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The current study aimed to obtain the estimates of heritabilities and genetic correlations and the 
prediction abilities and accuracy of Bayesian GBLUP and Bayesian alphabet (BayesA, BayesB, BayesC) 
models for total and individual monounsaturated, polyunsaturated and saturated fatty acids from 
Canadian Holstein cows by using genome-wide SNP markers from genotyping-by-sequencing method. 
The heritability estimates were obtained from Bayesian GBLUP and Bayesian alphabet models. They 
ranged from 0.61 to 0.67 for total monounsaturated, from 0.35 to 0.45 for polyunsaturated and from 
0.51 to 0.60 for saturated fatty acids, respectively. For thirty-three individual monounsaturated, 
polyunsaturated and saturated fatty acids, the heritability estimates ranged from 0.27 to 0.69 for 
individual monounsaturated, from 0.27 to 0.68 for individual polyunsaturated and from 0.35 to 0.69 
for individual saturated fatty acids. These results indicated that total and individual monounsaturated, 
polyunsaturated and saturated fatty acids were under moderate genetic control and can be improved 
through genomic selection. The estimates of genetic correlations among total and individual 
monounsaturated, polyunsaturated and saturated fatty acids showed a moderate to high genetic 
relationships and pointed out the need for consideration of genetic relationships in successful genomic 
selection for fatty acids traits. The accuracies of BayesC and BayesA models were similar and better 
than that of GBLUP and BayesB models which indicated that fatty acids were determined by many 
genes having non-null effects, which are assumed to follow a univariate or multivariate Student’s t 
distribution.
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Bovine milk is an important source of nutrients in human nutrition and fat is one of the main components in 
bovine milk. Milk fat contains a large number of individual fatty acids (FA) which can be identified based on 
their number of carbons, the saturation of their carbon chain, and the conformation of double bonds. Milk 
fat consists of around 70% of saturated FA (SFA), 25% monosaturated FA (MUFA), and 5% polyunsaturated 
FA (PUFA)1. Milk FA composition is one of the most important aspects of milk nutritional quality and has 
gained the interest of manufacturers and consumers as it influences nutritional, physical and flavor properties 
of dairy products2. The increasing consumer interest on the nutritional quality of dairy product pushes toward 
the inclusion of fine milk composition traits among breeding goals of dairy cattle. In particular, milk PUFA like 
isomers of C18:2n9c11t and C18:2n10t12c (Conjugated linoleic acid), C20:4n6 (Arachidonic acid), C20:5n3 
(Eicosapentanoic acid) and C22:5n3 (Docosapentaenoic acid) have known positive associations with a range 
of human health conditions like cardiovascular diseases, anticancer effects, antiadipogenic, antiatherogenic, 
antidiabetogenic and anti-inflammatory3,4. For these reasons, dairy producers are looking for ways to optimize 
milk beneficial components. Genetic variability of FA indicates the possibility of using genomic selection to 
improve milk traits5.
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Studies in dairy production system were carried out looking for efficient strategies to optimize milk beneficial 
components such as milk fatty acids. They indicated that the milk FA composition can be modified by altering 
dietary or feeding supplementation in the dairy production system6–8; however, genetic improvement for milk 
fatty acids through genomic selection can provide better permanent alterations compared with the dietary 
changes in the milk fatty acid profile. The studies on FA indicated that FA composition in bovine milk could 
vary among dairy breeds, herds and cows9–11 and be affected by environmental factors, especially dairy cows’ 
ration12–14 and genetic factors6,10,15. The genetic variability for FA is an important characteristic to modify the 
FA composition in bovine milk through breeding methods. Heritability is a well-known genetic parameter 
indicating the proportion of the genetic variation to the total variation. Genomic selection programs require 
to obtain the estimates of genetic parameters (heritability and genetic correlation) of traits and the accuracy of 
breeding values of animals from the models used in genomic selection.

Therefore, recent studies have focused on estimating genetic parameters of major milk FA by using pedigree-
based BLUP models for Korean Holstein cattle16, for New Zealand dairy cattle17, for Italian Brown Swiss cows18, 
genome-based BLUP model for Danish Holstein cattle19 and for North American Holstein cattle20 and have 
indicated the existence of genetic variability among cows with respect to milk fatty acids.

The accuracy of breeding values is key to the successful application of genomic selection in animal breeding. 
The aims of this study were (1) to investigate the genetic relationship between FA within MUFA, PUFA and 
SFA groups by estimating of genetic correlations from the Bayesian bivariate Genomic Best Linear Unbiased 
Prediction (GBLUP) and (2) to compare the predictive ability and accuracy of the Bayesian univariate GBLUP 
and Bayesian alphabet models by estimating heritability for milk FA within MUFA, PUFA and SFA groups from 
Canadian Holstein cows randomly allocated to the training and cross-validation datasets. Results from this 
endeavor will positively impact the genomic selection approach in livestock and improve accuracies for selecting 
animals that will produce more nutritious milk for human consumption.

Results
Descriptive statistics of fatty acids
Descriptive statistics of the total and individual FA traits in MUFA, PUFA and SFA (% total FA) are given in 
(Table 1). Total SFA made up 71.20% (on average 68.568 with the range of 56.215 to 77.283% total FA) of total 
FA, while total MUFA and PUFA represented 25.30% (on average 24.513 with the range of 16.894 to 33.740% 
total FA) and 3.50% (on average 3.370 with the range of 2.002 to 5.375% total FA) of total FA in Canadian 
Holstein cows, respectively.

As seen in (Table 1), the most abundant individual FA (on average) in SFA were C16:0 (34.589), C14:0 (12.643) 
and C18:0 (9.371% total FA), respectively and they consisted of 36.07% (50.67%), 13.17% (18.49%) and 9.70% 
(13.63%) of total FA (total SFA). In addition, the means of C12:0, C10:0, C15:0 and C6:0 were 3.599, 2.703, 1.147 
and 1.008% total FA, and they represented 3.75% (5.27%), 2.81% (3.95%), 1.20% (1.68%) and 1.05% (1.48%) of 
the total FA (total SFA). However, C4:0, C8:0, C11:0, C13:0, C17:0, C20:0, C22:0, C23:0 and C24:0 in SFA with 
the mean of lower than 1.000 g/100 g total FA represented relatively low proportion (< 1% each) of the total FA.

In MUFA, Oleic acid with mean of 19.787% total FA had 20.55% of the total FA which was the most prominent 
in MUFA with 81.19% of the total MUFA. In addition, C16:1t, C14:1t and C18:1n11t with the means of 1.807, 
1.058 and 0.987% total FA made up 1.87% (7.39%), 1.08% (4.28%) and 1.01% (4.00%) of the total FA (total 
MUFA). However, C14:1, C16:1 and C18:1n9t in MUFA represented less than 1% of the total FA.

In PUFA, C18:2n6cc with the mean of 1.831% total FA was the most abundant individual PUFA which 
made up 1.91% of the total FA and 54.65% of the total PUFA. However, C18:2n6tt, C18:2n9c11t, C18:2n10t12c, 
C18:3n3, C183tcc, C20:3n6, C20:4n6, C20:5n3 and C22:5n3 in PUFA with the mean of lower than 1.000% total 
FA represented relatively low proportion (< 1% each) of the total FA.

Estimates of phenotypic and genetic correlations
A total of 630 phenotypic and genetic correlations with standard errors between the total and individual MUFA, 
PUFA and SFA for Canadian Holstein cows were presented in Table S1 in the supplemental file and those for FA 
within MUFA, PUFA and SFA groups presented by using blue and red colors indicating correlations from 1 to 
−1 were given in Figs. 1, 2 and 3, respectively.

As seen in Fig. 1, most of the phenotypic and genetic correlations for MUFA were positive. The very strong 
positive phenotypic (0.97) and genetic (0.97) correlations were obtained between total MUFA and Oleic acid 
which was expressed in 81.19% in total MUFA. There were moderate positive phenotypic (0.52) and genetic 
(0.48) correlations between total MUFA and C16:1t within MUFA. For individual MUFA, the phenotypic and 
genetic correlations were moderate positive between C14:1 and C16:1 (0.46 and 0.41, respectively), between 
C16:1t and C18:1n9c (0.46 and 0.41, respectively), C14:1t and C18:1n9t (0.43 and 0.46, respectively) and 
between C18:1n9t and C18:1n11t (0.59 and 0.56, respectively). However, moderate negative genetic correlations 
were observed between C16:1 and C18:1n9t (−0.42) and C18:1n11t (−0.43) acids and low negative phenotypic 
and genetic correlations between C14:1 and C18:1n9t (−0.14, −0.20, respectively), C18:1n11t (−0.25, −0.34, 
respectively), and between C16:1 and C14:1t (−0.27, −0.26, respectively).

For PUFA, as seen in Fig. 2, the phenotypic and genetic correlations between total and individual PUFA were 
mostly positive. Total PUFA resulted in positive phenotypic and genetic correlations ranging from 0.12 to 0.92 
with individual FA in PUFA.

The very strong positive phenotypic (0.91) and genetic (0.92) correlations were obtained between total PUFA 
and C18:2n6cc which was represented with high percentage (54.65%) in total PUFA. There were moderate 
positive correlations (0.40 and 0.70, respectively) between total PUFA and C18:3n3, C22:5n3, C20:3n6 and 
C18:3tcc within PUFA. For individual PUFA, the phenotypic and genetic correlations were moderate positive 
between C18:2n6cc and C18:3n3 (0.46, 0.45, respectively), C20:3n6 (0.40, 0.46, respectively), C20:4n6 (0.47, 0.41, 
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respectively), C22:5n3 (0.38, 0.46, respectively); between C18:2n9c11t and C18:3tcc (0.54, 0.55, respectively), 
between C18:2n10t12c and C20:5n3 (0.38, 0.42, respectively); between C18:3n3 and C20:5n3 (0.38, 0.64, 
respectively) and C22:5n3 (0.45, 0.45, respectively); between C20:3n6 and C20:4n6 (0.55, 0.62, respectively).

