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Advancements in medical technology have extended long-term electrocardiogram (ECG) monitoring 
from the traditional 24 h to 7–14 days, significantly enriching ECG data. However, this poses 
unprecedented challenges for physicians in analyzing these extensive datasets. While artificial neural 
networks have shown great potential in the automatic recognition of arrhythmias and are gradually 
being adopted widely, their effectiveness still requires rigorous evaluation in clinical applications. 
Although there have been many research on the evaluation of atrial fibrillation recognition 
performance, systematic evaluation of automatic detection algorithms for prolonged RR interval(RRI) 
remains lacking. This study aims to comprehensively evaluate these algorithms based on convolutional 
neural networks (CNN). We collected 480 single-lead long-term dynamic ECG records from our 
hospital, all from patients with prolonged RRI. Both CNN algorithms and manual analysis methods 
were used to analyze the ECGs, with manual analysis serving as the gold standard for performance 
evaluation. Results indicated that the CNN algorithm achieved an average recall rate of 98.41%, an 
average precision of 98.68%, and an average F1 score of 98.54%. These metrics demonstrate that 
CNN algorithms can meet the clinical demands for recognizing prolonged RRI, thereby enhancing 
physicians’ confidence, especially when dealing with large volumes of RRI data. AI provides invaluable 
support for quantitative analysis and significantly improves diagnostic efficiency. This evaluation offers 
a reliable basis for deploying single-lead intelligent monitoring devices in households, communities, 
nursing homes, and other settings.

The dynamic electrocardiogram(ECG) is long-term, noninvasive and has a high detection rate for arrhythmias1. 
There are no special contraindications to its operation, so it is widely used in clinical practice. The RRI of the 
ECG, which refers to the distance between two R peaks on the ECG, refers to the time interval between two 
ventricular muscle depolarizations2,3. Under normal circumstances, the R-R interval should be between 0.6 and 
1 s, corresponding to a heart rate of 60 to 100 beats per min4–6. Compared to sinus rhythm, a significantly 
prolonged R-R interval is more likely to cause other arrhythmias, and the standard RRI ≥ 2s is widely used in 
clinical practice7–9, When the RRI is too long, it may lead to a series of adverse effects and disadvantages10,11. A 
prolonged R-R interval reflects issues with cardiac rhythm and conduction system, such as sinus bradycardia, 
sinus arrest, atrioventricular block (AVB) (especially second-degree to third-degree AVB), atrial fibrillation, 
or atrial flutter12. The most direct manifestation of a prolonged RRI is bradycardia, which refers to a heart rate 
below the normal range13. This can lead to a decrease in heart pumping function, which in turn affects the blood 
supply of the whole body, and may lead to symptoms such as dizziness and maurosis14,15. Long-term ambulatory 
ECG monitoring is essential to record variations in cardiac electrical activity and is particularly significant for 
detecting prolonged RRI.

In evaluating patients with suspected bradycardia, dynamic ECG monitoring is recommended to correlate 
rhythm disturbances with symptoms. This monitoring enables clinicians to diagnose underlying cardiac 
conditions, assess the severity of the condition, and develop personalized treatment plans. Pacemaker implantation 
is indicated for symptomatic patients with the bradycardia-tachycardia form of sinus node dysfunction to 
correct bradyarrhythmias and allow pharmacological treatment, unless ablation of the tachyarrhythmia is 
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preferred16. It is also indicated for atrial arrhythmias (mainly atrial fibrillation) and permanent or paroxysmal 
third- or high-degree AVB regardless of symptoms17. Furthermore, spontaneous documented symptomatic 
asystolic pause ≥ 3 sec or asymptomatic pause ≥ 6 sec due to sinus arrest or AVB are Class IA indications for 
the implantation of dual chamber pacemakers18. Early detection of prolonged RRI is crucial to determine the 
need for pacemaker implantation, as delayed treatment can lead to decreased cardiac function, syncope, or other 
severe cardiac problems. Through continuous monitoring, doctors can continuously assess the electrical activity 
and rhythm of the heart, allowing them to make timely decisions. The timely implantation of a pacemaker can 
not only effectively correct cardiac rhythm problems but also significantly improve the patient’s quality of life 
and prognosis.

