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During the preparation of electronic-grade silicon single crystals (SSC), accurately predicting the 
crystal diameter is crucial for obtaining high-quality crystals. In this paper, a hybrid-driven modeling 
method integrating Bidirectional Long Short-Term Memory network (BiLSTM) and Adaptive Boosting 
(AdaBoost) algorithm is proposed, aiming to improve the accuracy and stability of crystal diameter 
prediction in the medium diameter stage of the SSC growth by the Czochralski (CZ) method. First, the 
initial prediction of SSC diameter is performed using a mechanistic model and the prediction error is 
calculated; then, the time series data are processed using a BiLSTM network to generate the predicted 
values at each time point. Subsequently, the prediction results of the BiLSTM network are weighted 
and fused by the AdaBoost algorithm to obtain the final time series prediction output, and the 
prediction performance is further enhanced by iterative optimization. Compared with the traditional 
mechanistic model or a single data-driven model, this hybrid model retains the explanatory nature of 
the mechanistic model while also ensuring the accuracy of the data-driven model, which effectively 
overcomes the challenges posed by complex coupling and nonlinear problems.
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Electronic-grade silicon is an outstanding semiconductor material that allows efficient regulation of conductivity 
between conductors and insulators, and it is widely used in integrated circuits, automobiles, communications, 
and other fields. Electronic-grade SSC are commonly prepared in industrial production by the CZ method, 
which ensures uniform crystal growth by heating high-purity polysilicon to near 1400 °C, melting it into a liquid 
state, and then immersing SSC seed crystals into the molten silicon, pulling it upward slowly and rotating the 
seed crystals1,2. During this process, the solution temperature and lifting speed are precisely controlled to make 
the silicon atoms orderly arranged according to a certain crystalline phase, forming a high-quality SSC structure.

In the semiconductor SSC growth process, the main factors influencing diameter variations include the heater 
power and the crystal lifting speed3. Notably, although adjusting the crystal pulling rate can quickly alter the 
crystal diameter, its adjustable range is relatively limited. Moreover, frequent pulling rate adjustments can cause 
large fluctuations at the growth interface, increasing the likelihood of crystal breakage and defects. In contrast, 
controlling the crystal diameter by adjusting the heater power is a slower process, but it has a wider adjustment 
range and is less likely to cause instability at the growth interface. Therefore, constructing a SSC growth model 
that accurately describes the relationship between heater power and crystal diameter, and designing an efficient 
diameter control system have become important issues in realizing high-quality SSC production.

One type of model commonly used in crystal diameter prediction is mechanistic modeling. Mechanistic 
modeling is an effective method to understand and analyze the dynamic properties of complex systems 
by quantitatively describing and predicting system behaviors and processes through scientific principles 
and physical laws. This modeling approach is widely used in the fields of physics, chemistry, biology, and 
engineering, which helps to deeply resolve the intrinsic mechanisms of a system.In their study, Winkler et 
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al.4,5 took the relationship between the variation in the crystal radius at the meniscus and the tilt angle of the 
crystal as a starting point to construct fluid-dynamic and geometric models for the CZ crystal growth process, 
thereby circumventing the complexity of thermodynamic modeling. Subsequently, Rahmanpour et al.6,7 and 
Bukhari et al.8 thoroughly investigated and extended this work, and proposed a centralized parametric model 
(expressed in state-space form) incorporating the crystal growth kinetics and temperature kinetics, which 
further incorporated a simplified heat transfer model on the basis of the original hydrodynamic and geometrical 
model. In the context of the 300 mm CZ SSC growth process, Zheng et al.9 developed a centralized parameter 
model that integrates energy balance, mass balance, hydrodynamics, and geometric equations to enhance 
the understanding of CZ kinetics. This model was utilized for predicting the crystal radius and growth rate. 
For their investigation into the distribution parameter model concerning the CZ SSC growth process, Ng et 
al.10–12 introduced a model that incorporates both the crystal radius and temperature variation, allowing for a 
more precise representation of system dynamics and temperature fluctuations within the crystal.In general, for 
lumped-parameter and distributed-parameter models to be applicable to real-world silicon single crystal growth 
control systems, strict assumptions regarding model accuracy must be satisfied. Moreover, in many of these 
mechanistic models of crystal growth, numerous parameters are either unknown or lack sufficient precision, 
and some practical parameter values may vary significantly across different operating conditions. For example, 
in the case of distributed-parameter models for the CZ crystal growth process, a primary challenge lies in the 
need to numerically solve complex partial differential equations. This requires powerful solvers and substantial 
computational resources, which are often impractical on the limited computing hardware available for process 
control in industrial environments. Additionally, information derived from numerical models (as well as the 
inverse solutions required for control purposes) may not be obtainable in real time. Furthermore, considerable 
effort is needed to adapt distributed-parameter models to actual crystal growth system designs and to determine 
the physical parameters and boundary conditions required by the solvers. In summary, mechanistic modeling 
approaches for CZ silicon single crystal growth inevitably face certain limitations, including high modeling 
costs, the need for extensive domain knowledge, the difficulty of obtaining key parameters online, and excessive 
model simplification that compromises accuracy in representing the system.