For SFA, there were negative correlations between total SFA and individual FA in SFA and between individual 
FA in SFA. The strong positive phenotypic (0.75) and genetic (0.72) correlations were obtained between total 
SFA and C16:0 which was represented with high percentage (50.67%) in total SFA. There were moderate positive 
correlations (0.40 and 0.70, respectively) between total SFA and C6:0 (0.39, 0.43, respectively), C8:0 (0.52, 0.54, 
respectively), C10:0 (0.57, 0.66, respectively), C12:0 (0.53, 0.60, respectively) and C14:0 (0.51, 0.56, respectively); 
however, negative low correlations with C17:0 (−0.01, −0.16, respectively), C18:0 (−0.25, −0.22, respectively) and 
C20:0 (−0.11, −0.05, respectively) within SFA.

For individual FA in SFA, in contrast to the phenotypic and genetic correlations between individual FA in 
MUFA and PUFA, strong/moderate positive phenotypic and genetic correlations were obtained for seven even-
numbered SFA, 0.93 and 0.92 for C10:0 and C12:0, respectively, 0.88 and 0.90 for C6:0 and C8:0, respectively, 0.87 
and 0.89 for C8:0 and C10:0, respectively, 0.66 and 0.83 for C20:0 and C22:0, respectively, 0.77 and 0.68 for C12:0 
and C14:0 (Myristic), respectively, 0.66 and 0.70 for C8:0 and C12:0, respectively, 0.69 and 0.69 for C4:0 and 
C6:0, respectively and for two odd-numbered SFA, 0.63 and 0.59 for C15:0 and C17:0, respectively, and 0.64 and 

Monounsaturated fatty acids (MUFA) Min Max Mean Sd % in Total % in MUFA

C14:1 (myristoleic acid) 0.121 0.678 0.311 0.125 0.33 1.29

C14:1t (myristelaidic acid) 0.271 1.825 1.058 0.281 1.08 4.28

C16:1 (palmitoleic acid) 0.198 0.468 0.304 0.051 0.32 1.25

C16:1t (palmitelaidic acid) 0.784 2.961 1.807 0.365 1.87 7.39

C18:1n9c (oleic acid) 11.014 29.833 19.787 3.000 20.55 81.19

C18:1n9t (elaidic acid) 0.014 0.473 0.234 0.103 0.24 0.95

C18:1n11t (trans vaccenic acid) 0.150 1.929 0.987 0.369 1.01 4.00

MUFA (total) 16.894 33.740 24.513 3.176 25.30 100.00

Polyunsaturated fatty acids (PUFA) Min Max Mean Sd % in Total % in PUFA

C18:2n6cc (linoleic acid) 0.974 2.988 1.831 0.414 1.91 54.65

C18:2n6tt (trans-linoleic acid) 0.061 0.316 0.176 0.049 0.18 5.18

C18:2n9c11t (cis-9 trans-11 CLA) 0.118 0.764 0.396 0.110 0.41 11.73

C18:2n10t12c (trans-10 cis-12 CLA) 0.001 0.032 0.016 0.006 0.02 0.48

C18:3n3 (alpha linolenic acid) 0.035 0.883 0.416 0.148 0.43 12.40

C18:3tcc (gamma linolenic acid) 0.049 0.172 0.111 0.022 0.12 3.30

C20:3n6 (dihomogamma linolenic 
acid) 0.023 0.176 0.095 0.027 0.10 2.84

C20:4n6 (arachidonic acid) 0.063 0.222 0.124 0.028 0.13 3.58

C20:5n3 (eicosapentanoic acid) 0.001 0.071 0.031 0.012 0.03 0.92

C22:5n3 (docosapentaenoic acid) 0.007 1.108 0.172 0.175 0.18 5.16

PUFA (total) 2.002 5.375 3.370 0.646 3.50 100.00

Saturated fatty acid (SFA) Min Max Mean Sd % in Total % in SFA

C4:0 (butyric acid) 0.375 1.238 0.796 0.130 0.83 1.16

C6:0 (caproic acid) 0.480 1.450 1.008 0.143 1.05 1.48

C8:0 (caprylic acid) 0.478 1.214 0.904 0.125 0.94 1.32

C10:0 (capric acid) 1.331 3.892 2.703 0.436 2.81 3.95

C11:0 (undecanoic acid) 0.103 0.366 0.239 0.045 0.25 0.35

C12:0 (lauric acid) 1.587 5.506 3.599 0.608 3.75 5.27

C13:0 (tridecylic acid) 0.201 0.727 0.448 0.077 0.47 0.66

C14:0 (myristic acid) 7.513 16.048 12.643 1.222 13.17 18.49

C15:0 (pentadecylic acid) 0.395 2.163 1.147 0.244 1.20 1.68

C16:0 (palmitic acid) 24.923 42.896 34.589 3.693 36.07 50.67

C17:0 (margaric acid) 0.498 0.873 0.649 0.067 0.68 0.95

C18:0 (stearic acid) 5.258 15.290 9.371 1.880 9.70 13.63

C20:0 (arachidic acid) 0.010 0.225 0.118 0.033 0.12 0.17

C22:0 (behenic acid) 0.021 0.088 0.054 0.013 0.06 0.08

C23:0 (tricosanoic acid) 0.001 0.043 0.021 0.010 0.02 0.03

C24:0 (lignoceric acid) 0.001 0.082 0.037 0.015 0.04 0.05

SFA (total) 56.215 77.283 68.568 3.731 71.20 100.00

Table 1.  Descriptive statistics of minimum (Min), maximum (Max), mean, standard deviation (Sd) and 
percentages of fatty acids (% total fatty acids).
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0.55 for C13:0 and C15:0 acids, respectively. However, moderate negative phenotypic and genetic correlations 
were obtained between C4:0 and C13:0 (−0.42, −0.29, respectively) and C15:0 (−0.43, −0.40, respectively) acids, 
between C18:0 and C11:0 (-0.48, -0.54, respectively), and C15:0 (−0.45, −0.39, respectively), and C14:0 (−0.35, 
−0.40, respectively), and C16:0 (−0.59, −0.58, respectively) acids, C20:0 and C11:0 (−0.32, −0.48, respectively) 
acids. Phenotypic and genetic correlations between other individual FA in SFA were found generally low positive 
or negative.

The fatty acids in dairy milk are generally classified based on their chain lengths between 4 and 24 carbons. 
The even-numbered FA being 4–16 carbons in chain length arise from de novo synthesis in the mammary gland 
and the other FA, which include approximately half of the 16 carbon and all those 18 carbons or greater in length, 
are taken up preformed from the blood21. The phenotypic and genetic correlations between MUFA, PUFA and 
SFA given in Table S1 in the supplementary file could be evaluated by similarities in the origin of FA. Positive 
phenotypic and genetic correlations were generally obtained between C6:0, C8:0, C10:0, C12:0, C14:0 and C16:0 
acids in SFA which were synthesized de novo in the mammary gland and between C18:1n9c, C18:1n9t and 
C18:1n11t in MUFA and between C18:2n6cc, C18:2n6tt, C18:2n10t12c, C18:3n3 and C18:3tcc acids in PUFA 
which were extracted from blood. However, as seen in Table S1 in the supplementary file, negative moderate/low 
phenotypic and genetic correlations were obtained for C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0 and 

Fig. 2.  Phenotypic and genetic correlations between polysaturated fatty acids (PUFA).

 

Fig. 1.  Phenotypic and genetic correlations between monounsaturated fatty acids (MUFA).
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C16:0 acids in SFA (de novo synthesis in the mammary gland) with C18:1n9t, C18:1n9t and C18:1n11t acids in 
MUFA and with C18:2n6cc, C18:2n9c11t and C18:3tcc acids in PUFA (the mammary uptake of preformed FA).

The estimates of genetic correlations (Table S1 in the supplementary file) indicated the existence of the strong 
positive and negative genetic relationships between total and individual FA within MUFA, PUFA and SFA 
groups in bovine milk and the importance of using genetic relationships in the selection programs for fatty acids 
to improve the nutritional quality of bovine milk and milk products.

Heritability estimates from Bayesian GBLUP and Bayesian alphabet models in random 
training data sets
Heritability estimates of total and individual FA within MUFA, PUFA and SFA groups from 10-fold random 
cluster training data sets were obtained from Bayesian GBLUP and Bayesian alphabet models and presented in 
Fig. 4. As seen in Fig. 4, heritability estimates from Bayesian GBLUP model were higher than those from Bayesian 
alphabet models for total and individual FA within MUFA, PUFA and SFA groups. In Bayesian alphabet models, 
BayesB model produced generally higher heritability estimates than BayesA and BayesC models and BayesC 
model resulted in the lowest heritability estimates for total and individual FA within MUFA, PUFA and SFA 
groups.

For total MUFA, PUFA and SFA, as seen in Fig. 4A, heritability estimates with standard error of 0.01 indicated 
that Bayesian GBLUP (0.67, 0.49, 0.60, respectively) yielded higher heritability estimates than BayesA (0.63, 
0.41, 0.55, respectively), BayesB (0.63, 0.45, 0.56, respectively) and BayesC (0.61, 0.35, 0.51, respectively) models 
and heritability estimates from BayesA and BayesB models for total MUFA, PUFA and SFA were found similar 
and higher than those from BayesC model.

