. Moreover, due to significant inter-subject variability in EEG signals, the optimal 
convolution scale often varies across individuals.

To address these limitations, MSCNNs perform convolutions across multiple scales, allowing for a more 
comprehensive capture of the complex characteristics in EEG signals and improving classification performance. 
For example, Amin et al.33 proposed MCNN, a multi-layer CNN fusion method that integrates four parallel 
CNN streams with varying depths and kernel sizes. By leveraging transfer learning and feature fusion, MCNN 
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enhances MI-EEG classification accuracy by capturing diverse spatiotemporal patterns in EEG signals. Dai et 
al.34 proposed HS-CNN, which decomposes raw EEG signals into θ , µ , and β bands to address inter-subject 
variability, and employs hybrid-scale convolution kernels (1 × 45, 1 × 65, 1 × 85) combined with a time-frequency 
data augmentation method to achieve SOTA classification accuracy. However, the large parameter count 
(> 420 K per filter band) restricts the system’s applicability. Jia et al.35 developed a multi-branch multi-scale CNN 
(MMCNN) for MI-EEG classification, using five parallel EEG Inception Networks (EINs) with varying kernel 
scales to capture diverse frequency information, and the squeeze-and-excitation (SE) attention mechanism to 
enhance performance by reweighting channel features. Altuwaijri and Muhammad36 proposed MBEEGNet, 
composed of multiple EEGNets with different configurations, and MBShallowConvNet, made up of multiple 
distinct ShallowConvNets. Their multi-branch structure allows for more comprehensive EEG signal feature 
extraction, overcoming the single-scale limitation of traditional methods and leading to superior classification 
performance across multiple datasets. Roy et al.37 proposed a multi-scale CNN, which filters EEG signals into δ , 
θ , α , and β  bands, applying multi-scale convolution blocks with varying kernel sizes to each band. The model 
also incorporates user-specific features such as differential entropy (DE) and neural power spectrum (NPS), 
further enhancing performance.

Transformer-based networks
While MSCNNs capture more information than SSCNNs, their limited receptive field restricts the modeling of 
long-term dependencies, limiting further improvements in MI-EEG decoding. In contrast, the self-attention 
mechanism in the Transformer architecture, with its global receptive field, effectively captures global dependencies 
and enhances decoding performance. Song et al.38 proposed the Spatial-Temporal Tiny Transformer (S3T) for 
EEG decoding, addressing the limitations of CNNs in capturing global dependencies. Their model applies spatial 
filtering before utilizing self-attention along the feature channel and temporal dimensions to enhance relevant 
features. Tao et al.39 proposed the Gated Transformer, a family of Transformer models incorporating various 
gating mechanisms to enhance EEG classification. By replacing standard residual connections with different 
gating mechanisms, their approach stabilizes training and improves long-term dependency modeling in EEG 
sequences. Xie et al.29 proposed a Transformer-based deep learning framework for MI-EEG classification, 
incorporating both spatial and temporal dependencies. Their study introduced five Transformer-based models, 
explored three types of positional embeddings, and achieved SOTA accuracy on the PhysioNet EEG Motor 
Imagery Dataset. Song et al.40 proposed EEG Conformer, a Convolutional Transformer model for unified EEG 
decoding that integrates CNN-based local feature extraction with Transformer-based global feature learning. 
Inspired by the Conformer model, Zhao et al.41 proposed CTNet, which integrates a single-scale CNN module 

Related work Methods Database Accuracy % Comment

Amin et al. 201933 MCNN BCI IV-2a
High Gamma Dataset

75.7
95.4

Multi-branch CNN with varying depths/kernels, 
using transfer learning and feature fusion.

Dai et al. 201934 HS-CNN BCI IV-2a
BCI IV-2b

91.57 ± 5.41
87.64 ± 8.00

Hybrid-scale CNN decomposing EEG into θ, µ, and β 
bands with time-frequency data augmentation.

Jia et al. 202035 MMCNN BCI IV-2a
BCI IV-2b

81.4 ± 11.7
84.4 ± 7.5

Multi-branch CNN with varying kernel sizes and SE 
attention.

Altuwaijri and 
Muhammad 202236

MBShallowConvNet / 
MBEEGNet

BCI IV-2a
High Gamma Dataset

81.15 ± 9.04
95.11 ± 4.62 / 
82.01 ± 10.13
95.30 ± 3.50

Extensions of ShallowConvNet and EEGNet, 
respectively, incorporating three CNN branches 
with different configurations to enhance multi-scale 
feature extraction.

Roy et al. 202237 MS-CNN BCI IV-2b 93.74 ± 2.80
Utilizes four-band decomposition, multi-scale 
convolution, and user-specific DE and NPS features 
for feature extraction.

Song et al. 202138 S3T BCI IV-2a
BCI IV-2b

82.59 ± 12.52
84.26 ± 10.03

A Transformer-based method with spatial filtering 
and self-attention for spatiotemporal feature learning.

Tao et al. 202139 GRUGate Transformer Brain-Visual Dataset
PhysioNet

61.96 ± 10.09
55.40 ± 2.09

A Transformer-based method with gating 
mechanisms to enhance stability and long-term 
feature extraction.

Xie et al. 202229 s-Trans / t-Trans / s-CTrans / 
t-CTrans / f-CTrans PhysioNet

Best accuracy:
83.31 (2-class), 74.44 
(3-class), 64.22 (4-class)

Proposed five Transformer-CNN hybrid models 
integrating spatiotemporal dependencies with 
optimized positional embeddings.

Song et al. 202340 Conformer
BCI IV-2a
BCI IV-2b
SEED

78.66 ± 14.43
84.63 ± 11.49
95.30

A Convolutional Transformer model integrating 
CNN for local feature extraction and Transformer for 
global dependency modeling.

Zhao et al. 202441 CTNet BCI IV-2a
BCI IV-2b

82.52 ± 9.61
88.49 ± 9.03

A hybrid CNN-Transformer model for MI-
EEG classification, enhancing spatiotemporal 
representation learning.