Another commonly adopted strategy is data-driven modeling. As computer hardware continues to advance, 
data analysis and machine learning approaches have increasingly become essential tools for investigating 
complex systems. Liang et al.13,14 introduced a T-S fuzzy temperature identification algorithm aimed at modeling 
temperature changes during the growth of CZ SSC. Experimental results indicated that this fuzzy inference 
model achieves high accuracy in temperature prediction. Subsequently, Zhao et al.15 combined a T-S fuzzy model 
with an improved ant lion optimization (ALO) algorithm to establish a thermal model relating heating power to 
liquid surface temperature in the priming stage of CZ crystal growth. By applying the improved ALO algorithm 
to determine globally optimal parameters for the T-S fuzzy model, this method further enhanced the accuracy 
of predicting the liquid surface temperature.To expand deep learning applications in CZ SSC, Zhang et al.16 
developed a data-driven model using a BP neural network to predict crystal diameter based on experimental 
data. Simulation outcomes showed not only high predictive accuracy but also strong stability, suggesting this 
approach can reliably guide crystal dimension control. Advancing these efforts, Zhang et al.17 introduced a deep 
learning model linking heater power to crystal diameter via an long short-term memory(LSTM) architecture, 
particularly effective for analyzing sequential data. Results from multiple simulations demonstrated that this 
LSTM-based model outperformed traditional techniques such as BP neural networks and support vector 
machines in predicting crystal diameter, indicating that LSTM integration can lead to more precise control of the 
crystal growth process.Although data-driven modeling offers advantages such as high prediction accuracy, ease 
of implementation, low cost, and no need to consider the inherent complexities of the crystal growth process, 
the resulting models are often black-box in nature, with limited interpretability and a lack of insight into the 
underlying dynamics of the CZ crystal growth process.

To harness the benefits of both mechanistic and data-driven models, we merge them in a way that the resultant 
model not only elucidates the fundamental physical processes but also maintains high predictive accuracy. Kato 
et al.18 developed a gray-box model aimed at forecasting the temperature gradient parameters of crystals at the 
solid–liquid interface, utilizing a mechanistic framework of the CZ SSC growth process, thereby establishing 
a groundwork for investigating the integration of data-driven approaches with mechanistic models in hybrid 
modeling techniques related to CZ SSC. Ren et al.19 introduced a Just-In-Time Learning–Stacked AutoEncoder–
Extreme Learning Machine hybrid model, grounded in the concept of integrating data-driven and mechanistic 
elements, demonstrating its effectiveness in accurately predicting melt temperature and crystal growth rates. 
Wan et al.20 proposed the mechanism- data-driven hybrid variable weighted stacked autoencoder random forest 
hybrid model, which was based on the mechanistic framework and industrial data, aimed at facilitating online 
monitoring of V/G. The distinctive feature of this hybrid-driven modeling strategy lies in its incorporation of 
the mechanistic model’s explanatory capabilities alongside the generalization strengths of data-driven models, 
enhancing the model’s robustness and adaptability, thus ensuring it better mirrors actual operational conditions. 
Although previous studies have explored data-driven approaches to predict crystal diameter using operational 
data, these efforts have primarily focused on establishing a direct mapping between process parameters (e.g., 
heater power) and crystal diameter, without considering the physical constraints provided by mechanistic 
models. The key distinction of this study lies in the seamless integration of mechanistic models—derived from 
energy balance, fluid dynamics, and geometric equations—with real production data through the BiLSTM-
AdaBoost framework. Unlike purely data-driven methods, our hybrid model employs data-driven corrections 
to explicitly compensate for the residuals of the mechanistic model, thereby achieving both physical consistency 
and adaptability to process variations. This approach bridges the gap between theoretical modeling and industrial 
applicability, which has not been systematically addressed in prior work.