For individual FA in MUFA, as seen in Fig. 4B, Bayesian GBLUP model produced higher heritability estimates 
than Bayesian alphabet models. The lowest heritability estimates were obtained for C14:1 ranged from 0.27 of 
BayesC to 0.45 of GBLUP and the highest heritability estimates for C14:1t ranged from 0.63 of BayesC to 0.69 
of GBLUP. Heritability estimates from Bayesian GBLUP, BayesA and BayesB models were generally equal to or 
higher than 0.50 for C14:1t, C16:1, C16:1t, C18:1n9c, C18:1n9t and C18:1n11t.

For individual FA in PUFA, as seen in Fig. 4C, the lowest heritability estimates were obtained for C18:3tcc 
ranged from 0.27 of BayesC to 0.45 of GBLUP and C18:2n6tt ranged from 0.27 of BayesC to 0.44 of GBLUP, 
and the highest heritability estimates for C18:2n6cc ranged from 0.63 of BayesA and BayesC to 0.68 of GBLUP. 
Although Bayesian GBLUP model yielded higher heritability estimates for individual PUFA, Bayesian GBLUP 
and BayesB models resulted in similar heritability estimates for C20:4n6 (0.57 and 0.56) and C22:5n3 (0.47 and 
0.46) acids. Heritability estimates from Bayesian GBLUP and Bayesian alphabet models were higher than 0.50 
for C18:2n6cc, C18:2n10t12c, C18:3n3 and C20:3n6.

For individual FA in SFA, as seen in Fig. 4D, Bayesian GBLUP model resulted in considerably higher 
heritability estimates than Bayesian alphabet models. Heritability estimates for individual SFA ranged from 0.35 
of BayesC to 0.69 of GBLUP. The lowest heritability estimates ranged from 0.35 to 0.49 were obtained from 
Bayesian GBLUP and Bayesian alphabet models for C24:0 and the highest heritability estimates ranged from 
0.64 to 0.69 for C18:0. Heritability estimates from Bayesian GBLUP and Bayesian alphabet models were higher 
than 0.50 for C4:0, C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, and C18:0.

Predictive ability and accuracy of Bayesian GBLUP and Bayesian alphabet models
Predictive abilities of Bayesian GBLUP and Bayesian alphabet models were explored by using the Pearson’s 
correlation coefficient ( ry,GEBV ) between the observed phenotypic values ( y) and GEBV from 10-fold random 

Fig. 3.  Phenotypic and genetic correlations between saturated fatty acids (SFA).
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cluster cross-validation data sets and mean values and standard errors of correlations for predictive ability of 
models were given in Fig. 5A for total MUFA, PUFA and SFA, in Fig. 5B–D for individual MUFA, PUFA and 
SFA, respectively. The mean values and standard errors of correlations from 10-fold cross-validation data sets for 
total MUFA, PUFA and SFA in Fig. 5A indicated that the predictive abilities of Bayesian GBLUP and Bayesian 
alphabet models ranged from 0.46±0.01 to 0.47±0.01 for total MUFA, from 0.37±0.01 to 0.40±0.01 for PUFA 
and from 0.43±0.01 to 0.45±0.01 for SFA. As seen in Fig. 5A and from the range of predictive abilities of models, 
Bayesian GBLUP and BayesA models resulted in similar predictive ability for total MUFA, PUFA and SFA and 
BayesB model yielded the lowest predictive ability for total MUFA, PUFA and SFA.

The predictive ability of Bayesian GBLUP and Bayesian alphabet models for individual FA within MUFA, 
PUFA and SFA groups indicated that Bayesian GBLUP and BayesA models resulted in similar predictive ability 
and BayesB model generally yielded the lowest predictive ability in each individual FA within MUFA, PUFA and 
SFA groups.

For individual FA in MUFA, as seen in Fig. 5B, the lowest predictive ability from Bayesian GBLUP and 
Bayesian alphabet models was obtained for C14:1 ranging from 0.36±0.02 to 0.38±0.02 and the highest predictive 
ability for C14:1t ranging from 0.47±0.01 to 0.49±0.01. Bayesian GBLUP and Bayesian alphabet models also 
showed similar predictive ability (0.42±0.01 to 0.47±0.01) for C18:1n9c, C16:1, C16:1t and C18:1n11t acids. 
For individual FA in PUFA, as seen in Fig. 5C, the lowest predictive ability from Bayesian GBLUP and Bayesian 
alphabet models was obtained for C18:3tcc ranging from 0.25±0.01 to 0.27±0.01 and C22:5n3 ranging from 
0.29±0.02 to 0.31±0.02. Besides, the highest predictive ability from Bayesian GBLUP and Bayesian alphabet 
models was obtained for C18:2n6cc, C18:3n3 and C20:3n6 ranging from 0.43±0.01 to 0.47±0.01. For individual 
FA in SFA, as seen in Fig. 5D, Bayesian GBLUP and Bayesian alphabet models resulted in similar predictive 
ability ranging from 0.38±0.02 to 0.48±0.01. The lowest predictive ability from Bayesian GBLUP and Bayesian 
alphabet models was obtained for C24:0 ranging from 0.38±0.02 to 0.41±0.02 and the highest predictive ability 
for C11:0 ranging from 0.46±0.01 to 0.48±0.01. Fatty acids in total and individual MUFA, PUFA and SFA having 
higher heritability resulted in higher predictive ability regardless of Bayesian GBLUP and Bayesian alphabet 
models.

After removing the effect of heritability on the predictive ability of Bayesian GBLUP and Bayesian alphabet 
models (Eq. 9), mean values and standard errors of accuracies of Bayesian GBLUP and Bayesian alphabet models 
for total and individual MUFA, PUFA and SFA were calculated and presented in Fig. 6 for total (Fig. 6A) and 
individual MUFA, PUFA and SFA (Fig. 6B–D). As seen in Fig. 6, BayesC and BayesA models resulted in slightly 
higher accuracy than Bayesian GBLUP and BayesB models. As seen in Fig. 6A, the accuracy of Bayesian GBLUP 

Fig. 4.  Heritability estimates for total and individual MUFA, PUFA and SFA from 10-fold cross-validation data 
sets using Bayesian GBLUP, and Bayesian alphabet (BayesA, BayesB, BayesC) models.
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and Bayesian alphabet models for total MUFA, PUFA and SFA ranged from 0.56±0.02 to 0.65±0.02 and BayesC 
and BayesA models resulted in higher accuracy than Bayesian GBLUP and BayesB models. Accuracies in Fig. 
6B, C indicated that accuracies ranged from 0.55±0.02 to 0.70±0.03 for individual MUFA and from 0.41±0.02 to 
0.65±0.03 for individual PUFA. Figure 6B, C also showed that BayesC model generally produced higher accuracy 
than Bayesian GBLUP, BayesA and BayesB models for individual MUFA and PUFA. Higher accuracies from 
BayesC model were obtained for C14:1 (0.70±0.03), C16:1 (0.63±0.02), C18:1n9t (0.66±0.03) and C18:1n11t 
(0.65±0.02) in individual MUFA and for C18:2n6tt (0.65±0.03), C18:2n9c11t (0.62±0.02), C20:4n6 (0.62±0.02), 
C20:5n3 (0.62±0.02), C22:5n3 (0.54±0.03) and C18:3tcc (0.50±0.03) in individual PUFA. As seen in Fig. 6D, 
the accuracies from Bayesian GBLUP and Bayesian alphabet models ranged from 0.52±0.02 to 0.65±0.03 and 
BayesA model resulted in higher accuracies for individual SFA. The lowest accuracy was obtained for C18:0 
ranging from 0.52±0.02 to 0.54±0.02 and the highest accuracies for C24:0 and C22:0 ranging from 0.60±0.02 to 
0.65±0.03. Accuracies for total and individual MUFA, PUFA and SFA in Fig. 6 indicated that Bayesian alphabet 
models yielded more reliable prediction than Bayesian GBLUP model for FA traits.

In addition to accuracy of Bayesian GBLUP and Bayesian alphabet models for reliable prediction, MSE was 
calculated to determine the better fit of Bayesian GBLUP and Bayesian alphabet models for total and individual 
MUFA, PUFA and SFA and presented in Table 2. As seen in Table 2, although Bayesian GBLUP and Bayesian 
alphabet models yielded same or similar MSE for C14:1 (0.11), C16:1 (0.09 and 0.10, respectively) and C18:1n9t 
(0.06) in MUFA, C18:1n11t (0.03), C18:2n9c11t (0.16 and 0.17, respectively), C18:2n10t12c (0.0002 and 0.0003, 
respectively), C18:3n3 (0.18 and 0.19, respectively), C18:3tcc (0.01), C20:3n6 (0.01), C20:4n6 (0.02), C20:5n3 
(0.0011) and C22:5n3 (0.06 and 0.07, respectively) acids in PUFA, C11:0 (0.05 and 0.06, respectively), C13:0 
(0.20 and 0.21, respectively), C20:0 (0.01 and 0.02, respectively) and C23:0 (0.0004 and 0.0005, respectively) in 
SFA, MSE values indicated that Bayesian alphabet models generally outperformed Bayesian GBLUP model and 
in Bayesian alphabet models, BayesA model outperformed BayesB and BayesC models for total and individual 
MUFA, PUFA and SFA.