When the RRI is too long to some extent, such as exceeding 3 sec, it can lead to an insufficient blood 
supply to important organs such as the brain, which in turn can cause syncope or even a transient loss of 
consciousness19,20. This situation is particularly common in older people or patients with severe heart disease. 
In addition, prolonged RRI can be one of the manifestations of various arrhythmias, such as atrioventricular 
block, complete heart block, sinus arrhythmia, etc21–23. These arrhythmias can further aggravate the burden 
on the heart, increase the risk of serious events such as cardiac arrest, and increase the risk of coronary heart 
disease, heart failure, and other cardiovascular diseases, thus affecting clinical treatment7. Artificial intelligence 
algorithms have been extensively researched in many fields24,25, and have also attracted widespread attention in 
the field of medical treatment and health care. There have been many artificial intelligence algorithms for the 
prediction of arrhythmias in academia and industry. Kwon et al.26 used deep learning technology to predict 
cardiac arrest, and LEE et al.27 used machine learning models to predict cardiac arrest in real time. Andrew 
et al.28 used deep learning models to classify various arrhythmias. The application of artificial intelligence has 
improved the precision and efficacy of cardiac disease diagnosis through the development of advanced ECG 
recognition and prediction algorithms. Using deep learning techniques, artificial intelligence enables high-
resolution diagnostics, real-time monitoring and alerting, and efficient processing of large-scale datasets.

Although the application of artificial intelligence in the field of ECG analysis is gradually emerging as a cutting-
edge technology, its popularization in actual clinical settings and medical institutions still faces challenges, 
mainly due to the so-called “black box” problem29. This dilemma limits the transparency and interpretability of 
algorithms, which in turn hinders doctors’ full trust in artificial intelligence(AI) models. To break this deadlock, 
the academic community has begun to explore the fit and consistency between the automatic analysis results 
of convolutional neural networks(CNN) algorithms and the traditional manual analysis results of doctors, in 
an effort to verify the effectiveness and reliability of the former. Hennings et al.30 took an important step in this 
direction. They compared the estimation results of the atrial fibrillation burden in ambulatory ECG recordings 
between artificial intelligence algorithms and manual evaluation, and found that the two were highly consistent, 
thus strongly demonstrating the accuracy and efficiency of artificial intelligence-based tools in assessing atrial 
fibrillation burden. They proposed a novel and powerful candidate for this assessment method. Building on this 
foundation, this article delves deeper into the accuracy of artificial intelligence algorithms in predicting long 
RRI, and thoroughly examines the consistency between the algorithm’s predictions and the longest RRI obtained 
through clinical standard methods. Furthermore, we aim to uncover the multiple causes of long RRI diseases 
and systematically evaluate the classification performance of artificial intelligence algorithms to distinguish 
these different causes, in order to provide a more comprehensive theoretical foundation and practical guidance 
for the technical application in this field.

Subjects and methods
Introduction to data and assessment methods
The diagnostic criterion for long RRI on an ECG is defined as the presence of at least one significantly prolonged 
RRI that exceeds the 2 sec threshold7. According to statistics, from August 12, 2020, to March 27, 2024, our 
hospital recorded a total of 3148 Holter ECG cases of 7 days (ECG-P01 Holter ECG recorder, Proton Technolog, 
Hangzhou), among which 480 cases had RRI ≥ 2.0 sec, representing 15% of all Holter ECGs of 7 days. This 
proportion underscores the importance of paying attention to the persistent effects of long RRI.

During the data annotation process, we used a multistage verification strategy for the data preliminarily 
analyzed to ensure the quality of the data annotation, as shown in Fig. 1. Initially, Doctors A and B, each with 
over five years of experience, independently conducted preliminary annotations, focusing particularly on the 
identification and classification of long RRI (ie, prolonged RRI of the ECG). If their annotations for long RRI 
were consistent, the result was considered a high quality output and directly included in the ground truth data 
set. This step aimed to ensure the high accuracy and reliability of the ground truth dataset. Conversely, if Doctors 
A and B disagreed on the annotation of long RRI, the data were forwarded to the third stage for review and final 
determination by Doctor C, who has over ten years of professional experience. Doctor C’s involvement aimed 
to resolve discrepancies between the first two doctors, providing authoritative and accurate annotations for 
controversial data through their profound professional knowledge and extensive experience, thereby further 
enriching and improving the content and quality of the ground-truth dataset. This process not only reflects the 
rigorous pursuit of annotation accuracy, but also underscores the importance of data rigor and reliability in 
scientific research.