The main contributions of this study are as follows:
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	1.	 Application of Hybrid Modeling in Crystal Growth Prediction:

To address challenges such as nonlinearity, time delay, and difficulty in direct measurement of crystal diameter 
during the growth of electronic-grade semiconductor SSCs, a hybrid modeling approach combining mechanistic 
and data-driven models is proposed. The mechanistic model captures the dynamic behavior of crystal growth, 
while the data-driven model provides dynamic compensation for prediction results. This approach enhances 
prediction accuracy while maintaining model interpretability, offering theoretical support for quality control in 
SSC growth.

	2.	 BiLSTM-AdaBoost-Based Prediction Algorithm:

To overcome the limitations of traditional single-model approaches, an ensemble learning framework combining 
Bidirectional Long Short-Term Memory (BiLSTM) networks and Adaptive Boosting (AdaBoost) is designed. 
Multiple comparative experiments (see Chapter 3) demonstrate that this algorithm significantly improves 
prediction accuracy and robustness compared to conventional methods, providing a new solution for parameter 
prediction in complex industrial processes.

	3.	 Interdisciplinary Methodological Advancement in Semiconductor Crystal Growth:

By integrating control theory and machine learning, the proposed hybrid modeling framework offers a new 
perspective for research on semiconductor SSC growth. The method can be extended to related applications 
such as crystal defect detection and growth rate optimization, serving as a valuable reference for promoting 
intelligent development in semiconductor material manufacturing.

The structural content of this paper is organized as follows: Section "Proposed approach": A brief description 
of the mechanistic modeling of the SSC growth process and an in-depth introduction to the implementation 
details of the BiLSTM and Adaboost. Section "Heater to Crucible Thermal Radiation Transfer Rate for:": Through 
simulation experiments, the effectiveness and superiority of crystal diameter prediction based on BiLSTM and 
Adaboost algorithm are fully demonstrated, and the model performance is comprehensively discussed and 
analyzed. Concluding part: to summarize and conclude the work done in this paper, emphasizing the importance 
and practical application value of the research.

Proposed approach
Figure  1 illustrates the proposed hybrid-driven modeling method for diameter prediction in the constant 
diameter stage of CZ SSC using BiLSTM and the AdaBoost algorithm. The method comprises two modules: 
The first module is about the mechanistic modeling of the SSC growth process. Based on the mechanistic model 
established by the hydrodynamic model, energy balance model and geometric model of the CZ SSC growth 
process, the historical data of the actual SSC growth process is inputted into the mechanistic model to obtain the 
preliminary diameter prediction data and the error data of the diameter.

The second module takes the error data in Module 1 and the historical data from the actual SSC growth 
process as inputs, sets the data of the corresponding step as the training samples, and sets them in proportion to 
the corresponding training and testing sets. Then, the data are normalized and modeled using BiLSTM network 
as a weak regressor to store the prediction results of each time step and calculate the weights. Finally, the weights 
of all the weak regressors are weighted and combined, and the final diameter time series prediction results are 
obtained after inverse normalization.