Discussion
Descriptive statistics of fatty acids
The percentages of total SFA (71.20%), MUFA (25.30%) and PUFA (3.50%) found in this study were similar to 
the percentages of SFA (71.09%), UFA (28.95%) and PUFA (4.10%) from New Zealand dairy (Holstein-Friesian 

Fig. 5.  Mean of Pearson’s correlation coefficient ( ry,GEBV ) between the observed phenotypic values ( y) and 
GEBV for individual and total MUFA, PUFA and SFA from 10-fold cross-validation data sets using Bayesian 
GBLUP, and Bayesian alphabet (BayesA, BayesB, BayesC) models.
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× Jersey) cows reported by Lopez-Villalobos et al.17 and the percentages of SFA (70.3%), MUFA (26.6%) and 
PUFA (3.1%) from Danish Holstein cattle reported by Krag et al.19. However, these percentages were slightly 
different than the percentages of SFA (68.9%), MUFA (28.2%) and PUFA (2.9%) from Norwegian Red cows 
reported by Olsen et al.22 and the percentages of SFA (73.6%) and MUFA (26.4%) from the dairy cattle in the 
Walloon region of Belgium reported by Soyeurt et al.23. These differences observed in the concentration of FA 
across studies could be attributed to the effects of diet, stage of lactation, parity, breed and genetic variation 
between cows6,10,17.

Bovine milk fat includes fatty acyls, triglycerides, glycerophospholipids, sphingolipids and saccharolipids; 
however, 98% of milk fat is made up of triglycerides which are synthesized from more than 400 different FA. 
Many of the FA are about trace quantities and only a few FA are at the 1% level or higher24. Lopez-Villalobos et 
al.17 indicated that C14:0 10.53%, C16:0 23.92% and C18:0 12.20% of the total FA in SFA and C18:1n9c 16.95% 
of the total FA in MUFA were the most abundant FA in New Zealand dairy cows, respectively. Krag et al.19 
also reported that while the most abundant FA was C16:0 comprising 28.95% of the fat, the combination of 
C14:0, C16:0 and C18:0 in SFA, and C18:1n9c in MUFA accounted for 70.56% of the total fat content in Danish 
Holstein cattle. Olsen et al.22 also studied the FA in Norwegian Red cow population and found that C14:0, C16:0 
and C18:0 acids in SFA, and C18:1n9c in MUFA were the most abundant FA by comprising 12.03, 27.11, 12.12 
and 22.98% of the total fat, respectively. As seen in Table 1, the most abundant FA were C18:1n9c (20.55%) in 
MUFA and C14:0 (Myristic) (13.17%), C16:0 (36.07%) and C18:0 (9.70) in SFA and accounted for 79.49% of 
the total fat content in Canadian Holstein cows which were in a similar range to the percentages reported in the 
literature.

About 50–60% of the total SFA in bovine milk fat is C14:0, C16:0 and C18:025. Astrup et al.26 indicated that 
C14:0, C16:0 and C18:0 are associated with increased levels of cholesterol and an increased risk of cardiovascular 
diseases. Desirable changes in milk FA in regard to human health are to increase the amounts of MUFA and 
PUFA, particularly C18:2n9c11t and n-3 FA, and to decrease in the amounts of SFA, particularly C14:0 and 
C16:0. FAO27 also recommended to consumers to reduce SFA intake and consume more UFA.

Estimates of phenotypic and genetic correlations
Estimates of phenotypic and genetic correlations among 36 total and individual FA in MUFA, PUFA and 
SFA groups from Canadian Holstein cows are presented in Table S1 (the supplementary file) and correlations 
only for MUFA, PUFA and SFA are also showed in Figs. 1, 2 and 3. As seen in Figs. 1, 2 and 3 and Table S1, 
overall, the estimates of phenotypic correlations had the same direction of variation (negative or positive) as the 

Fig. 6.  Accuracies from Bayesian GBLUP, and Bayesian alphabet (BayesA, BayesB, BayesC) models for total 
and individual MUFA, PUFA and SFA.
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corresponding estimates of genetic correlations. As seen in Fig. 1, phenotypic (−0.27 to 0.97) and genetic (-0.43 
to 0.97) correlations for total and individual MUFA from Canadian Holstein cows were consistent with those 
reported for Italian Holstein-Friesian cows by Mele et al., for Italian Brown Swiss cows by Pegolo et al.18 and for 
New Zealand crossbred Holstein-Friesian×Jersey cows by Lopez-Villalobos et al.17.

For individual FA in PUFA, higher correlations between C18:3n3 and C18:2n9c11t acids for Danish Holstein 
cows19 and strong positive genetic correlations for C18:2n6cc with C18:3n3 (0.92) and C18:2n9c11t (0.63) for 
Canadian Holstein cattle28 compared with those from this study were reported. However, genetic correlations 
among C20:3n6, C20:4n6, C20:5n3 and C22:5n3 reported by Bilal et al.28 were found to be similar with those 
from this study.

As seen in Fig. 1 and Table S1, C14:1, C16:1 and C18:1n9c in MUFA were positively genetically correlated 
with each other (0.11 to 0.41) and with C18:2n9c11t (0.40) in PUFA which was consistent with those reported 
for Canadian Holstein cattle by Bilal et al.28. Moreover, Bilal et al.28 indicated that the possible explanation of 
positive genetic correlations among C14:1, C16:1 and C18:1n9c in MUFA and between MUFA and C18:2n9c11t 
lies in their common mode of synthesis. C18:1n9c which is expressed in 81.19% in total MUFA and constitutes 

Fatty acid

Monounsaturated fatty acids (MUFA) GBLUP BayesA BayesB BayesC

C14:1 (myristoleic acid) 0.11 0.11 0.11 0.11

C14:1t (myristelaidic acid) 1.19 1.00 0.97 0.97

C16:1 (palmitoleic acid) 0.10 0.09 0.09 0.09

C16:1t (palmitelaidic acid) 3.38 3.15 3.05 3.12

C18:1n9c (oleic acid) 399.70 361.13 360.90 366.45

C18:1n9t (elaidic acid) 0.06 0.06 0.06 0.06

C18:1n11t (trans vaccenic acid) 1.09 0.91 0.93 0.96

MUFA (total) 609.73 566.52 571.37 574.83

Polyunsaturated fatty acids (PUFA) 

C18:2n6cc (linoleic acid) 3.51 3.38 3.41 3.42

C18:2n6tt (trans-linoleic acid) 0.03 0.03 0.03 0.03

C18:2n9c11t (cis-9 trans-11 CLA) 0.17 0.16 0.16 0.16

C18:2n10t12c (trans-10 cis-12 CLA) 0.0003 0.0002 0.0002 0.0002

C18:3n3 (alpha linolenic acid) 0.19 0.18 0.18 0.18

C18:3tcc (gamma linolenic acid) 0.01 0.01 0.01 0.01

C20:3n6 (dihomogamma linolenic 
acid) 0.01 0.01 0.01 0.01

C20:4n6 (arachidonic acid) 0.02 0.02 0.02 0.02

C20:5n3 (eicosapentanoic acid) 0.0011 0.0011 0.0011 0.0011

C22:5n3 (docosapentaenoic acid) 0.06 0.07 0.06 0.06

PUFA (total) 11.73 10.90 10.85 11.07

Saturated fatty acids (SFA) 

C4:0 (butyric acid) 0.65 0.60 0.59 0.59

C6:0 (caproic acid) 1.03 0.96 0.96 0.98

C8:0 (caprylic acid) 0.83 0.74 0.74 0.75

C10:0 (capric acid) 7.47 6.67 6.59 6.77

C11:0 (undecanoic acid) 0.06 0.05 0.05 0.05

C12:0 (lauric acid) 13.28 12.07 12.27 12.56

C13:0 (tridecylic acid) 0.21 0.20 0.20 0.20

C14:0 (myristic acid) 161.20 148.18 149.89 149.45

C15:0 (pentadecylic acid) 1.37 1.29 1.26 1.28

C16:0 (palmitic acid) 1208.27 1124.80 1105.52 1128.73

C17:0 (margaric acid) 0.43 0.41 0.41 0.41

C18:0 (stearic acid) 91.01 80.62 78.54 78.29

C20:0 (arachidic acid) 0.02 0.01 0.01 0.01

C22:0 (behenic acid) 0.0031 0.0026 0.0026 0.0027

C23:0 (tricosanoic acid) 0.0005 0.0004 0.0004 0.0004

C24:0 (lignoceric acid) 0.0016 0.0014 0.0013 0.0014

SFA (total) 4714.61 4569.82 4616.49 4597.56

Table 2.  Mean squared errors from Bayesian GBLUP, and Bayesian alphabet (BayesA, BayesB, BayesC) models 
for total and individual MUFA, PUFA and SFA.
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about 20.55% of the total milk fat, is predominantly synthesized by mammary uptake of C18:0 and its conversion 
to C18:1n9c acid by the enzymatic activity of the stearoyl-CoA desaturase enzyme (SCD)29.

Correlation estimates between total and individual MUFA and PUFA ranged from − 0.31 to 0.49 for 
phenotypic correlations and from −0.34 to 0.50 for genetic correlations, which were similar with those reported 
by Krag et al.19 for Danish Holstein cows. Correlation estimates between total and individual SFA and MUFA 
(PUFA) ranged from −0.97 to 0.69 (from −0.51 to 0.74) for phenotypic correlations and from −0.97 to 0.57 (from 
−0.53 to 0.81) for genetic correlations. There were also very strong phenotypic and genetic correlations for total 
SFA and MUFA (−0.97 and −0.97, respectively), for total SFA and C18:1n9c (−0.93 and −0.93, respectively) which 
was expressed in 81.19% in total MUFA. The very strong negative phenotypic and genetic correlations between 
total SFA and total MUFA and C18:1n9c in MUFA were also reported for Danish Holstein cows by Krag et al.19; 
for Danish Holstein and Danish Jersey cattle by Buitenhuis et al.30 and Hein et al.31; for Italian Brown Swiss cows 
by Pegolo et al.18 and for New Zealand crossbred Holstein-Friesian×Jersey cows by Lopez-Villalobos et al.17 and 
indicated that dairy cows with a reduced the stearoyl-CoA desaturase enzyme (SCD) activity in the mammary 
gland tended to produce dairy milk with lower MUFA content and with greater preformed FA32. Moderate 
negative phenotypic and genetic correlations among total MUFA (C18:1n9c in MUFA) and the individual SFA 
were consistent with the negative genetic correlation pattern among the total MUFA and the individual SFA 
reported by Stoop et al.10, Mele et al.15, Lopez-Villalobos et al.17 and Soyeurt et al.23.