This analysis relied on the industry-leading CarePatch dual-electrode single-channel monitoring device, 
which has undergone rigorous validation and obtained Class II medical device certification from the National 
Medical Products Administration (CFDA) (Registration Certificate No.: Zhe Med Device Reg No. 20202070050). 
The device model is ECG-P01, which features a sampling rate of 256 Hz, 12-bit ADC resolution, and the ability 
to operate continuously for 168 h, guaranteeing precision and dependability of data acquisition. Except for 
special circumstances, the device is worn with a 45-degree tilt, as shown in Fig. 2. During wear, patients are 
allowed to briefly remove the ECG recorder only when absolutely necessary. Our hospital encourages patients 

Scientific Reports |        (2025) 15:11912 2| https://doi.org/10.1038/s41598-025-96622-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to maintain their daily routines while wearing the device to obtain ECG data that are closest to real-world 
conditions. To efficiently and accurately identify these long RR events, we introduced cloud-based AI_ECG 
software as an analytical tool. The artificial intelligence algorithm utilized by this analysis tool is based on the 
CNN approach, with a model structure similar to that referenced in31, distinguished by the alteration of the 
data input layer from multilead to single-lead. Subsequent to the input layer of the model are three parallel 
convolution blocks, each comprising three layers of neural networks. Each layer encompasses a one-dimensional 
CNN layer, a Batch Normal layer, and a max-pooling layer. The three blocks employ different expansion rates. 
This software also has Class II medical device certification from the CFDA (Registration Certificate No.: Zhe 
Med Device Reg No. 20232211205), specializing in automatically screening for critical ECG abnormalities such 
as long RRI from massive Holter ECG data. Figure 3 presents the interface of this analysis software, whose core 
algorithm is deeply developed and trained based on the vast data accumulated by the CarePatch dual-electrode 
single-channel monitoring device independently developed by Hangzhou Proton Technology Co., Ltd., ensuring 
the precision and cutting-edge nature of the analysis results. This study was approved by the Ethics Committee 
of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Approval No. 20241051NI). Informed 
consent was waived due to the retrospective nature of the study. The study was conducted in accordance with 
the Declaration of Helsinki.

Data statistics
The total duration of 480 records reached 93,165.17 h (approximately 3882 days), with an average monitoring 
duration of 147.88 h (6.16 days) per patient and a standard deviation of 22.42 h. As shown in Fig. 4a, the 
percentage of different recording durations in the total ECG data recording is shown in days. Data with a 
recording duration of 6–7 days account for 62%, 5–6 days account for 25%, and data with a recording duration 
of less than or equal to 3 days only account for 1%. 87% of the patients wear the device for more than 5 days. The 
age range for patients with long RR is 19–93 years old (64±13), with a significant age range, reflecting the broad 
representation of the study population. The age distribution is shown in Fig. 4b. Patients with long RR before 
the age of 60–70 and 70–80 account for 60%. In terms of gender composition, there are 284 males, representing 
59.17%, while there are 196 females, representing 40.83%. As shown in Fig. 4c, this ratio distribution reflects the 
relative balance of gender in the research sample. It is particularly noteworthy that most patients with long RR 
have a maximum RRI of no more than 3 sec, as shown in Fig. 4d, the distribution of the long RR duration. 81% 
of the patients have a long RR of less than 3 sec, while 15% of the 62 records show that the RRI exceeds 3 sec but 
does not exceed 6 sec. There are 4% of the 30 RRI records that exceed 6 sec.

Fig. 2.  Chest wearing diagram.

 

Fig. 1.  Flow chart of data labeling.
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Analysis method
In this study, we compared the results of long RR occurrences on long-term dynamic ECG manually analyzed by 
doctors with those automatically analyzed by artificial intelligence algorithms. We evaluated the consistency of 
the longest RRI with the data obtained by the long RR detection tool of the artificial intelligence algorithm using 
the Pearson correlation coefficient and the Bland-Altman plot.

Analysis indicators for algorithm accuracy
We use the long RR results manually analyzed by physicians as the gold standard, and the long RR results 
automatically analyzed by algorithms as the control results. We measure the performance of long RR analysis 
results using commonly used algorithm analysis metrics in the field of artificial intelligence. The main indicators 
include True Positives (TP), False Positives (FP), False Negatives (FN) and three performance metrics derived 
from these basic parameters: Precision (Prec), Sensitivity (Se), and F1 score (F1). The specific formulas are 
shown in Eq. (1).