Fig. 1.  Overall scheme of hybrid modeling.
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Mechanistic modeling of SSC growth systems
Mechanistic modeling is a scientific and highly explanatory modeling method for scenarios with a good 
understanding of the internal laws of the system. For the large time lag and nonlinear process such as the 
modeling of the SSC preparation process of the direct drawing method, the mechanistic modeling is used with 
a good explanatory nature.

Th represents the heater temperature, which controls the distribution of the thermal field and influences the 
silicon melt temperature and its melting state.Tc denotes the crucible temperature, which is crucial for ensuring 
the uniformity and stability of the melt.Tm indicates the melt temperature, a critical thermal parameter that 
impacts the melting, solidification, and the presence of crystal defects in silicon.Hm refers to the melt height, 
which plays a significant role in maintaining thermal balance and the stability of crystal diameter.Ri signifies 
the crystal radius, determining the diameter of the crystal rod and serving as an important indicator of process 
stability.αc represents the crystal tilt angle; excessive deviation in the crystal axis offset angle adversely affects 
crystal quality.Vg  denotes the crystal growth rate, which influences the rate of crystal formation; both excessively 
fast and slow growth can compromise quality and efficiency. indicates the crystal length, which reflects the 
stability of growth and production efficiency. Hmen represents the height of the meniscus, the height difference 
between the melt and the crystal, which affects both the growth shape and quality.Vp signifies the crystal pulling 
rate, impacting the balance between crystal quality and growth rate.Pin represents the heater power, which 
regulates temperature and the thermal field, thereby indirectly influencing melt conditions and crystal growth.

Thermal transfer model
It is assumed that the heat released by the graphite heater is completely absorbed by the quartz crucible, with no 
energy loss. Utilizing the law of conservation of energy, we can develop a heat transfer model for the growth of 
silicon single crystals7,21. Figure 2 shows the crystal growth model.

	1.	 Equation for heater temperature as a function of time Ṫh: 

	
Ṫh = 1

Ch
(Pin − qhc)� (1)

	where the heater heat capacity Ch is:

	 Ch = Sh × ρh × Vh� (2)

	2.	 Heater volume Vh is:

Fig. 2.  Model of crystal growth set parameters.
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	 Vh = π(R2
ho − R2

hi) × Hh� (3)

	3.	 Heater to Crucible Thermal Radiation Transfer Rate qhc for:

	 qhc = Ac × σ ×
(
T 4

h − T 4
c

)
� (4)

	The power of the heater is denoted as Pin, the specific heat capacity as Sh, the density as ρh, the outer diameter 
as Rho, the inner diameter as Rhi, the height as Hh, the surface area of the crucible as Ac, the Stefan-Boltz-
mann constant as σ, the heater temperature as Th, and the crucible temperature as Tc.

	4.	 Equation for the variation of crucible temperature with time Ṫc:

	
Ṫc = 1

Cc
(qhc − qco − qcs − qcm)� (5)

	where the crucible heat capacity Cc is calculated as:

	 Cc = Sc × ρc × Vc� (6)

	5.	 Crucible volume Vc is calculated as:

	 Vc = πR2
c × Hc� (7)

	where qco is the thermal radiation transfer rate from the crucible to the environment,qcs is the thermal radiation 
transfer rate from the crucible to the melt,qcm is the thermal conduction transfer rate from the crucible to the 
melt,Sc is the specific heat capacity of the crucible,ρc is the density of the crucible, and Hc is the height of the 
crucible;

	6.	 Based on the energy and mass conservation of the melt, the equation for the change in melt temperature over 
time as Ṫm:

	
Ṫm = 1

Cm
(qcm + qcs − qso − qm) − ḢmTm

Hm

� (8)

	7.	 where the method for calculating the melt heat capacity as Cm:

	 Cm = Sm × ρm × Vm� (9)

	8.	 The method for calculating the melt volume as Vm:

	 Vm = πR2
c × Hm� (10)

	where qso is the heat transfer rate from the melt to the surroundings, qm is the heat transfer rate from the melt 
to the curved surface, Ḣm is the rate of change of melt height, Tm is the melt temperature, Hm is the melt 
height, Sm is the melt heat capacity, ρm is the melt density, and Rc is the crucible radius.