Ahn et al. 202342 MS-TSformer-DS
Private EEG 
BCI IV-2a
ASU

62 ± 6
70 ± 9
70 ± 7

A hybrid CNN-Transformer model integrating 
multi-scale temporal convolution, temporal-spatial 
Transformer, and dual-stream spatial learning.

Tao et al. 202443 ADFCNN
BCI IV-2a
BCI IV-2b
OpenBMI

79.39 ± 10.23
87.81 ± 8.40
65.26 ± 13.50

A dual-scale CNN integrating self-attention for 
enhanced spectral-spatial fusion.

Table 1.  Summary of related work.
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similar to EEGNet for local feature extraction and incorporates a Transformer for global feature modeling, 
leading to enhanced classification performance.

Additionally, some researchers have begun exploring EEG decoding methods that integrate multi-scale CNNs 
with the self-attention mechanism. Ahn et al.42 proposed MS-TSformer-DS, a hybrid EEG decoding model that 
combines multi-scale convolutional blocks, temporal-spatial Transformer encoders, and a dual-stream spatial 
learner to enhance spatial feature representation. Their model demonstrated strong performance across multiple 
EEG datasets, including a private dataset, BCI Competition IV-2a, and the Arizona State University (ASU) 
dataset. Tao et al.43 proposed ADFCNN, an attention-based dual-scale fusion CNN for MI-EEG classification. It 
employs dual-scale temporal and spatial convolutions to extract spectral-spatial features, while a self-attention 
mechanism enhances feature fusion by capturing cross-scale dependencies.

Building on these previous studies, our research makes further contributions to the field. Inspired by these 
prior studies, we propose MSCFormer as an effective solution for MI-EEG decoding.

Materials and methods
Datasets
To evaluate the effectiveness of our proposed model, we used two publicly available benchmark datasets: BCI IV-
2a and IV-2b. Detailed descriptions of these datasets, preprocessing, and data augmentation are provided below.

	(1)	 BCI IV-2a dataset (2a): The dataset comprises EEG recordings from nine subjects (A01-A09), each engaged 
in four distinct motor imagery tasks: imagining movements of the left-hand, right-hand, both feet and 
tongue. Each subject participated in two recording sessions conducted on different days, yielding a total 
of 288 trials per session. The EEG recordings were obtained using 22 electrodes, with a sampling rate of 
250 Hz, and each recording lasted for 7 s. In our experiments, we utilized the temporal segment from 2 to 
6 s. Each trial was represented as a matrix of dimensions (22, 1000).

	(2)	 BCI IV-2b dataset (2b): The dataset comprises EEG recordings from nine right-handed subjects (B01-B09) 
over five sessions, with about 720 trials per subject. The first two sessions lack feedback, whereas the subse-
quent three sessions provide feedback. Each session includes multiple runs in which subjects imagine left- 
or right-hand movements. The EEG recordings were captured using three bipolar channels at a sampling 
frequency of 250 Hz. In our experiments, we utilized the temporal segment from 3 to 7 s. Each trial was 
represented as a matrix with dimensions (3, 1000).

	(3)	 Data Preprocessing: The raw EEG recordings are defined as {( Xi, yi )| i = 1,2, . . . , N}, where Xi ∈ R
C×T represents the i-th trial consisting of C channels and T sampling time points, yi is the sample label cor-
responding to Xi, and N is the total number of trials. In this study, we employed a zero-mean standardiza-
tion (STD) method for preprocessing the EEG recordings. Notably, we did not apply any band-pass filtering 
or artifact removal techniques. The zero-mean standardization method was used to reduce the influence of 
signal amplitude variations and enhance the robustness of signal processing and classification algorithms 
by ensuring that the data were on a consistent scale. The calculation method is expressed as follows:

	
∼

Xi=
Xi − µ

σ
� (1)

	where 
∼

Xi is the normalized EEG signal. µ  and σ  denote the mean and standard deviation (S.D.) of the raw 
EEG data, respectively, calculated using the training dataset and then applied directly to the test dataset.

	(4)	 Data Augmentation: Given the stringent criteria for participant recruitment and the complexities of experi-
mental setups, it is inherently challenging to acquire substantial, high-quality EEG data. DL models trained 
on such small datasets are particularly susceptible to overfitting. Therefore, implementing data augmenta-
tion techniques to enhance the generalizability and robustness of MI-EEG models is essential. We employ 
the segmentation and reconstruction (S&R) method44 in the time domain to augment training data, which 
involves a systematic approach to artificially increasing the amount and variability of EEG training datasets. 
The S&R method includes two steps: segmentation and reconstruction. The workflow of the S&R method 
is shown in Fig. 1. In the segmentation phase, each EEG trial is divided into Ns segments based on time 
intervals, ensuring that each segment captures a subset of the entire signal’s timeframe. As shown in Fig. 1, 
Ns equals 3, indicating each EEG trial is segmented into three parts, labeled as A, B, and C, respectively. In 
the reconstruction phase, new artificial EEG trials are generated by randomly recombining these segments 
in a manner that aligns with the natural progression of time within EEG recordings. The number of training 
samples augmented is denoted as NA. This approach not only increases data diversity by mixing segments 
from various trials, introducing new patterns for the model to learn but also maintaining the temporal 
structure of the EEG signals, which is crucial for retaining the physiological relevance of the EEG data.

Overview of the proposed framework
CNNs are effective at capturing local features, while Transformer networks excel at modeling global dependencies. 
In this paper, we introduce MSCFormer, an end-to-end MI-EEG classification framework that integrates CNNs 
and the Transformer encoder to leverage both architectures’ strengths. The overall framework of MSCFormer is 
depicted in Fig. 2. MSCFormer first employs a convolution module to extract spatiotemporal features at various 
scales from the EEG data. The Transformer module then applies a multi-head self-attention mechanism (MHA) 
to model global dependencies across these multi-scale features, dynamically emphasizing the most relevant 
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features for classification. Finally, a fully connected layer classifies the extracted features into distinct categories, 
completing the MI-EEG classification process.