	
P rec = T P

T P + F N
Se = T P

T P + F P
F 1 = 2 ∗ P rec ∗ Se

P rec + Se
� (1)

Indeed, TP represent the number of samples that are correctly predicted by the algorithm model as long RR 
when they actually are long RR. FP refers to the number of samples that are incorrectly predicted by the model 
as long RR when they are actually not long RR, that is, the number of false positives (misclassified long RR). FN 

Fig. 4.  Data distribution diagram, (a) is the distribution diagram of recording time, (b) is the distribution 
diagram of age, (c) is the ratio of male to female, and (d) is the duration of long RRI.

 

Fig. 3.  Interface of doctor analysis software.
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represents the number of samples that the model incorrectly predicted as not long RR when they are actually 
long RR, that is, the number of false negatives (missed long RR).

Consistency analysis indicator for the longest RRI time
We evaluated the agreement between the two techniques for the most extracted features using Pearson’s 
correlation coefficients and Bland-Altman plots. Consistency assessment of long RRI. Pearson correlation 
coefficient is a statistic that measures the degree of linear correlation between two variables X and Y. The value 
of this coefficient is between −1 and 1, where 1 indicates a perfect positive correlation, −1 indicates a perfect 
negative correlation, and 0 indicates that there is no linear correlation but that it may have other types of 
correlation, such as nonlinear correlation. The formula is shown in eq.2

	

r =
∑n

i=1(Lrrii − Lrri)(LrriAIi − LrriAI)√∑n

i=1(Lrrii − Lrri)2
√∑n

i=1(LrriAIi − LrriAI)2
� (2)

Where Lrrii and LrriAIi are the observed values of the annotated longest RRI (Lrri) and the longest RRI 
analyzed by the artificial intelligence algorithm (LrriAI), respectively. Lrri and LrriAI  are the corresponding 
mean values and n is the number of observations, which is 480 in this study. The Bland-Altman plot32 is a 
graphical tool used to evaluate the agreement between two methods of measuring continuous variables, also 
known as a difference mean plot or difference plot. This graphical tool has widespread applications in medical 
experiments, data analysis, biomedical research, and the evaluation of machine learning algorithms30,33. The 
Bland-Altman plot is presented in the form of a scatter plot, which visually displays the agreement between two 
measurement methods by plotting the difference between the measurement results of the two methods against 
their mean. Each point on the Bland-Altman plot represents a measurement object, with the horizontal axis 
typically representing the mean of the two measurement results (predicted and actual values), and the vertical 
axis representing the difference between these two measurement results.

The central solid line in the plot represents the mean difference of all sample points. The upper and lower 
dashed lines represent the 95% Limits of Agreement (95% LoA), which are calculated as the mean difference 
± 1.96 times the standard deviation, as shown in Eqs.(3) and (4). Here, up95 and down95 represent the upper 
and lower limits of agreement, respectively, and the lines corresponding to these values constitute the primary 
reference range to evaluate the agreement between the two measurement methods. rriDiff i represents the 
difference between the two sets of values, and µrriDiff  represents the mean of the differences between the two 
sets of values.

	

up95 =
∑n

i=1 rriDiff i

n
+ 1.96 ∗

√√√√ 1
N

N∑
i=1

(rriDiff i − µrriDiff )2 � (3)

	

down95 =
∑n

i=1 rriDiff i

n
− 1.96 ∗

√√√√ 1
N

N∑
i=1

(rriDiff i − µrriDiff )2 � (4)