(4) At the solid–liquid interface of crystal growth, the growth rate of the crystal can be determined by calculating 
the difference between the heat flux from the melt to the growth interface (QmI ) and the heat flux from 
the growth interface to the crystal (QIi). This difference reflects the heat released by the crystal during the 
crystallization process .Therefore, based on the principle of energy conservation, we can derive the calculation 
formula for the crystal growth rate Vg

7.

	
Vg = QIi − QmI

Hf ρs
= qIi − qmI

Hf ρsπR2
i

� (11)

where Hf  is the latent heat of crystallization, ρs is the crystal density, qIi is the heat transfer rate from the solid–
liquid interface to the crystal, qmI  is the heat transfer rate from the melt to the solid–liquid interface, and Ri is 
the crystal radius.

Geometric mode

	1.	 Equation for the variation of melt height with time at the solid–liquid interface Ḣm 22:
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Ḣm = −

ρsR2
i

(
Vp − Ḣmen

)
ρmR2

c − ρsR2
i

� (12)

	where Vp represents the velocity at which the crystal rises,Ḣmen indicates the rate at which the meniscus height 
changes,ρm denotes the density of the melt, and Rc refers to the radius of the crucible.

	2.	 The equation for the height of the curved lunar surface is Hmen 23:

	

Hmen = a

√
1 − sin (α0 + αc)

1 + a

(√
2Ri)

� (13)

	From Eq. (13) it can be calculated that the

	
Ḣmen = ∂Hmen

∂Ri
Ṙi + ∂Hmen

∂αc
α̇c� (14)

	here Ṙi is the capillary length, also known as the Laplace constant, which is related to the surface tension Ṙi and 
melt density of the meniscus. The value of Ṙi is Ṙi, Ṙi is the crystal growth angle, and Ṙi is the crystal tilt 
angle24.

	3.	 Relationship between the amount of change in crystal radius with time Ṙi and the growth rate Vg :

	 Ṙi = Vg tan αc� (15)

	4.	 Change in angle of inclination over time α̇c 25:

	
α̇c = Vp − Vcruc − CαzVg

Cαn
� (16)

	Among them

	
Cαz = 1 − ρsR2

i

ρmR2
c

+
[(

1 − R2
i

R2
c

)
∂Hmen

∂Ri
− 2RiHmen

R2
c

− a2

R2
c

cos (α0 + αc)
]

tanαc� (17)

	
Cαn =

(
1 − R2

i

R2
c

)
∂Hmen

∂αc
+ a2Ri

R2
c

sin(α0 + αc)� (18)

	

∂Hmen

∂Ri
= a2 [1 − sin(α0 + αc)]

2
√

2R2
i

(
1 + a√

2Ri

)
Sα

� (19)

	
∂Hmen

∂αc
= −acos (α0 + αc)

2Sα
� (20)

	
Sα =

√
[1 − sin(α0 + αc)] (1 + a

/√
2Ri)� (21)

	where Vcruc is the crucible rise rate.

	5.	 The change in crystal length over time as L̇:

	 L̇ = Vg � (22)

Long short-term memory (LSTM) network
In the diameter prediction in the constant diameter stage of direct-drawn SSC, the input data required for model 
construction comes from acquisition and simulation with significant time-series characteristics.The LSTM 
model, due to its efficient ability to capture the time dependence, is able to deeply mine the temporal correlations 
in the input data, while adapting to the complex relationships between different features in the multi-input task, 
and exhibits superior modeling results21,26.

As explained in22,27, the LSTM model is a widely recognized deep learning approach for handling sequential 
data. It includes three key components—the input gate, the forget gate, and the output gate—as well as a cell 
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state. By discarding past information through the forget gate, integrating new information via the input gate, 
and determining the current hidden state through the output gate, the LSTM dynamically updates and transmits 
information within its cell state. Compared to conventional recurrent neural networks (RNN), LSTM more 
effectively capture long-term dependencies, thereby enhancing overall model performance.