Convolution module
The convolution module includes three CNN branches, each similar to the Shallow ConvNet proposed in20. 
However, each branch uses spatial depthwise convolution instead of spatial standard convolution, which has 
demonstrated better performance. Additionally, each branch employs different hyperparameters compared 
to those in20. The distinction between the three branches lies in the different kernel sizes used for temporal 
convolution, enabling the learning of EEG features at various time scales.

Each branch in the convolution module comprises a temporal convolution layer, a spatial depthwise 
convolution layer, and an average pooling layer, as illustrated in Fig. 2. The temporal convolution layer utilizes 
F1 temporal filters with a kernel size of (1, Kc). Different values of Kc can capture EEG temporal features at 
various scales. Following the setup in reference34, Kc values for the three CNN branches are set to 85, 65, and 45, 
respectively. The spatial depthwise convolution layer independently applies spatial convolutions to each temporal 
feature map, effectively learning spatial filters associated with specific frequency bands. Additionally, it reduces 
the number of training parameters, lowering model complexity and computational resource requirements. The 
spatial convolution kernel size is (C, 1), producing F1 feature maps that integrate both temporal and spatial 
features with a shape of (F1, T). Following the spatial convolution, a batch normalization (BN) layer is applied, 
stabilizing the data distribution and facilitating smoother gradient flow, thereby improving training efficiency 
and effectiveness. Subsequently, an exponential linear unit (ELU) activation function is applied. An average 
pooling layer with a kernel size of (1, P) is then used. This pooling step not only reduces the feature map 

Fig. 1.  Principle of the S&R data augmentation method in time domain.
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dimensions but also smooths the spatiotemporal feature maps, reducing local noise and aiding the model in 
learning global features more effectively. Each branch applies a dropout operation with a probability of 0.5 after 
the average pooling layer to reduce overfitting. Therefore, the feature dimension output by each CNN branch is 
(F1, Tp), where Tp represents the length of the feature series and is given by T divided by P. Next, the feature maps 
obtained from the three CNN branches are transposed by swapping the convolution feature channel dimension 
with the time dimension. These feature maps are then concatenated along the feature channel dimension, 
resulting in a fused feature map XF with dimensions (Tp, F2), where F2 is equal to three times F1. In this way, the 
fused feature maps at each temporal point are fed as tokens into the subsequent Transformer module.

Transformer module
To further enhance the features extracted by the CNN module, we employ a Transformer module to model 
the global dependencies of the multi-scale MI-EEG features. The self-attention mechanism in the Transformer 
module provides a global receptive field, enabling the model to capture long-range dependencies. It dynamically 
prioritizes the most relevant features for classification, ensuring the model focuses on the most informative 
aspects. To quantify the attention allocated by the model to different feature channels, we introduce an additional 
learnable vector ( F 0

0 ) as a class token, similar to the class token used in BERT45, appended to the front of the 
feature maps. Subsequently, the learnable position embedding Fpos are added to the sequence of features to retain 
positional information. Therefore, the feature embedding F0 serves as the input to the Transformer encoder, 
where F0 is calculated as follows.

	 F0 = [F 0
0 , XF ] + Fpos� (2)

The features are then encoded using an L-layer deep Transformer encoder, where the class token ( F 0
L) from 

the L-th layer represents the output of the Transformer module, serving as the MI-EEG’s feature representation.
The Transformer encoder consists of MHA and feed forward (FF) blocks. MHA comprises multiple self-

attention layers, known as heads, which implement scaled dot-product attention, as illustrated in Fig. 3. Each 
self-attention layer consists of three main components: query Q, keys K , and values V . Q, K , and V  are 
computed from the input features F through linear transformations. Specifically, Qi, Ki, and Vi at the i-th head 
of the self-attention layer are calculated using the following formulas :

Fig. 2.  The framework of proposed MSCFormer, including a convolution module, a Transformer module, and 
a classifier module.
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	 Qi = FiW
Q
i � (3)

	 Ki = FiW
K
i � (4)

	 Vi = FiW
V
i � (5)

Where W Q
i , W K

i  and W V
i  are learnable parameters in the linear transformation. The self-attention scores are 

calculated using the dot product of the Q and K  matrices, scaled by the square root of the dimension of the K  
(dk) to prevent the scores from becoming too large:

	
SA(Qi, Ki, V i) = softmax

(
QiK

T
i√

dk

)
Vi� (6)

The softmax function is applied to normalize these scores into probabilities. Finally, these probabilities are used 
to perform a weighted sum of the value vectors. MHA enables the model to focus simultaneously on information 
from different representation subspaces at various locations, enhancing its ability to capture complex patterns 
and relationships among EEG features. It executes multiple self-attention operations in parallel and then projects 
its concatenated output.

	 MHA(Q, K, V ) = Concat (SA( Q1, K1, V1), . . . , SA(Qh, Kh, Vh )) W O � (7)

where WO is a learnable weight matrix. The output of the MHA block is typically followed by a residual 
connection and layer normalization (LN):

	 OMHA = LN (MHA (Q, K, V ) + F ) .

The FF block consists of two linear transformations with a Gaussian error linear unit (GELU) activation function 
in between:

	 FFN (OMHA) = GELU(OMHAW1 + b1)W 2 + b2� (9)

where W1 and W2 are weight matrices, and b1 and b2 are bias terms. Similar to the MHA block, the output of the 
FF block is accompanied by a residual connection and followed by LN:

	 O = LN (FFN (OMHA) + OMHA) .

Fig. 3.  Multi-head self-attention.
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Therefore, the MI-EEG feature representation F 0
L in FL serves as the output of the Transformer module and also 

acts as the input to the classifier module.

Classifier module
The classifier module consists of a fully connected layer with a softmax function, where the number of neurons 
M is set to match the number of classes in the classification task. To reduce overfitting, dropout is applied to the 
input features before classification, with the dropout rate set at 0.25. The cross-entropy loss is employed as the 
loss function for model training, which is expressed as:

	
Loss(y, ŷ) = − 1

N

∑
N
i=1

∑
M
c=1ylog (ŷ)� (11)

where y represents the actual labels, and ŷ represents the predicted labels.