Result
Comparison between the results of automatic analysis by artificial intelligence algorithm and 
manual analysis by doctors
Based on detailed algorithm evaluation criteria, we systematically summarized the recognition performance for 
long RRI covering RRI ≥ 2s, RRI ≥ 3s, and RRI ≥ 6s. The detailed results are shown in Table 1. From the 
data in the table, it can be clearly observed that for RRI ≥ 2s, the precision and recall rate are as high as 98.6796 
and 98.4106%, respectively, which can classify the vast majority of samples into their respective categories, 
highlighting the model’s superior performance in complex classification tasks. At the same time, the F1 score 
reached 98.5448%, perfectly balancing precision and recall, further confirming the stability and reliability of 
the model. Further analysis of the recognition results of RRI ≥ 3s shows that the precision rate of long RRI 
remains at a high level of 95.6352%, the recall rate is 97.7483%, and the F1 score also reaches 96.6802%. This 
indicates that the model also performs well when dealing with longer RRI, ensuring both comprehensiveness 
and precision in recognition. For the longer RRI with RRI ≥ 6s, the model exhibits excellent zero-miss 
characteristics, with a recall rate of 100%. Although the precison slightly decreases to 92.5373%, the F1 score 
remains at a high level of 96.1240%, indicating that the model faces certain challenges in identifying longer RRI, 
but overall performs robustly, not missing any longer RRI, with only a few minor misjudgments. It is worth 

RRI TP FP FN Prec (%) Recall (%) F1 (%)

≥ 2s 248264 3322 4010 98.6796 98.4105 98.5448

≥ 3s 4645 212 107 95.6352 97.7483 96.6802

≥ 6s 62 5 0 92.5373 100 96.1240

Table 1.  Indicators of long RRI identified by CNN algorithms under different standards.
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noting that compared with the cases of RRI ≥ 2s and RRI ≥ 3s, the cases of RRI ≥ 6s was significantly 
reduced, with only five misclassified long RRI events and no missed identifications. This further highlights the 
stability and practicality of the model under extreme conditions. We also compared the long RR results of the 
initial analysis of the physicians with those of the AI analysis, as shown in Fig. 5. The result of the initial analysis 
of doctors is about 1% higher than that of the AI analysis, indicating that the results of the AI analysis are 
relatively close to the preliminary analysis results of doctors and can replace doctors in certain medical scenarios 
to complete the screening work for the long RR of patients, and the results are relatively reliable. Although 
the absolute number of FP and FN is relatively small compared to the number of TP, it is still necessary to pay 
attention to the possible impact of these erroneous predictions in practical applications, especially in scenarios 
where strict requirements are placed on the prediction results. In summary, this long-range RR classification 
model has shown good classification performance on the given dataset.

Consistency analysis of the longest RRI
The longest RRI is a key indicator on the ECG, which measures the maximum time interval between two 
heartbeats. This indicator is of great importance for evaluating cardiac function and rhythm status. In this 
study, we first analyzed the linear relationship between the longest RRI (longestRR) and the corresponding 
CNN algorithm’s longest RRI (longestRRAI) using the Pearson correlation coefficient. The results of the analysis 
showed that the Pearson correlation coefficient R between the two was 0.9412 (p<0.001), indicating a strong 
positive correlation between longestRRAI and longestRR, and this relationship was statistically highly significant. 
In addition, we further analyzed the consistency between the longest RRI automatically analyzed by the CNN 
algorithm and the longest RRI manually analyzed by the doctor through the Bland-Altman plot dimension. In 
Fig. 6, it can be seen that the distribution of the data points is horizontally banded, indicating that there is no 
obvious linear relationship between the measurement difference and the mean value. Most of the sample points 

Fig. 6.  The Bland-Altman plot for the longest RRI, where the blue line represents the mean of the differences 
and the red line represents the 95% consistency limit.

 

Fig. 5.  Comparison of the indicators of long RR between doctors’ initial analysis and CNN algorithm analysis.
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fall within the consistency limit 95%, while a small number of points are outside the consistency range. The bias 
of the Bland-Altman analysis is 0.05 (95% consistency limit is − 0.55 to 0.65).

Different causes of prolonged RRI
Prolonged RRI can reflect abnormalities in cardiac rhythm, and a detailed analysis of the various causes of 
prolonged RRI is crucial for clinical diagnosis and treatment. Figure 7 presents 15 different causes of prolonged 
RRI and their respective proportions among 480 data records. It is important to note that if a patient exhibits 
multiple causes of prolonged RRI, each cause is counted separately. Furthermore, prolonged RRI following 
compensatory pauses after premature beats include those after atrial premature beats, ventricular premature 
beats, and non-conducted atrial premature beats.

As evident in Fig. 7, sinus arrest and compensatory pauses after premature beats are the main causes of 
prolonged RRI, accounting for a significant proportion of all cases. This highlights the need to pay special 
attention to sinus arrest and compensatory pauses after premature beats in clinical practice. Subsequent causes, 
such as prolonged RRI in atrial fibrillation, second- to third-degree atrioventricular block, global cardiac arrest, 
and marked sinus arrhythmia, although less frequent in number, are still important factors contributing to 
prolonged RRI and should not be overlooked.