The fatty acids in dairy milk are generally classified based on their chain lengths between 4 and 24 carbons. 
The even-numbered fatty acids being 4–16 carbons in chain length arise from de novo synthesis in the 
mammary gland and the other fatty acids, which include approximately half of the 16 carbon and all those 18 
carbons or greater in length, are taken up preformed from the blood21. The phenotypic and genetic correlations 
between MUFA, PUFA and SFA given in Table S1 in the supplementary file could be evaluated by similarities 
in the origin of fatty acids. Positive phenotypic and genetic correlations were generally obtained between C4:0, 
C6:0, C8:0, C10:0, C12:0, C14:0 and C16:0 in SFA which were synthesized de novo in the mammary gland 
and between C18:1n9c, C18:1n9t and C18:1n11t in MUFA and between C18:2n6cc, C18:2n6tt, C18:2n9c11t, 
C18:2n10t12c, C18:3n3 and C18:3tcc in PUFA which were extracted from blood. However, as seen in Table 
S1 in the supplementary file, negative phenotypic and genetic correlations were obtained for C4:0, C6:0, C8:0, 
C10:0, C12:0, C14:0 and C16:0 in SFA (de novo synthesis in the mammary gland) with C18:1n9c, C18:1n9t 
and C18:1n11t in MUFA and with C18:2n6cc, C18:2n6tt, C18:2n9c11t, C18:2n10t12c, C18:3n3 and C18:3tcc in 
PUFA (the mammary uptake of preformed fatty acids).

The estimates of genetic correlations (Table S1 in the supplementary file) indicated the existence of the 
strong positive and negative genetic relationships between total and individual FA in MUFA, PUFA and SFA in 
bovine milk and the importance of using genetic relationships in the selection programs for FA to improve the 
nutritional quality of bovine milk and milk products.

Heritability estimates from Bayesian GBLUP and Bayesian alphabet models in random 
training data sets
In the literature, heritability estimates for SFA, MUFA and PUFA in bovine milk differ across studies based on 
the combination of individual FA, sample size, breed, statistical method and FA analytical methods. Heritability 
estimates for SFA, MUFA and PUFA in this study were generally higher than those reported for American 
Holstein cows by Bobe et al.33, for Italian Holstein cows by Mele et al.15, for mixed-breed population of the 
Walloon region of Belgium by Soyeurt et al.23, for Danish Holstein cows by Krag et al.19, for Italian Brown Swiss 
cows by Pegolo et al.18, for Norwegian Red cattle by Olsen et al.22 and for New Zealand crossbred Holstein-
Friesian × Jersey cows by Lopez-Villalobos et al.17, but agree well with the heritability estimates of PUFA 
reported for Korean Holstein cows by Park et al.16. Olsen et al.22 also indicated that heritability estimates for FA 
obtained from Fourier transform infrared spectroscopy analyses in Norwegian Red cattle were usually lower 
than those from FA studies based on mid-infrared spectroscopy, but in the same range as in the FA studies based 
on gas chromatography. However, our heritability estimates for FA were found higher than those from Fourier 
transform infrared spectroscopy, mid-infrared spectroscopy or gas chromatography analyses reported in the 
literature15–19,22,23,33. Lopez-Villalobos et al.17 indicated that comparisons of heritability estimates among the 
various studies were difficult because of differences in the analytical methods (GC or spectroscopy), the method 
of expressing FA contents (g/100 g of milk, g of FA/100 g of fat, or g of FA/100 g of total FA), sample size, breed, 
parity number, stage of lactation, and the statistical methods (e.g., sire, animal model and random regression).

As seen in Fig. 4, heritability estimates changed across the total and individual MUFA, PUFA and SFA and 
for individual SFA heritability estimates were also found higher than those for individual MUFA and PUFA in 
Canadian Holstein cows, which agreed with the results from Stoop et al.10, Lopez-Villalobos et al.17, Pegolo et 
al.18, Krag et al.19 and Bilal et al.28. Bovine milk FA were synthesized de novo in the mammary gland of cows or 
derived from the diet of cows which leads to the possible physiological explanation of the heritability estimates of 
individual FA13. As seen in Fig. 4, the heritability estimates for individual SFA, MUFA and PUFA were generally 
moderate, and indicated that de novo synthesized FA (such as h2

C4:0 = [0.58, 0.66], h2
C8:0 = [0.58,0.66], 

h2
C10:0 = [0.55,0.63], h2

C12:0 = [0.57,0.65], h2
C14:0 = [0.59,0.65], h2

C16:0 = [0.57,0.63] in SFA) were under 
genetic control and genetic selection could be effectively applied to alter the FA composition of bovine milk for 
human and animal health16,17.

Predictive ability and accuracy of Bayesian GBLUP and Bayesian alphabet models
Predictive abilities of Bayesian GBLUP and Bayesian alphabet models were presented in Fig. 5 for total and 
individual MUFA, PUFA and SFA. As seen in Fig. 5, predictive ability of Bayesian GBLUP was higher than or 
similar with those of Bayesian alphabet models for total and individual MUFA, PUFA and SFA. The differences 
and similarities among the predictive abilities of Bayesian GBLUP and Bayesian alphabet models for total and 
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individual MUFA, PUFA and SFA could result from the model assumptions, heritability and genetic architecture 
of total and individual MUFA, PUFA and SFA traits.

Bayesian GBLUP model is considered as a direct estimation approach for genetic effects and variances. The 
estimation of the genetic effects in GBLUP model is based on the genomic relationship matrix (G) computed 
from SNP markers34. The relatively few causative SNP markers hardly affect the genomic relationship matrix 
because of the equally contribution of each SNP marker to the genomic relationship34,35. However, Bayesian 
alphabet models are considered as a SNP-based estimation approach for genetic effects and variances. The 
estimation of the genetic effects in Bayesian alphabet models is based on the π  proportion of SNP markers 
having non-null effects, which are assumed to follow a univariate Student’s t, multivariate Student’s t distribution 
depending on the Bayesian models36,37.

Heritability estimates and predictive ability results for total and individual MUFA, PUFA and SFA traits were 
based on the direct additive gene effect and variances; however, could depend on the number of loci affecting 
the FA traits, distribution of their effects, underlying relationship between FA traits and dominance and epistatic 
gene effects38–40.

Freitas et al.20 studied the estimation of genetic parameters and determination of genomic regions for the 
short-chain, medium-chain, long-chain, saturated, and unsaturated FA from North American Holstein cattle 
and indicated that various genomic regions are associated with the short-chain, medium-chain, long-chain, 
saturated, and unsaturated FA, but many regions across the genome have small individual effects on the total 
genetic variation of each trait. Wang et al.41 compared the genomic selection models (RR–BLUP, GBLUP, BayesA, 
BayesB, BayesCp and Bayesian LASSO, ) for breeding value prediction in a simulation study and found that the 
predictive ability of BayesB model decreased markedly for the trait determined by many genes and were much 
better than GBLUP for the trait determined by 20 QTL. However, as the number of QTL determined the trait 
increased, the predictive ability of BayesB decreased gradually to a plateau even lower than that of GBLUP.

Mean accuracy values with standard errors of Bayesian GBLUP and Bayesian alphabet models were given 
for total and individual MUFA, PUFA and SFA from Canadian Holstein cows in Fig. 6 after removing the effect 
of heritability of FA traits on the predictive ability of the models. As seen in Fig. 6, error-bar intervals of mean 
accuracy values of Bayesian GBLUP and Bayesian alphabet models indicated that mean accuracy values of 
Bayesian GBLUP and Bayesian alphabet models were similar for large number of individual MUFA, PUFA and 
SFA. However, BayesC model resulted in slightly higher accuracy than Bayesian GBLUP for C14:1, C18:2n6tt, 
C18:3tcc, C20:4n6, C20:5n3, C22:5n3, C24:0. When the number of SNP markers increases the computational 
time for Bayesian alphabet models take longer time to obtain the estimates of parameters. Therefore, Bayesian 
GBLUP is an effective method in providing the best compromise between computational time and prediction 
ability if there are no major gene effects for FA traits.

Conclusions
The heritability estimates ranged between 0.61±0.01 and 0.67±0.01 for total MUFA, between 0.35±0.01 
and 0.49±0.01 for PUFA and between 0.51±0.01 and 0.60±0.01 for SFA, respectively and for individual FA, 
ranged between 0.27±0.01 and 0.69±0.01 for MUFA, between 0.27±0.01 and 0.68±0.01 for PUFA and between 
0.35±0.01 and 0.69±0.01 for SFA. The heritability estimates indicated that total and individual MUFA, PUFA 
and SFA traits were under moderate genetic control in Canadian Holstein cattle and can be improved through 
genomic selection. Moderate and high genetic correlations among total and individual MUFA, PUFA and SFA 
traits were also determined and these underlying genetic linear relationships among individual MUFA, PUFA 
and SFA traits need to be taken into consideration for successful genomic selection for FA traits. Comparison 
of mean accuracy values of Bayesian GBLUP and Bayesian alphabet models based on their standard errors 
indicated that Bayesian GBLUP and Bayesian alphabet models resulted in similar accuracies for large number of 
individual MUFA, PUFA and SFA. However, BayesC model yielded better accuracies than Bayesian GBLUP for 
C14:1, C18:2n6tt, C18:3tcc, C20:4n6, C20:5n3, C22:5n3, C24:0, indicating that these individual FA traits might 
be determined by many genes having non-null effects, which are assumed to follow a univariate or multivariate 
Student’s t distribution. Overall comparison and evaluation of Bayesian GBLUP and Bayesian alphabet models 
based on heritability estimates of FA traits, predictive ability and accuracies of models indicated that when the 
number of SNP markers increases the computational time for Bayesian alphabet models take longer time to 
obtain the estimates of parameters. Therefore, Bayesian GBLUP is an effective method to estimate heritabilities 
of FA traits and to provide the best compromise between computational time and prediction ability and accuracy 
if there are no major gene effects for FA traits41.