Performance metrics
We employ the most commonly used metrics, accuracy and kappa, for the evaluation of the MI-EEG classification 
method. Accuracy is defined as follows:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (12)

where TP and TN represent true positives and true negatives, respectively, while FP and FN represent false 
positives and false negatives. The kappa coefficient is a normalized measure that takes into account the chance 
level and is defined as follows:

	
kappa = po − pe

1 − pe
� (13)

where po denotes the observed accuracy (the average accuracy across all the trials) and pe denotes the expected 
accuracy (the accuracy of a random guess). Generally, the higher the accuracy and kappa, the better the model’s 
classification performance. The Wilcoxon signed-rank test is used to assess statistical significance. A p-value 
greater than 0.05 indicates the absence of a statistically significant difference. Conversely, a p-value less than 0.05 
(denoted as ‘*’) signifies a significant difference, while a p-value less than 0.01 (denoted as ‘**’) indicates a highly 
significant difference.

Experiments and results
Experiment settings
Our method is implemented in PyTorch and utilizes an Intel Core i9-9820X CPU and an NVIDIA RTX 4090 
GPU. We classify the BCI IV-2a and IV-2b datasets using only EEG channel data, entirely discarding the three 
EOG channels in our experiments. We conducted subject-specific classification experiments and adhered to the 
data division scheme outlined in the competition guidelines. For the BCI IV-2a dataset, we used the first session 
as the training set and the second session as the test set. For the BCI IV-2b dataset, we used the first three sessions 
as the training set and the last two sessions as the test set. To evaluate the stability and generalization ability of 
our model, we performed five-fold cross-validation (CV) on the original training set. We divided the original 
training set into five approximately equal subsets. Then, we used one subset as the validation set and combined 
the remaining four subsets with the S&R augmented dataset for training. We selected the model with the lowest 
loss on the validation set as the best model and tested it on the test set. This process was repeated for each of the 
five original training subsets, and the final performance metric was obtained by averaging the results on the test 
set.

During S&R data augmentation, each EEG trial is segmented into eight segments (Ns = 8). We use the Adam 
optimizer to train the model, with the learning rate, β1, and β2 set to 0.001, 0.5, and 0.999, respectively. The batch 
size and number of epochs for training are set to 288 and 1000, respectively. These training hyperparameter 
settings are adopted based on the guidelines in41. Given the fewer electrode channels in the BCI IV-2b dataset, 
we applied L2 regularization to reduce overfitting, with the weight decay parameter set to 0.001. The three 
convolutional kernel sizes in the convolution module were adopted from34, while the remaining hyperparameters 
of the MSCFormer architecture were determined through extensive experiments. Unless specified otherwise, the 
hyperparameters of the MSCFormer architecture are detailed in Table 2.

Ablation study
To systematically examine the impact of the Transformer module, data augmentation, and temporal convolution 
kernel sizes within the MSCFormer framework, we conducted a series of rigorous ablation studies on the BCI 
IV-2a and IV-2b datasets. The ablation study was conducted using five distinct experimental configurations: (1) 
the fully integrated MSCFormer model, (2) the model without the Transformer module (w/o Trans), in which 
multi-scale CNN features are concatenated, flattened, and fed into the classifier module, (3) the model without 
data augmentation (w/o Aug), (4) the model lacking both the Transformer and data augmentation (w/o Trans & 
Aug), and (5) the fully integrated model with smaller convolutional kernels (w/ Small-K), which utilizes reduced 
temporal convolution kernel sizes (64, 32, 16), as adopted in22,36.

Figure 4 illustrates the average decoding accuracies for each subject obtained through a five-fold CV across 
the specified configurations. MSCFormer consistently achieved the highest average decoding accuracies on 

Scientific Reports |        (2025) 15:12935 8| https://doi.org/10.1038/s41598-025-96611-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


both datasets, reaching 82.60% on the BCI IV-2a dataset and 88.00% on the BCI IV-2b dataset. Removing the 
Transformer module resulted in a 3.30% decrease in average accuracy on the BCI IV-2a dataset (p = 0.055), 
with particularly substantial drops observed in subjects A04, A05, A06, and A07, where accuracies decreased 
by 8.40%, 5.63%, 8.13%, and 5.76%, respectively. On the BCI IV-2b dataset, removing the Transformer led to a 
notable decrease in average accuracy of 2.38% (p < 0.05). Without data augmentation, removing the Transformer 
module reduced the average classification accuracy by 5.69% (p < 0.01) on the BCI IV-2a dataset and by 1.06% 
on the BCI IV-2b dataset. Removing data augmentation alone led to significant decreases in recognition 
accuracy on both the BCI IV-2a and BCI IV-2b datasets, with significant reductions of 9.57% (p < 0.01) and 
4.12% (p < 0.01), respectively. Simultaneously removing the Transformer module and data augmentation led 
to significant decreases in average recognition accuracy: 15.26% (p < 0.01) on the BCI IV-2a dataset and 5.18% 
(p < 0.01) on the BCI IV-2b dataset. These results demonstrate the critical role of the Transformer module and 
data augmentation in enhancing the decoding accuracy of the MSCFormer model. Furthermore, using smaller 
convolutional kernels in the convolution module led to a significant decrease in average classification accuracy, 
with a drop of 2.21% (p < 0.05) on BCI IV-2a and 1.45% (p < 0.01) on BCI IV-2b.

Figure 5 provides a comparative exposition of kappa coefficients across the various experimental conditions 
for each subject. The comprehensive MSCFormer setup outperformed all other conditions across both datasets, 
achieving the highest cumulative kappa. This result highlights the essential roles of both the Transformer 
and data augmentation in enhancing the model’s robustness and consistency. Additionally, the use of larger 
convolutional kernels yielded superior performance.

Impact of the depth of transformer
Typically, within the Transformer encoder module, the depth L of the Transformer significantly influences model 
performance. Figure 6 depicts the evolution of recognition accuracy with increasing depths. On the BCI IV-2a 
dataset, the model achieves the highest average accuracy at a depth of 5, which is 2.94% higher than at depth 
1 (p < 0.05). Beyond this, further increasing the Transformer depth results in a decline in accuracy. Similarly, 
on the BCI IV-2b dataset, the average accuracy at depth 5 is notably improved by 0.68% compared to depth 3 

Fig. 4.  Radar chart visualization of ablation effects on average accuracy.