To investigate whether there is a difference in the indicators of artificial intelligence algorithms to analyze the 
extension of RRI caused by different reasons, we evaluated the classification performance of the algorithms for 
each reason. Table 3 shows the precision, recall and F1 classification score for each reason.

From the comprehensive index of the F1 score, the three main reasons for the highest classification 
performance are the moderate to high sinus node block F1 = 99.51%, severe sinus arrhythmia F1 = 98.95%, 
and the compensatory interval after atrial tachycardia F1 = 98.92% In contrast, the result of the classification of 
prolongation of RRI caused by termination of atrial fibrillation is relatively low, F1=95.75%. This suggests that 
when long RRI occur due to the termination of atrial fibrillation, special attention should be paid to verify the 
indicators of the CNN algorithm classification. In general, this analysis emphasizes the importance of validating 
the performance of CNN algorithms in different causes of prolongation of the RRI to ensure precision of the 
clinical diagnosis.

Fig. 7.  The proportion of different causes of long RR. The horizontal axis in the figure is the number of cases, 
and the vertical axis is the cause of occurrence. The abbreviated description is shown in Table 2.

 

Abbreviation Description

SA Sinus arrest

APBCP After premature beat compensatory pause

LRDAF Long RRI during atrial fibrillation

STDAB Second- to third-degree atrioventricular block

GCA Global cardiac asystole

MSA Marked sinus arrhythmia

CPAAT Compensatory pause after atrial tachycardia

SHDSB Second- to high-degree sinoatrial block

VA Ventricular asystole

HP Hypofunction of pacemaker

ATAF After termination of atrial fibrillation

JEB Junctional escape beat

VEB Ventricular escape beat

AEB Atrial escape beat

VTCI After termination of ventricular tachycardia

Table 2.  Abbreviations of the causes of prolonged RRI and their corresponding descriptions.
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Analysis of RRI longer than 3 seconds
Among the 480 cases with long RRI in this study, there were 91 cases with long RRI of ≥ 3.0 sec, including 18 
cases with long RRI of ≥ 6.0 sec, and the longest was 17.20 sec. As shown in Fig. 8, 52 cases with long RRI ≥ 3.0 
sec and 24 h ≥ 3.0 times triggered dynamic ECG critical value reporting, the standard for critical values refers 
to the “Zhejiang Province Electrocardiogram Critical Value Standard Trial Version”34.

In ECG diagnosis, an R-R interval of ≥ 3.0 sec is defined as ventricular arrest. If it is accompanied by a P-P 
interval of ≥ 3.0 sec, the diagnosis is complete heart arrest. According to cause statistics, among the causes of 
the RRI ≥ 3.0 sec long, 39 cases were sinus arrest (42.85%); The critical value represents 46.15%; 31 cases of 
paroxysmal atrial fibrillation were terminated, accounting for 34. 07%, and the critical values represented 42. 
31%. The number of cases with long RR caused by compensatory intermittence is relatively high at 2 sec, while 
the proportion of cases with long RR at 3 sec or more is almost nonexistent. For patients with frequent sinus 
arrests that last more than 3 sec, it is necessary to actively investigate the cause and provide timely treatment. If 
necessary, an artificial cardiac pacemaker can be implanted; Patients with paroxysmal atrial fibrillation should 
actively control the occurrence of atrial fibrillation through medication or radiofrequency ablation surgery to 
prevent complete cardiac arrest during the termination of atrial fibrillation. For cases that trigger the reporting of 
critical values, it is important to contact patients as soon as possible and remind them to seek medical attention 
promptly to prevent further adverse cardiac events. The value of F1 of the AI analysis for long RRI greater than 
3 sec is 96.6802%, the statistical results are better than expected, and the AI analysis can provide effective and 
reliable help for the manual analysis of physicians, reducing the analysis time. It is believed that with further 
improvement of AI analysis accuracy, in future long-term dynamic reports provided by AI analysis will include 
quantitative data on RRI. The focus of manual analysis can be shifted towards qualitative cause analysis for long 
RRI. AI and manual analysis complement each other to improve efficiency, ensure quality and quantity, and 
better serve clinical needs.