Methods
Ethical statement
Animal use procedures and protocols were according to the national codes of practice for the care and handling 
of farm animals (http://www.nfacc.ca/codes-of-practice) and the milk samples were collected by the technicians 
of the Valacta laboratory.

Animals and milk sampling
Milk samples from 1246 Canadian Holstein cows from 16 herds in the province of Quebec, Canada, were 
collected during the morning milking by Valacta (www.valacta.com) (now Lactanet, https://lactanet.ca/) as part 
of its routine monthly milk collection for Dairy Herd Improvement services. The dairy farms in Quebec are 
managed following standard procedures instituted by the Dairy Farmers of Quebec and Canada (https://lait.org/; 
https://dairyfarmersofcanada.ca/). Milk samples were delivered to our laboratory on the same day of collection 
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and processed immediately. Detailed procedures for milk processing, fatty acid analysis, DNA isolation and 
SNP genotyping by the method of genotyping-by-sequencing (GBS) have been reported in our previous work42.

Phenotypes
Out of the 1246 cows, the phenotypic data of individual FA within MUFA, PUFA and SFA groups from 695 
individuals in mid-lactation and with lactation number ranging from one to five were further analyzed. Data 
manipulation for the phenotypic data of individual FA traits was carried out to identify outliers and provide 
normally distributed data before the genomic analysis. Then, the number of observations ranging from 636 to 
695 were used for the genomic analysis of the FA traits.

Forty mL of milk sample from each cow was used to extract the milk fat followed by FA analysis as reported 
previously by Ibeagha-Awemu et al.42. Briefly, FA in the extracted milk fat were re-esterified to their methyl 
esters. Then, FA methyl esters were determined by gas chromatography (GC) method using Varian CP-3900 GC 
based on O’Fallon et al.43. After determining the individual FA methyl ester peaks, FA proportion is specified 
by counting peak area proportion to the total peak area of all determined fatty acids and weight% fatty acid 
data (% total FA) were calculated from the area data. A total of 33 individual FA, C14:1 (Myristoleic), C14:1t 
(Myristelaidic), C16:1 (Palmitoleic), C16:1t (Palmitelaidic), C18:1n9c (Oleic), C18:1n9t (Elaidic), C18:1n11t 
(Trans vaccenic) acids in MUFA; C18:2n6cc (Linoleic), C18:2n6tt (Trans-linoleic), C18:2n9c11t (Cis-9 trans-11 
CLA), C18:2n10t12c (Trans-10 cis-12 CLA), C18:3n3 (Alpha linolenic), C18:3tcc (Gamma linolenic), C20:3n6 
(Dihomogamma linolenic), C20:4n6 (Arachidonic), C20:5n3 (Eicosapentanoic), C22:5n3 (Docosapentaenoic) 
acids in PUFA; and C4:0 (Butyric), C6:0 (Caproic), C8:0 (Caprylic), C10:0 (Capric), C11:0 (Undecanoic), 
C12:0 (Lauric), C13:0 (Tridecylic), C14:0 (Myristic), C15:0 (Pentadecylic), C16:0 (Palmitic), C17:0 (Margaric), 
C18:0 (Stearic), C20:0 (Arachidic), C22:0 (Behenic), C23:0 (Tricosanoic), C24:0 (Lignoceric) acids in SFA were 
identified by the GC method. Total MUFA, PUFA and SFA values were calculated by summing the individual FA 
values within MUFA, PUFA and SFA groups, respectively.

Genotyping-by-sequencing SNP marker genotypes
The genomic DNA for genotyping-by-sequencing was isolated from milk somatic cells obtained from the 40 mL 
of milk sample taken from each cow followed by GBS analysis as reported previously by Ibeagha-Awemu et al.42. 
Briefly, after preparing GBS libraries, they were multiplexed and subjected to single end 100 bp sequencing on 
an Illumina HiSeq 2000 system (Illumina Inc., San Diego, CA, USA). The Tassel software package was utilized 
to process raw Illumina DNA sequence data and to call SNP markers. Further details on the GBS analysis and 
bioinformatics for GBS SNP marker calling have been given by Ibeagha-Awemu et al.42. In this study, a total of 
76,299 SNPs out of 515,787 with call rates > 85%, accuracy of imputation score > 50% and MAF ≥ 1.5% were used. 
After quality control of GBS SNP marker data, considerable amounts of GBS SNP markers were removed from 
the genotype data set since GBS SNP markers had the capacity to deliver a large number of markers, but with 
considerable amounts of missing values and unknown marker positions44. The findings from Elbasyoni et al.44, 
Gouesnard et al.45 and Negro et al.46 also indicated that GBS SNP markers had low coverage leading to a high 
(65%) missing data rate and had low call rate compared to the findings from array SNP markers.

Estimates of phenotypic and genetic correlations between fatty acids
Genetic correlations among 36 total and individual MUFA, PUFA and SFA were calculated based on the (co)
variance components obtained from a total of 630 Bayesian bivariate GBLUP models.

A Bayesian bivariate GBLUP model for any two fatty acids is given in Eq. (1) as follows:

	

[
y1
y2

]
=

[
X1 0

0 X2

] [
b1
b2

]
+

[
Z1 0
0 Z2

] [
g1
g2

]
+

[
e1
e2

]
� (1)

where y1 and y2 were the vector of observations from any two fatty acids among 36 total and individual MUFA, 
PUFA and SFA; X1, X2, Z1 and Z2 were the design matrices relating the fixed (overall mean, lactation 
number, herd) and random (direct additive genetic) effects for two fatty acids; b1 and b2 were the vectors of fixed 
effects (overall mean, lactation number and herd) for two fatty acids; and g1 and g2 were the vectors of random 

direct additive genetic effects following a bivariate Normal distribution 
[

g1
g2

]
∼ N (0, G ⊗ Σ) with the mean 

zero and (co)variance G ⊗ Σ where G is the genomic relationship matrix and Σ =
[

σ 2
g1 σ g1g2

σ g1g2 σ 2
g2

]
 

is the direct additive genetic (co)variance matrix with the direct additive genetic (co)variance components of 
σ 2

g1 , σ 2
g2  and σ g1g2  for two fatty acids; and e1 and e2 were the vectors of random residuals following 

a bivariate Normal distribution 
[

e1
e2

]
∼ N (0, I ⊗ R) with the mean zero and the residual (co)variance 

matrix R =
[

σ 2
e1 σ e1e2

σ e1e2 σ 2
e2

]
 where σ 2

e1 , σ 2
e2  and σ e1e2  were the residual (co)variance components 

for two fatty acids. The vectors of fixed effects are assigned flat prior (a Gaussian prior with null mean and very 
large variance) and the covariance matrices of direct additive genetic and residual random effects are assigned 
Inverse Wishart priors.

The genomic relationship matrix ( G) was computed as in Eq. (2)
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G = (M − P )(M − P )T

2
∑ k

i=1pi(1 − pi)
� (2)

where the matrix of M  included the values of 0, 1 or 2 for SNP markers; the matrix of P  included the allele 
frequencies of SNP markers multiplied by 2; pi was the allele frequency of SNP marker i; and the k was the 
number of SNP markers34,47.

The Bayesian bivariate GBLUP models were applied using the Multitrait function in the statistical package 
BGLR (​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​B​​G​L​R​/​i​n​​d​e​x​.​h​t​m​l (accessed on 15 May 2023)) in the R 
program37,48.

A total of 630 genetic ( rG) and phenotypic ( rP ) correlations among 36 total and individual MUFA, PUFA 
and SFA were calculated as in Eq. (3)

	
rG = σ g1g2√

σ 2
g1 σ 2

g2

and rP = σ p1p2√
σ 2

p1 σ 2
p2

� (3)

where σ 2
p1 , σ 2

p2  and σ p1p2  were the phenotypic (co)variance components for two fatty acid traits. The 
standard error ( rse) of rG or rP  was calculated as rse =

√
(1 − r2)/(n − 2) where r was the rG or rP  and 

n was the sample size49.

Genomic selection
Analyses of 36 total and individual FA traits in MUFA, PUFA and SFA groups for genomic selection were carried 
out by applying the univariate Bayesian (GBLUP) and the Bayesian alphabet models36,37.

The phenotypes from a FA were modeled by using the statistical model in Eq. (4):

	 y = Xb + Zg + e� (4)

where y was the vector of observations from a FA trait in MUFA, PUFA or SFA; X  was the design matrix 
allocating a FA trait in MUFA, PUFA or SFA to the fixed effects of overall mean, lactation number and herd. 
b was the vector of fixed effects (overall mean, lactation number and herd) and flat (un-informative) priors 
were assigned. e was the vector of random residuals and assigned a priori multivariate Normal distribution 
e ∼ N

(
0, Iσ2

e

)
 with the mean zero and variance Iσ 2

e  where I  is the identity matrix. σ 2
e  is the residual 

variance with prior density χ −2(ν e, Se) with degrees of freedom ν e = 5 and scale Se parameters which is 
derived using the following equation 0.5 × var (y) × (ν e + 2)37.

