Table 5 Comparative analysis of our proposed methods and SOTA approaches.

From: Multi-scale convolutional transformer network for motor imagery brain-computer interface

Methods

Preprocessing

Augmentation

Architecture

Parameters

Accuracy %

2a

2b

2a

2b

Shallow ConvNet 201720+

STD

S & R

SSCNN

46.1 k

10.8 k

75.15

85.30

Deep ConvNet 201720+

STD

S & R

SSCNN

283.3 k

268.6 k

77.75

83.28

EEGNet 201824+

STD

S & R

SSCNN

2.9 k

2.1 k

77.39

87.41

MMCNN 202135

STD

SW & GN

MSCNN + SE

90.3 k

90.3 k

81.43

84.40

MBEEGNet 202236+

STD

S & R

MSCNN

7.1 k

4.7 k

78.69

84.48

MSNet (proposed)

STD

S & R

MSCNN

8.6 k

5.3 k

79.23

86.18

Conformer 202340

BPF & STD

S & R

SSCNN + Transformer

789.6 k

759.2 k

78.66

84.63

ADFCNN 202443

BPF & EEMS

-

MSCNN + Transformer

5.4 k

3.0 k

79.39

87.81

MSCFormer (proposed)

STD

S & R

MSCNN + Transformer

145.9 k

144.9 k

82.95

88.00

  1. The bold values indicate the best results. The method marked with plus sign (+) are reimplemented.