 

Table 2.  The hyperparameters of MSCFormer architecture.
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Fig. 6.  The impact of Transformer encoder depth on accuracy.

 

Fig. 5.  Stacked bar chart of ablation study on average kappa coefficients.
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(p < 0.05). These findings suggest that while increasing depth improves the model’s ability to capture complexity, 
it also raises the risk of overfitting if the training dataset does not scale accordingly.

Impact of the number of heads in MHA
In Transformer models, the number of heads in the MHA mechanism is a key parameter that helps in 
learning different aspects of features. We assessed the impact of varying the number of heads on MSCFormer’s 
performance, with the results shown in Fig. 7. The MSCFormer model with a single head had the lowest average 
classification accuracy on both datasets. For the BCI IV-2a dataset, the eight-head model achieved 2.58% higher 
accuracy than the single-head model (p < 0.05). On the BCI IV-2b dataset, the eight-head model outperformed 
the single-head model by 0.96% (p < 0.05) and the 24-head model by 0.75% (p < 0.01). These results suggest that 
appropriately increasing the number of heads can significantly improve accuracy. Additionally, performance on 
the BCI IV-2a dataset showed greater fluctuation compared to BCI IV-2b, possibly indicating that the model’s 
sensitivity to the number of heads increases with task complexity.

Impact of the pooling size
In our study, we explored the impact of varying pooling sizes on the performance of MSCFormer by adjusting 
the pooling size from 12 to 72, with increments of 4, resulting in corresponding token lengths ranging from 84 
to 14. As depicted in Fig. 8, MSCFormer exhibited an increasing trend in accuracy followed by a decline across 
the BCI IV-2a and IV-2b datasets. Notably, on the BCI IV-2a dataset, two distinct peaks in classification accuracy 

Fig. 8.  The impact of the pooling size on the accuracy for different datasets.

 

Fig. 7.  The impact of the number of heads in MHA on model accuracy across datasets. The orange line within 
each box represents the median, while the green triangle indicates the mean.
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were observed at pooling sizes of 28 and 44, both reaching an optimum of 82.95%. In contrast, on the BCI IV-2b 
dataset, the highest average classification accuracy of 88.00% was achieved at a pooling size of 52. Compared to 
the lowest performance observed at a pooling size of 12, these peaks represent improvements of 3.87% (p < 0.01) 
and 2.64% (p < 0.01) on the BCI IV-2a and IV-2b datasets, respectively. These findings suggest that pooling size 
should be carefully selected based on the specific characteristics of the dataset.

Comparison of MSCFormer with SOTA methods
To comprehensively assess our model’s performance, we selected several SOTA methods, including three 
SSCNN-based models (Shallow ConvNet20, Deep ConvNet20, EEGNet24), two MSCNN-based models 
(MMCNN35, MBEEGNet36), and two hybrid CNN-Transformer models (Conformer40, ADFCNN43). Below is a 
brief introduction to these methods:

•	 Shallow ConvNet: This model uses a large-kernel temporal convolution layer followed by a spatial convolution 
layer, applying nonlinear activation and pooling, and concludes with a fully connected layer for classification.

•	 Deep ConvNet: A more complex architecture for EEG signal decoding, it begins with a spatiotemporal con-
volution layer, followed by three convolutional blocks, each paired with max-pooling layers, and ends with a 
fully connected layer for classification.

•	 EEGNet: A compact architecture designed for EEG signal decoding, utilizing depthwise and separable convo-
lutions to capture spatial and temporal features, effectively reducing the number of model parameters.

•	 MMCNN: This model consists of five parallel EINs, each comprising an EEG Inception block, a residual 
block, and a SE block.

•	 MBEEGNet: An extension of EEGNet, featuring multiple parallel EEGNet branches, each with different filter 
kernel sizes.

•	 Conformer: This model integrates Shallow ConvNet with Transformer architecture to capture both local spa-
tiotemporal features and global dependencies in EEG features.

•	 ADFCNN: It combines large and small convolutional kernels to capture dual-scale features in EEG signals, 
with a self-attention mechanism that dynamically adjusts feature weights for enhanced performance.

The optimal results for MSCFormer on the BCI IV-2a and IV-2b datasets were compared to the SOTA methods. 
To further validate the effectiveness of our multi-scale convolution approach, we included MSNet, an ablation 
model without the Transformer module (w/o Trans), in the comparison.

To ensure a relatively fair comparison, we re-evaluated four representative models, including Shallow 
ConvNet, Deep ConvNet, EEGNet, and MBEEGNet, whose original experimental conditions in the literature 
differed significantly from those in our study. In these reimplemented experiments, we applied identical 
experimental conditions, including the same data preprocessing, data augmentation strategies, CV methods, and 
training hyperparameters (batch size, learning rate, and epochs). Table 3 presents comparisons of accuracy and 
kappa between MSNet, MSCFormer, and SOTA methods on the BCI IV-2a. Table 4 presents comparisons for the 
BCI IV-2b. The data for MMCNN, Conformer, and ADFCNN were obtained from their respective references.

A comparison of these CNN models reveals that our proposed MSCNN-based model (MSNet) achieved 
the second-highest average classification accuracy on the BCI IV-2a dataset, while also exhibiting the smallest 
accuracy standard deviation and the highest kappa value. Specifically, its average accuracy increased by 4.08% 
(p < 0.01), 1.84%, 1.47%, and 0.54% compared to Shallow ConvNet, EEGNet, Deep ConvNet, and MMCNN, 
respectively, but was 2.2% lower than that of MBEEGNet. On the BCI IV-2b dataset, MSNet ranked second in both 
average accuracy and kappa value, with a relatively small standard deviation. Specifically, its average accuracy 
was 2.36% (p < 0.01), 1.24%, 1.16%, and 0.34% higher than those of Deep ConvNet, MMCNN, MBEEGNet, 
and Shallow ConvNet, respectively, but 1.77% lower than that of EEGNet. These comparative results strongly 
demonstrate the effectiveness of MSNet’s multi-scale design in addressing the challenge of individual variability 
in EEG signals.