Discussion
During the long-term acquisition process of the ECG signal, complex external environments often interfere with 
the signal, resulting in interference in the ECG signal, and there are many cases of missed or false judgments 
in the recognition of the R peak35,36. In clinical practice, the discovery of long RRI is made mainly by doctors 
manually calibrating heartbeats through dynamic ECG records, and supplementing and deleting heartbeats is 
very time-consuming, especially for patients with multiple long RR episodes. Long-term ECG data can help 
detect more arrhythmias, but long-term ECG data means more medical staff and medical resources. Therefore, 
a long RR assessment algorithm based entirely on artificial intelligence without excessive human reading is 
desirable, which will effectively aid in routine analysis of long RRI in clinical practice37,38. This article compares 
the accuracy of long RR automatically analyzed and manually analyzed by artificial intelligence algorithms in 
480 long-term ECG data, obtaining a precision of 98.6796% and a recall rate of 98.4105%. The consistency of the 
longest RRI obtained by the two methods is compared and most of the sample points fall within the consistency 
limit 95%. Through our thorough and meticulous analysis, we have discovered an intriguing phenomenon in 
the delicate zone where the RRI approaches the critical threshold of 2 sec: a certain divergence emerges between 

Fig. 8.  Classification of causes for RRI ≥ 3 sec, with the vertical axis representing the number of cases and 
the horizontal axis representing the abbreviated causes of occurrence. Descriptions of the abbreviations can be 
found in Table 2.

 

Index (%) SA APBCP LRDAF STDAB GCA MSA CPAAT SHDSB VA HP ATAF JEB

precision 98.69 98 98.5 99.23 97.89 99.41 98.41 99.58 97.14 98.43 97.81 97.83

recall 98.87 95.93 97.53 98.51 98.37 98.5 99.44 99.44 98.17 97.6 93.78 98.63

F1 98.78 96.95 98.01 98.87 98.13 98.95 98.92 99.5 97.65 98.01 95.75 98.23

Table 3.  Algorithm indicators for long RR recognition with different reasons. • The abbreviated description is 
shown in Table 2
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the professional annotations of doctors and the predictive outcomes of artificial intelligence algorithms. Upon 
further exploration of the causes of false positives and false negatives, we have summarized the following points.

	(1)	 Interference from signal disturbances: Minor disturbances in the signal constitute another significant fac-
tor that contributes to false positives. In such scenarios, while doctors can rely on experience to discern 
possible long RRI or interference-caused misjudgments, CNN algorithms occasionally fail in the automatic 
analysis process, unable to accurately differentiate between genuine and disruptive signals, as depicted in 
Fig. 9.

	(2)	 Challenges posed by artifact heartbeats: The unique physiological and pathological characteristics of certain 
diseases or the properties of certain devices can lead to artifact heartbeats, as shown in Fig. 10, which can 
lead to missed detections and false negatives in long RRI algorithms. Artifact heartbeats that occasionally 
appear in specific interference or disease states require enhancing the algorithm model through specific 
methods to address this phenomenon.

In summary, although CNN algorithms perform well in most cases, more optimization is needed when dealing 
with extreme or special situations to improve their completeness and accuracy. Of course, improving the anti-
interference ability of recording equipment and improving the recognition rate of AI for interference can further 
improve the accuracy of AI recognition.

Conclusion
This study provides a comprehensive evaluation of an automatic detection algorithm for prolonged RRI (≥ 2s
) in long-term single-lead ECG signals based on CNN algorithms. Initially, the efficiency and precision of the 
algorithm in identifying prolonged RRI caused by various factors were verified. This study not only confirms 
the tremendous potential of AI technology in automated ECG analysis, but also offers physicians a powerful 
quantitative analysis tool and significantly improves diagnostic efficiency and reduces the workload of medical 
personnel. Physicians can focus their limited time on analyzing the causes of prolonged RRI, as reflected in 
long-term dynamic reports. The combination of artificial intelligence and human expertise is expected to play 
an increasingly broad and in-depth role in future medical monitoring. In summary, this study establishes a solid 
foundation for the clinical application and promotion of automatic detection algorithms for prolonged RRI, 
highlighting its important practical significance and broad application prospects.

Data availability
The data supporting this study’s findings are available from the corresponding author upon request.
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