RNN
A conventional RNN is a specific kind of neural network designed for handling sequential data. In contrast 
to feedforward neural networks, RNNs feature an internal recurrent structure that enables them to retain 
and leverage information from prior states while processing input sequences. This capability allows them to 
effectively capture temporal dependencies present in the data, as illustrated in Fig. 3.

The basic unit of RNN combines the current input with the hidden state of the previous moment through a 
circular connection to form a new hidden state. Its basic formula is as follows:

	 ft = f(Wh · ht−1 + Wx · xt + b)� (23)

where ht is the hidden state at the current moment, ht−1 is the hidden state at the previous moment,xt is the 
current input, Wh and Wx are the weight matrices, b is the bias, and f is usually a nonlinear activation function.

Gating mechanism
In order to improve the shortcomings of the traditional RNN, the LSTM introduces a gating mechanism that 
allows the network to dynamically select and manage the information at each time step by a combination of 
three gates to effectively capture long term dependencies, which control the flow of information by designing a 
series of “gates”. These gates serve to determine which information needs to be retained, updated, or exported, 
thus effectively managing the cell state and hidden state. This design makes LSTM more powerful and flexible 
when dealing with complex sequential data.

	1.	 Amnesia Gate

The forgetting gate determines how much old information is discarded from the cellular state:

	 ft = σ(Wf · [ht−1, xt] + bf )� (24)

The output of the forgetting gate, denoted as ft, varies between 0 and 1. The sigmod activation function, 
represented as σ, maps the input to a range of 0 to 1. Additionally,Wf  refers to the weight matrix,ht−1 indicates 
the hidden state from the previous time step,xt represents the current input, and bf  is the bias term. Finally, the 
output ft governs the extent of information retained from the prior cell state,Ct−1.

	2.	 input gate

The input gate determines which new information will be added to the cell state:

	 it = σ(Wi · [ht−1, xt] + bi)� (25)

where it is the output of the input gate; Wi is the weight matrix and bi is the bias term.

	3.	 output gate

The output gate determines the hidden state of the next step :

	 ot = σ(Wo · [ht−1, xt] + bo)� (26)

	 ht = ot ∗ tanh(Ct)� (27)

Fig. 3.  Schematic diagram of RNN.
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where ot is the output of the output gate; WO  is the weight matrix and bO  is the bias term.

	4.	 cell state

	 Ct = ft ∗ Ct−1 + ic ∗ Ct� (28)

where Ct is the weighted sum of the information retained by the previous cell state through the forget gate 
selection and the new information selected through the input gate.

At each time step, the LSTM’s forget gate decides how much of the previous information to discard, based on 
the current input. Simultaneously, the input gate selects which essential details to incorporate. Finally, the output 
gate determines which data from the cell state forms the hidden state, which then becomes the model’s output for 
the next layer. This synchronized process enables the LSTM to retain critical information over extended periods, 
effectively capturing long-term dependencies, as illustrated in Fig. 4.

BiLSTM
For diameter prediction in the constant diameter stage of CZ SSC, various types of data need to be linked to 
the past and future information related to the prediction point, and BiLSTM can better model complex feature 
interactions and dependencies for multiple input tasks such as simulated diameter, lifting speed, heater power, 
etc. in the training of the model28,29.

The BiLSTM is an extended LSTM model that consists of two LSTM modules, one that reads from the forward 
to the time series (forward LSTM) and the other that reads from the backward to the time series (backward 
LSTM). This bi-directional structure enables the model to fully capture the contextual information and aims 
to improve the understanding of sequence data by considering both forward and backward information of the 
sequence.

The basic structure is a forward LSTM that needs to deal with the natural order of the sequence, from the 
first to the last time step (x1, x2, ..., xT ), and a backward LSTM that needs to deal with the reverse order input 
sequence, from the last time step to the first time step (xT , xT −1, ..., x1). In this model, the input signal passes 
through the forward LSTM layer output 

−→
ht  and the backward LSTM layer output 

←−
ht , which together determine 

the values passed into the hidden layer, to obtain the output of BiLSTM yt, which is updated with the formula.