Tables 3 and 4 show that MSCFormer achieved the best average classification accuracy and kappa values 
across both datasets, with relatively small standard deviations compared to the other models. Specifically, on the 
BCI IV-2a dataset, MSCFormer’s average accuracy was 7.80% (p < 0.01), 5.56% (p < 0.05), and 5.20% (p < 0.05) 

Method\Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Accuracy S.D. Kappa p-value

SSCNN

Shallow ConvNet 201720+ 80.97 56.46 91.04 72.29 73.54 61.18 77.71 83.89 79.31 75.15 10.85 0.6687 0.004**

Deep ConvNet 201720+ 81.94 52.85 88.61 76.67 74.44 67.29 91.04 82.71 84.24 77.75 11.83 0.7034 0.012*

EEGNet 201824+ 85.56 65.63 92.71 67.64 74.10 58.47 85.21 81.60 85.63 77.39 11.46 0.6986 0.020*

MSCNN

MMCNN 202135 82.10 59.80 92.80 69.00 87.30 68.50 89.20 91.60 92.60 81.43 11.75 0.6260 0.910

MBEEGNet 202236+ 82.85 68.33 92.01 76.39 72.78 65.63 85.97 81.88 82.36 78.69 8.59 0.7158 0.020*

MSNet (proposed) 86.25 70.69 91.67 77.22 75.63 66.94 79.65 83.40 81.60 79.23 7.65 0.7230 0.074

Hybrid

Conformer 202340 88.19 61.46 93.40 78.13 52.08 65.28 92.36 88.19 88.89 78.66 14.43 0.7155 0.359

ADFCNN 202443 87.15 61.45 93.75 75.69 75.34 65.27 88.54 82.29 85.06 79.39 10.23 – 0.020*

MSCFormer (proposed) 86.11 65.42 94.10 85.97 80.42 74.58 89.93 84.79 85.21 82.95 8.06 0.7726 –

Table 3.  Comparison of the classification accuracy (%) and kappa on the BCI IV-2a dataset. The bold values 
indicate the best results. The method marked with plus sign (+) are reimplemented.
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higher than the SSCNN-based models Shallow ConvNet, EEGNet, and Deep ConvNet, respectively. It also 
outperformed the MSCNN-based models MBEEGNet, MSNet, and MMCNN by 4.26% (p < 0.05), 3.72%, and 
1.52%, and exceeded the CNN-Transformer hybrid models Conformer and ADFCNN by 4.29% and 3.56% 
(p < 0.05). On the BCI IV-2b dataset, MSCFormer’s average accuracy was 4.72% (p < 0.01), 3.60%, 3.52% 
(p < 0.01), 3.37%, 2.70% (p < 0.01), 2.36% (p < 0.05), 0.59%, and 0.19% higher than Deep ConvNet, MMCNN, 
MBEEGNet, Conformer, Shallow ConvNet, MSNet, EEGNet, and ADFCNN, respectively. These comparative 
results highlight MSCFormer’s superior classification accuracy, consistency, and robustness.

Figure 9 presents the average confusion matrices from five-fold CV across nine subjects on the BCI IV-
2a dataset. MSCFormer excelled in decoding the imagined left-hand, right-hand, and feet tasks, achieving 
accuracies of 83.80%, 85.96%, and 83.95%, respectively. In contrast, the results demonstrate that MSNet achieved 
the highest accuracy in decoding the imagined tongue task, reaching 82.96%, which is at least 4.8% higher than 

Fig. 9.  Average confusion matrices of the proposed MSCFormer, MSNet and the reimplemented Shallow 
ConvNet, Deep ConvNet, EEGNet, and MBEEGNet models. The labels L, R, F, and T in the figure represent 
the left hand, right hand, feet, and tongue, respectively.

 

Method \ Subject B01 B02 B03 B04 B05 B06 B07 B08 B09 Accuracy S.D. Kappa p-value

SSCNN

Shallow ConvNet 201720+ 75.94 63.86 83.56 96.44 93.13 85.13 91.19 92.00 86.44 85.30 10.10 0.7059 0.008**

Deep ConvNet 201720+ 74.00 61.71 80.13 94.38 88.63 82.19 90.00 91.88 86.63 83.28 10.27 0.6656 0.004**

EEGNet 201824+ 77.56 68.14 86.94 97.44 93.63 87.63 93.38 93.44 88.56 87.41 9.23 0.7482 0.129

MSCNN

MMCNN 202135 84.90 70.40 75.50 96.30 92.40 86.30 87.60 84.20 81.80 84.40 7.47 0.6870 0.055

MBEEGNet 202236+ 77.06 59.50 82.81 94.94 94.19 82.69 91.19 92.75 85.19 84.48 11.19 0.6896 0.008**

MSNet (proposed) 75.69 64.93 85.63 97.50 90.94 84.75 91.75 93.63 85.94 85.64 9.99 0.7128 0.039*

Hybrid

Conformer 202340 82.50 65.71 63.75 98.44 86.56 90.31 87.81 94.38 92.19 84.63 11.49 0.6926 0.359

ADFCNN 202443 79.37 72.50 82.81 96.25 99.37 84.68 93.43 95.31 86.56 87.81 8.40 – 0.82

MSCFormer (proposed) 78.06 71.21 82.75 97.69 96.81 87.81 94.00 94.75 88.88 88.00 9.10 0.7599 –

Table 4.  Comparison of the classification accuracy (%) and kappa on the BCI IV-2b dataset. The bold values 
indicate the best results. The method marked with plus sign (+) are reimplemented.
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any other model. These results suggest that while MSCFormer demonstrates overall superiority in most tasks, 
MSNet may be more effective for certain specific tasks. Figure 10 illustrates the receiver operating characteristic 
(ROC) curves for these comparison models on the BCI IV-2b dataset, plotted based on their true positive rate 
(TPR) and false positive rate (FPR) data. Notably, MSCFormer achieves the highest area under the curve (AUC) 
value of 0.955, surpassing other models.