The term of Zg in Eq. (4) was explained based on the Bayesian GBLUP and the Bayesian alphabet models.

Bayesian GBLUP model
For GBLUP, Z  was the design matrix allocating a FA trait in MUFA, PUFA or SFA to additive genomic breeding 
values of animals and g was the vector of additive genomic breeding values for animals following a priori 
multivariate Normal distribution g ∼ N

(
0, Gσ2

g

)
 with mean zero and variance Gσ 2

g  where G is the genomic 
relationship matrix and σ 2

g  is the direct additive genetic variance with prior density χ −2(ν g, Sg) with degrees 
of freedom ν g = 5 and scale Sg  parameters.

The Bayesian alphabet models
The phenotypes from a FA were modeled as a function of the SNP marker effects in the Bayesian alphabet models. 
Thus, for Bayesian alphabet models, Z was the matrix of SNP marker values (0, 1 or 2) from animals and g was 
the vector of SNP marker effects. The prior distribution for individual SNP marker effect ( gi) depends on the 
SNP marker-specific variance σ 2

gi
 and the parameter 0 ≤ π ≤ 1 which represents the prior proportion of 

non-zero SNP marker effects. In BayesA, every SNP marker is assumed to have an effect on the phenotypes of 
FA. Hence, π = 1 and the prior distribution of gi is assumed to be Normal gi|σ2

gi
, ∼ N

(
0, σ2

gi

)
 with prior 

density χ −2(ν , S) for σ 2
gi

. Thus, the marginal distribution of gi will be the univariate scaled-Student’s t 
distribution t(0, ν , S) with parameters ν  and S. In BayesB, only a small proportion ( π ) of SNP markers have 
non-zero effect and the majority (1 − π ) of the SNP markers have exactly zero effect on the phenotypes of FA. 
T﻿he Gaussian Mixture prior distribution of gi is defined as in Eq. (5)

	
gi|π, σ2

gi

{
= 0 with (1 − π)
∼ N

(
0, σ2

gi

)
with π

� (5)

with prior density χ −2(ν , S) for σ 2
gi

. Thus, the marginal distribution of gi with the π  will be the univariate 
scaled-Student’s t distribution t(0, ν , S) with parameters ν  and S. In BayesC, the prior distribution for gi 
depends on the SNP marker-common variance σ 2

g  and a small proportion ( π ) of SNP markers have non-zero 
effect. Hence, The Gaussian Mixture prior distribution of gi is defined as in Eq. (6)

	
gi|π, σ2

g

{
= 0 with (1 − π)
∼ N

(
0, σ2

g

)
with π

� (6)
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with SNP marker-common variance σ 2
g  which is distributed χ −2(ν , S). Thus, the marginal distribution of gi 

with the π  will be the mixture of multivariate Student’s t distributions t(0, ν , IS) with parameters ν  and S
[36,37. In BayesB and BayesC, π  is treated as known with the value of 0.05.

The GEBV of animal j for a FA in Bayesian alphabet models was calculated as in Eq. (7)

	
GEBV j =

∑
k
i=1mjiĝi� (7)

where mji is the SNP marker score (0, 1 or 2) for animal j at SNP i and ĝi is the estimated effect of ith SNP 
marker36. Then, the estimates of heritability for a FA from Bayesian alphabet (BayesA, BayesB, BayesC) models 

was computed as ĥ2 = σ̂
2
g

σ̂
2
g+σ̂

2
e

 where σ̂
2
g  and σ̂

2
e  are the estimates of direct additive genetic and residual 

variances. The BGLR package (​h​t​t​p​s​:​​​/​​/​c​r​a​​n​.​​r​-​p​r​o​j​e​​c​t​​.​o​​r​g​/​​​w​e​b​/​p​a​​c​k​a​​g​e​​s​/​​B​G​L​​R​/​i​​n​d​e​x​.​h​t​m​l (accessed on 15 May 
2023)) in the R program37,48 was utilized to get the estimates ( b̂, ĝ, σ̂

2
g  and σ̂

2
e) of b, g, σ 2

g  and σ 2
e . Fixed 

and random direct additive genetic effects and variance components in Bayesian GBLUP and Bayesian alphabet 
models were estimated using the Markov chain Monte Carlo sampling algorithm. Markov chains were run for 
25,000 cycles of Gibbs sampling. The first 5,000 cycles were discarded as burn-in and then every fifth sample in 
the cycle was saved for estimating model parameters.

10-fold cross-validation and predictive ability of the models
The cross-validation (CV) is a robust and nonparametric technique to test the predictive ability of the model by 
splitting the data set into the training and the validation data sets to train and evaluate the model. In this study, 
after the FA data set based on the CV strategy was randomly split into 10-fold CV data sets, all the observations 
from the nine CV data sets were used to train the Bayesian GBLUP and the Bayesian alphabet models. Then, all 
the observations from the leave-one-out CV data set were used to validate the models. This procedure based on 
the 10-fold CV was replicated five times.

The predictive abilities of the Bayesian GBLUP and the Bayesian alphabet models were determined in the 
10-fold CV data sets using Pearson’s correlation coefficient ( ry,GEBV ) between the observed phenotypic values 
( y) and GEBV for each FA trait in MUFA, PUFA or SFA (Eq. 8):

	
ry,GEBV , = Cov(y, GEBV )√

V ar (y) V ar (GEBV )
� (8)

where Cov(y, GEBV ) was the covariance between the observed phenotypic values ( y) and GEBV for the 
FA trait in MUFA, PUFA or SFA; V ar (y) and V ar (GEBV ) were the variances for the observed phenotypic 
values ( y) and GEBV for the FA trait in MUFA, PUFA or SFA, respectively.

Accuracy of the Bayesian GBLUP and the Bayesian alphabet models was defined as the correlation of r(g, ĝ) 
between genomic breeding values ( g) and genomic estimated breeding values ( ĝ) for animals and approximately 
estimated from the predictive ability of the models as shown by Legarra et al.50 (Eq. (9)):

	
r

g,̂g
= r(y, GEBV )√

ĥ2
� (9)

where ĥ2 was the heritability estimate from the Bayesian GBLUP or the Bayesian alphabet models for FA.
The mean squared error (MSE) of prediction in the CV data sets was used to measure the overall fit of model, 

and the computation equation (Eq. 10) was

	
MSE = 1

N

∑
N
i=1(yi − GEBV i)2� (10)

where N is the number of individuals. A large estimated value of accuracy is indicative of reliable prediction, and 
a low MSE value means a better overall fit51.

Data availability
The SNP marker data used in this study have been deposited in the figshare repository and can be accessed via 
the following link: https://doi.org/10.6084/m9.figshare.28560845.

Received: 12 October 2024; Accepted: 1 April 2025

References
	 1.	 Van Maurice, M. H. T. et al. Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds 

in the Netherlands. J. Dairy. Sci. 96, 2570–2582 (2013).
	 2.	 Bobe, G. et al. Short communication. Composition of milk protein and milk fatty acids is stable for cows differing in genetic merit 

for milk production. J. Dairy. Sci. 90, 3955–3960 (2007).
	 3.	 Yang, T. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. 

Biochem. 24, 744–753. https://doi.org/10.1016/j.jnutbio.2012.03.023 (2013).
	 4.	 Burgos, S. A. et al. The role of dairy fat on cardiometabolic health: what is the current state of knowledge? Can. J. Anim. Sci. 99, 

429–441 (2019).

Scientific Reports |        (2025) 15:13970 14| https://doi.org/10.1038/s41598-025-96839-1

www.nature.com/scientificreports/

https://cran.r-project.org/web/packages/BGLR/index.html
https://doi.org/10.6084/m9.figshare.28560845
https://doi.org/10.1016/j.jnutbio.2012.03.023
http://www.nature.com/scientificreports


	 5.	 Bilal, G. et al. Short communication: estimates of heritabilities and genetic correlations among milk FA unsaturation indices in 
Canadian Holsteins. J. Dairy. Sci. 95, 7367–7371 (2012).

	 6.	 Palmquist, D. L. et al. Feed and animal factors influencing milk fat composition. J. Dairy. Sci. 76, 1753–1771 (1993).
	 7.	 Jenkins, T. C. et al. Major advances in nutrition: impact on milk composition. J. Dairy. Sci. 89, 1302–1310 (2006).
	 8.	 Butler, G. et al. Fat composition of organic and conventional retail milk in Northeast England. J. Dairy. Sci. 94, 24–36 (2011).
	 9.	 Beaulieu, A. D. et al. Differential effects of high fat diets on fatty acid composition in milk of Jersey and Holstein cows. J. Dairy. Sci. 

78, 1336–1344 (1995).
	10.	 Stoop, W. M. et al. Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. J. Dairy. 

Sci. 91, 385–394 (2008).
	11.	 Soyeurt, H. et al. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. 