Visualization of feature distribution
To elucidate the discriminatory capacity of the features extracted and enhanced by our MSCFormer model, we 
employed t-distributed stochastic neighbor embedding (t-SNE) for visualization. This method transforms the 
high-dimensional features from EEG sequences into a two-dimensional embedding. We visualized the raw EEG 
data and the transformation at three critical stages of the MSCFormer model: features learned by the CNN module, 
features enhanced by the first layer of the Transformer module, and features fully enhanced by the complete 
Transformer module, as illustrated in Fig. 11. The visualization data were derived from five-fold CV models 
for subject A03. Figure 11(a) presents the raw EEG signal features, where the four class labels are intermingled, 
making distinctions challenging. Figure 11(b) illustrates that after processing through the MSCFormer’s CNN 
module, the four categories become discernible, although inter-class boundaries remain blurred, and intra-class 
distances are still substantial. Figure 11(c) depicts the features enhanced after the first layer of the Transformer 
module, where inter-class boundaries are more defined, and intra-class distances are notably reduced, 
underscoring the efficacy of the MHA mechanism in global dependency modeling. Figure 11(d) illustrates the 
features after full enhancement by the complete Transformer module, where class labels are distinctly segregated, 
inter-class distances are further enlarged, and intra-class distances are significantly decreased. This demonstrates 
that increasing Transformer depth significantly enhances MSCFormer’s expressive capability. However, some 
misclassifications persist, indicating the need for further model optimization to improve accuracy and achieve 
clearer label separation.

Discussion
In this section, we will conduct a more in-depth discussion of the ablation study, the impact of hyperparameters 
on model performance, and comparisons with SOTA methods. Finally, we will discuss the model’s limitations 
and propose potential areas for future enhancement.

Discussion on ablation study
This study systematically investigates the impact of the Transformer module, data augmentation, and temporal 
convolutional kernel sizes in MSCFormer through a series of ablation experiments, where each component 
is either removed or modified to assess its contribution to model performance. Removing the Transformer 
module led to varying degrees of performance degradation. Without data augmentation, accuracy on the BCI 
IV-2a dataset dropped significantly by 5.69% (p < 0.01). With augmentation, the BCI IV-2b dataset showed a 
notable accuracy decrease of 2.36% (p < 0.05). This demonstrates the crucial role of the Transformer’s global 
receptive field in capturing global dependencies and complex patterns in MI-EEG signals, enhancing decoding 
performance regardless of data augmentation.

Removing data augmentation alone resulted in a 9.57% (p < 0.01) and 4.12% (p < 0.01) drop in accuracy on 
the BCI IV-2a and IV-2b datasets, respectively, indicating the importance of data augmentation in increasing 
the model’s adaptability and coverage across feature space. This effect is especially pronounced for the BCI 

Fig. 10.  ROC curves and corresponding AUC values for the reimplemented Shallow ConvNet, Deep ConvNet, 
EEGNet, MBEEGNet, as well as our MSNet and MSCFormer models.
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IV-2a dataset, suggesting that data augmentation significantly enhances model performance in more complex 
classification tasks.

Removing both the Transformer and data augmentation had the most substantial negative impact, reducing 
average accuracy by 15.26% (p < 0.01) and 5.18% (p < 0.01) on the BCI IV-2a and IV-2b datasets, respectively. 
This substantial drop underscores the combined importance of the Transformer’s global dependency modeling 
and the diversity introduced by data augmentation.

The selection of kernel sizes (85, 65, 45) in our multi-branch CNN module was inspired by34, aiming to 
capture diverse temporal features in MI-EEG signals. While previous studies, such as22] and [36, have used smaller 
kernels (64, 32, 16), we conducted an ablation study to assess their impact. The results show that replacing our 
original kernel sizes with smaller ones led to a significant drop in classification accuracy, with decreases of 2.21% 
(p < 0.05) on BCI IV-2a and 1.45% (p < 0.01) on BCI IV-2b. This suggests that larger temporal kernels contribute 
to more effective feature extraction, enhancing MI-EEG decoding performance.

The impact of removing components on the kappa coefficient was similar to that on accuracy. These 
experimental results reveal that the Transformer module performs global modeling to the multi-scale features 
extracted from different temporal scales, enhancing the model’s representational capacity and improving 
decoding performance, while data augmentation ensures robust training in scenarios with limited data.

Discussion on hyperparameter impact analysis
To investigate the impact of hyperparameters on the performance of the MSCFormer model, we analyzed three 
key hyperparameters under data augmentation conditions: the depth of the Transformer module, the number of 
heads in the MHA mechanism, and the pooling size of the CNN module.

The depth of the Transformer encoder plays a crucial role in the model’s ability to capture complex temporal 
dependencies. Increasing the depth up to a certain point (depth 5) led to an improvement in accuracy, particularly 
for the BCI IV-2a dataset, where accuracy increased by 2.94% (p < 0.05) compared to depth 1. However, further 
increases in depth introduce the risk of overfitting.

The number of heads in the MHA mechanism also proved to be a critical factor. The eight-head configuration 
yielded the best performance on both datasets, with notable improvements of 2.58% (p < 0.05) on BCI IV-2a and 
0.96% (p < 0.05) on BCI IV-2b, compared to the single-head configuration. However, adding too many heads 
(e.g., 24 heads) resulted in diminishing returns, suggesting that excessive splitting of attention may fragment the 
feature space.

Fig. 11.  Visualization using t-SNE. (a) Raw EEG data distribution. (b) Feature distribution after the CNN 
module. (c) Feature distribution after the first layer of the Transformer module. (d) Feature distribution 
following full Transformer integration. Blue dots indicate the left hand, orange dots represent the right hand, 
green dots represent the feet, and red dots signify the tongue.
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The impact of pooling size showed that an intermediate value optimally balances the retention of temporal 
features and noise reduction. Pooling sizes of 28 and 44 achieved peak performance on the BCI IV-2a dataset, 
while a pooling size of 52 was optimal for BCI IV-2b. These results indicate that pooling size should be carefully 
tuned based on the characteristics of the dataset to avoid information loss or over-smoothing.