Dairy. Sci. 94, 1657–1667 (2011).
	12.	 Grummer, R. R. Effect of feed on the composition of milk fat. J. Dairy. Sci. 74, 3244–3257 (1991).
	13.	 Bauman, D. E. & Griinari, J. M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 23, 203–227 (2003).
	14.	 Walker, G. P., Dunshea, F. R. & Doyle, P. T. Effects of nutrition and management on the production and composition of milk fat 

and protein: a review. Aust J. Agric. Res. 55, 1009–1028 (2004).
	15.	 Mele, M. et al. Genetic parameters of conjugated Linoleic acid, selected milk fatty acids, and milk fatty acid unsaturation of Italian 

Holstein-Frisian cows. J. Dairy. Sci. 92, 392–400 (2009).
	16.	 Park, C. H. et al. Genetic parameters for milk fatty acid composition of Holstein in Korea Asian-Australas. J. Anim. Sci. 33, 

1573–1578 (2020).
	17.	 Lopez-Villalobos, N. et al. Genetic correlations of milk fatty acid contents predicted from milk mid-infrared spectra in new 

Zealand dairy cattle. J. Dairy. Sci. 103, 7238–7248 (2020).
	18.	 Pegolo, S. et al. Genetic and environmental relationships of detailed milk fatty acids profile determined by gas chromatography in 

brown swiss cows. J. Dairy. Sci. 99, 1315–1330. https://doi.org/10.3168/jds.2015-9596 (2016).
	19.	 Krag, K. et al. Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a bayesian approach. 

BMC Genet. 14 (79), 1–10 (2013).
	20.	 Freitas, P. H. F. et al. Genomic analyses for predicted milk fatty acid composition along the lactation in North American Holstein 

cattle. J. Dairy. Sci. 103, 5263–5269 (2020).
	21.	 Bouwman, A. C. et al. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 12 (43), 1–12. ​h​t​t​p​s​:​/​/​d​o​i​.​o​

r​g​/​1​0​.​1​1​8​6​/​1​4​7​1​-​2​1​5​6​-​1​2​-​4​3​​​​ (2011).
	22.	 Olsen, H. G. et al. Genome-wide association mapping for milk fat composition and fine mapping of a QTL for de Novo synthesis 

of milk fatty acids on bovine chromosome 13. Genet. Sel. Evol. 49 (20), 1–13 (2017).
	23.	 Soyeurt, H. et al. Estimation of heritability and genetic correlations for the major fatty acids in bovine milk. J. Dairy. Sci. 90, 

4435–4442 (2007).
	24.	 Lindmark Månsson, H. Fatty acids in bovine milk fat. Food Nutr. Res. 52 (1821), 1–3 (2008).
	25.	 Mansson, H. L. Fatty acids in bovine milk fat. Food Nutr. Res. https://doi.org/10.3402/fnr.v52i0.1821 (2008).
	26.	 Astrup, A. et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence 

stand in 2010. Am. J. Clin. Nutr. 93, 684–688 (2011).
	27.	 FAO (Food and Agriculture Organization of the United Nations). Fats and Fatty Acids in Human Nutrition. Report of an Expert 

Consultation. 91 (FAO, 2010).
	28.	 Bilal, G. et al. Short communication: genetic parameters of individual fatty acids in milk of Canadian Holsteins. J. Dairy. Sci. 97, 

1150–1156 (2014).
	29.	 Bauman, D. E. et al. Major advances associated with the biosynthesis of milk. J. Dairy. Sci. 89, 1235–1243 (2006).
	30.	 Buitenhuis, B. et al. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and 

Danish Jersey cattle. BMC Genom. 15 (1112), 1–11. https://doi.org/10.1186/1471-2164-15-1112 (2014).
	31.	 Hein, L. et al. Genetic analysis of predicted fatty acid profiles of milk from Danish Holstein and Danish Jersey cattle populations. 

J. Dairy. Sci. 101, 2148–2157 (2018).
	32.	 Kay, J. K. et al. Endogenous synthesis of cis-9, trans-11 conjugated Linoleic acid in dairy cows fed fresh pasture. J. Dairy. Sci. 87, 

369–378 (2004).
	33.	 Bobe, G. et al. Short communication: estimates of genetic variation of milk fatty acids in US Holstein cows. J. Dairy. Sci. 91, 

1209–1213 (2008).
	34.	 vanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy. Sci. 91, 4414–4423 (2008).
	35.	 Meuwissen, T. H. et al. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185, 

623–631. https://doi.org/10.1534/genetics.110.116590 (2010).
	36.	 Habier, D. et al. Extension of the bayesian alphabet for genomic selection. BMC Bioinform.  12 (186), 1–12 (2011).
	37.	 Pérez, P. et al. Genome-wide regression and prediction with the BGLR statistical package. Genetics 198, 483–495. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​1​5​3​4​/​g​e​n​e​t​i​c​s​.​1​1​4​.​1​6​4​4​4​2​​​​ (2014).
	38.	 Daetwyler, H. D. et al. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3 (10), 1–8.  

(2008).
	39.	 Goddard, M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245–257. ​h​t​t​p​s​:​/​/​

d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​7​0​9​-​0​0​8​-​9​3​0​8​-​0​​​​ (2009).
	40.	 Meuwissen, T. H. Accuracy of breeding values of unrelated individuals predicted by dense SNP genotyping. Genet. Sel. Evol. 41 

(35), 1–9. https://doi.org/10.1186/1297-9686-41-35 (2009).
	41.	 Wang, X. et al. A comparison of genomic selection methods for breeding value prediction. Sci. Bull. (Beijing)  60, 925–935. ​h​t​t​p​s​:​/​

/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​1​4​3​4​-​0​1​5​-​0​7​9​1​-​2​​​​ (2015).
	42.	 Ibeagha-Awemu, E. M. et al. High density genome wide genotyping-by- sequencing and association identifies common and low 

frequency SNPs, and novel candidate genes influencing cow milk traits. Sci. Rep. 6 (31109), 1–18. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​r​e​p​3​1​1​
0​9​​​​ (2016).

	43.	 O’Fallon, J. V. et al. A direct method for fatty acid Methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J. 
Anim. Sci. 85, 1511–1521. https://doi.org/10.2527/jas.2006-491 (2007).

	44.	 Elbasyoni, I. S. et al. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction 
accuracy in winter wheat. Plant. Sci. 270, 123–130 (2018).

	45.	 Gouesnard, B. et al. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize 
Flint lines, as compared to the maize USDA genebank. Theor. Appl. Genet. 130 (10), 2165–2189 (2017).

	46.	 Negro, S. S. et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging 
different haplotypes in association studies. BMC Plant. Biol. 19, 318. https://doi.org/10.1186/s12870-019-1926-4 (2019).

	47.	 Habier, D. et al. The impact of genetic relationship information of genome-assisted breeding values. Genetics 177, 2389–2397 
(2007).

	48.	 R Core Team. R: A Language and environment for statistical computing; R foundation for statistical computing: Vienna, Austria.  
(accessed 10 March 2022); https://www.R-project.org/

	49.	 Hayter, A. Probability and Statistics for Engineers and Scientists (Brooks/Cole, 2012).
	50.	 Legarra, A. et al. Performance of genomic selection in mice. Genetics 180, 611–618. https://doi.org/10.1534/genetics.108.088575 

(2008).

Scientific Reports |        (2025) 15:13970 15| https://doi.org/10.1038/s41598-025-96839-1

www.nature.com/scientificreports/

https://doi.org/10.3168/jds.2015-9596
https://doi.org/10.1186/1471-2156-12-43
https://doi.org/10.1186/1471-2156-12-43
https://doi.org/10.3402/fnr.v52i0.1821
https://doi.org/10.1186/1471-2164-15-1112
https://doi.org/10.1534/genetics.110.116590
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1186/1297-9686-41-35
https://doi.org/10.1007/s11434-015-0791-2
https://doi.org/10.1007/s11434-015-0791-2
https://doi.org/10.1038/srep31109
https://doi.org/10.1038/srep31109
https://doi.org/10.2527/jas.2006-491
https://doi.org/10.1186/s12870-019-1926-4
https://www.R-project.org/
https://doi.org/10.1534/genetics.108.088575
http://www.nature.com/scientificreports


	51.	 Zhu, B. et al. Accuracies of genomic prediction for Twenty economically important traits in Chinese simmental beef cattle. Anim. 
Genet. 50, 634–643 (2019).

Acknowledgements
We thank Valacta laboratories (www.valacta.com) (now Lactanet, https://lactanet.ca/) for sampling and ​p​r​o​v​i​d​i​n​
g the milk samples on the animals. The authors acknowledge the Faculty Development Grant from Berry College 
to S.O.P. to work on this project in the summer of 2023. The numerical calculations reported in this paper were 
fully/partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA 
resources) in Türkiye.

Author contributions
S.O.P and K.K conceptualized the study. E.I.A and X.Z provided the data . S.O.P and K.K performed all the 
analyses, E.I.A , X.Z, K.K and S.O.P interpreted the data. S.O.P, K.K, E.I.A and X.Z drafted the manuscript; All 
authors discussed the results, commented on the manuscript and approved the final version.

Funding
Financial support for generation of GBS genotypes was provided by DairyGen (Dairy Cattle Genetics Research 
and Development Council of Canadian Dairy Network) and NSERC (The Natural Sciences and Engineering 
Research Council of Canada) (CRDPJ 453002-13).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​9​6​8​3​9​-​1​​​​​.​​

Correspondence and requests for materials should be addressed to S.O.P. or X.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:13970 16| https://doi.org/10.1038/s41598-025-96839-1

www.nature.com/scientificreports/

http://www.valacta.com
https://lactanet.ca/
https://doi.org/10.1038/s41598-025-96839-1
https://doi.org/10.1038/s41598-025-96839-1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Genomic prediction and genetic parameter estimation for unsaturated and saturated fatty acids in Canadian dairy cattle
	﻿Results
	﻿Descriptive statistics of fatty acids
	﻿Estimates of phenotypic and genetic correlations
	﻿Heritability estimates from Bayesian GBLUP and Bayesian alphabet models in random training data sets
	﻿Predictive ability and accuracy of Bayesian GBLUP and Bayesian alphabet models

	﻿Discussion