Discussion on comparative with SOTA methods
To comprehensively compare the performance of our proposed MSCFormer with SOTA methods, we analyzed 
key aspects such as data preprocessing, data augmentation techniques, model architecture, and parameter count, 
as summarized in Table 5.

Across these models, standardization was the most common preprocessing method. The Conformer model 
applied band-pass filtering before standardization, while ADFCNN incorporated both BPF and electrode-
wise exponential moving standardization (EEMS). Most models, except ADFCNN, employed the S&R data 
augmentation technique, while MMCNN used a combination of sliding window (SW) and Gaussian noise (GN). 
A notable difference was in the selection of electrode channels: on the BCI IV-2a dataset, MMCNN utilized 
data from only three channels (C3, Cz, and C4), while other methods utilized data from all 22 channels. Roy et 
al.37 previously investigated the impact of various data augmentation techniques on the BCI IV-2b dataset and 
demonstrated that the S&R method significantly outperformed GN, SW, and window warping. Additionally, 
combining these augmentation techniques further improved recognition accuracy. If all models had adopted 
the hybrid augmentation techniques proposed by Roy et al., their overall performance could have been further 
enhanced.

The results in Table 5 show that MSCFormer achieved the highest average accuracy across both datasets, 
demonstrating strong performance in MI-EEG decoding. However, the margin of superiority may have been 
narrower, or perhaps not the highest, if all models had used the same data preprocessing and augmentation 
techniques as MSCFormer.

Additionally, although MSCFormer outperforms SOTA models, its high performance comes at the cost of a 
significantly larger parameter count. This increased complexity enables MSCFormer to capture intricate patterns 
and long-range dependencies in the data, likely contributing to its superior accuracy. However, the larger 
parameter count also leads to longer training times and higher computational demands, which may present 
challenges in resource-limited environments. In practical applications, it is essential to balance MSCFormer’s 
parameter count with the available computational resources and the potential risk of overfitting. While its 
complexity improves accuracy, this may not always be practical in scenarios requiring real-time processing 
or environments with limited computational capacity. Future research could focus on optimizing the model 
architecture to maintain high accuracy while reducing computational demands, making MSCFormer more 
adaptable to real-world BCI applications.

Limitations and future work
While the MSCFormer model proposed in our study outperforms several SOTA methods in subject-specific 
classification tasks in terms of average recognition accuracy and kappa scores, there are still areas for 
improvement. First, the MSCFormer model contains numerous hyperparameters, and optimizing them is 
time-consuming. Key hyperparameters, such as the number of branches in the CNN module and the size and 
number of temporal convolution kernels within these branches, have not been fully optimized. As a result, 
the current experimental results may not yet reflect the model’s optimal performance. Future work will focus 
on automating hyperparameter optimization, integrating it with neural architecture search (NAS) to enable 
the model to autonomously identify the most effective parameter settings during training, thereby further 
improving performance. Second, the large number of parameters in the MSCFormer model may limit its 
deployment on devices with constrained hardware resources. Future research will explore strategies such as 
model pruning, quantization, and knowledge distillation to reduce the model’s size and computational demands 
while preserving its high performance. Third, this study primarily addresses subject-specific classification of MI-
EEG signals, relying solely on EEG data from individual subjects throughout the training, validation, and testing 
phases, and excluding cross-subject scenarios. This approach limits the assessment of the model’s generalization 

Methods Preprocessing Augmentation Architecture

Parameters Accuracy %

2a 2b 2a 2b

Shallow ConvNet 201720+ STD S & R SSCNN 46.1 k 10.8 k 75.15 85.30

Deep ConvNet 201720+ STD S & R SSCNN 283.3 k 268.6 k 77.75 83.28

EEGNet 201824+ STD S & R SSCNN 2.9 k 2.1 k 77.39 87.41

MMCNN 202135 STD SW & GN MSCNN + SE 90.3 k 90.3 k 81.43 84.40

MBEEGNet 202236+ STD S & R MSCNN 7.1 k 4.7 k 78.69 84.48

MSNet (proposed) STD S & R MSCNN 8.6 k 5.3 k 79.23 86.18

Conformer 202340 BPF & STD S & R SSCNN + Transformer 789.6 k 759.2 k 78.66 84.63

ADFCNN 202443 BPF & EEMS - MSCNN + Transformer 5.4 k 3.0 k 79.39 87.81

MSCFormer (proposed) STD S & R MSCNN + Transformer 145.9 k 144.9 k 82.95 88.00

Table 5.  Comparative analysis of our proposed methods and SOTA approaches. The bold values indicate the 
best results. The method marked with plus sign (+) are reimplemented.
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capabilities. To address this, future work will focus on applying MSCFormer to cross-subject classification 
tasks, which will help to evaluate its effectiveness in more diverse application contexts. These efforts could lay a 
stronger foundation for advancing MI-EEG decoding technology and its practical applications.

Conclusions
In this study, we introduced MSCFormer, a novel model that integrates a multi-scale convolution module with 
a Transformer encoder for MI-EEG decoding. The experimental results demonstrated that the multi-branch 
CNN architecture effectively addresses individual variability in EEG signals by capturing features at different 
scales. Additionally, the Transformer encoder models global dependencies across these multi-scale features, 
significantly improving feature representation and classification performance. MSCFormer achieved an average 
accuracy of 82.95% with a kappa of 0.7726 on the BCI IV-2a dataset, and an average accuracy of 88.00% with 
a kappa of 0.7599 on the BCI IV-2b dataset, outperforming several SOTA methods. These findings highlight 
MSCFormer’s ability to enhance MI-EEG decoding performance, establishing a strong foundation for further 
research into multi-scale feature extraction and global dependency modeling in EEG-based BCI systems.

Data availability
The BCI IV-2a and IV-2b datasets analyzed during the current study are available in the BCI Competition IV 
repository [https://www.bbci.de/competition/iv/#datasets].
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