Fig. 4.  Schematic diagram of LSTM network.
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⇀

ht = LST M(xt,
⇀

h
t−1

)� (29)

	
←−
h t = LST M(xt,

←−
h t−1)� (30)

	 yt = −→
W

−→
ht + ←−

W
←−
ht + b� (31)

The hidden states of the forward and backward LSTM are spliced and the output is obtained:

	 hBILST M
t = [hforword

t , hbackward
t ]� (32)

The output of BILSTM is used as input for subsequent tasks. Further processing can be performed using a fully 
connected layer, as shown in Fig. 5.

AdaBoost based prediction models
The growth process of direct-drawn SSC is complex, characterized by large hysteresis and high nonlinearity. 
Since a single BiLSTM model does not predict well when dealing with the multiple-input single-output case, it 
is particularly important to improve the model’s ability to model complex multi-class data features in practical 
applications. Such improvement can help us to better predict the diameter of direct-drawn SSC, thus improving 
production efficiency and quality25,26,30,31.

In the field of crystal diameter prediction, commonly used ensemble learning methods include Gradient 
Boosting, XGBoost, Random Forest, and AdaBoost. Based on the specific requirements of the Czochralski 
process for crystal diameter prediction, Table 1 summarizes and compares the advantages and disadvantages of 
these algorithms, providing a reference for selecting an appropriate model.

AdaBoost is a method of ensemble learning aimed at improving classifier performance. It creates a robust 
classifier by merging several weak classifiers, training each new model specifically on the mistakes made by 
the previous one. Through the modification of sample weights, AdaBoost highlights the samples that were 
misclassified, which ultimately leads to enhanced accuracy in the classification system.Therefore, we opt to use 
AdaBoost. The process of modeling can be summarized as follows:

	1.	 Weight distribution:

The algorithm, for a given training dataset T = {(x1, y1), (x2, y2)...(xt, yt)}, initializes the weights of each 
sample by assigning the same weights: wi = 1/N , such that the initial weight distribution of the training sample 
set D1(i):

	
D1(i) = (w1, w2, . . . wN ) =

( 1
N

, . . . ,
1
N

)
� (33)

Fig. 5.  Schematic diagram of BILSTM network.
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where D1(i) is the weight of sample N in round t.

	2.	 Training a weak classifier

After completing several iterations, a weak classifier, denoted as Ht, is trained at round t utilizing the existing 
sample weights D1(i). The weak classifier h, which exhibits the smallest error rate at this point, is chosen as the 
tth basic classifier Ht. Subsequently, the weak classifier Ht : X → {−1, 1} is computed, which incurs an error 
on the distribution Dt.

	
et = P (Ht(xi) ̸= yi) =

N∑
i=1

wtiI(Ht(xi) ̸= yi)� (34)

where the error rate of Ht(x) on the training set et is the sum of the weights of the samples misclassified by 
Ht(x).

	3.	 Calculate the weights of weak classifiers

Calculate the weights of the classifier Ht based on the current error rate of the weak classifier:

	
at = 1

2 ln(1 − et

et
)� (35)

where at denotes the degree of contribution of weak classifiers.

	4.	 Update sample weights

Update the weight distribution of the training samples Dt+1:

	
Dt+1 = Dt(i) exp(−atyiHt(xi))

Zt
� (36)

where Zt is a normalization constant Zt =
√

et(1 − et).

	5.	 Combinatorial weak classifier

Combine each weak classifier by its weight at with the following formula:

	
f(x) =

T∑
t=1

atHt(x)� (37)

	
Hfinal = sign(f(x)) = sign(

T∑
t=1

atHt(x))� (38)

where T is the total number of weak classifiers and the sign function is used to transform the output into a 
classification result.

AdaBoost is a powerful ensemble learning method that can effectively enhance model performance by 
combining multiple weak classifiers. Figure 6 illustrates the AdaBoost training process, which includes key steps 
such as initialization of sample weights, training and weighting of weak classifiers, and the integration of the final 

Feature AdaBoost Gradient Boosting XGBoost Random Forest

Mechanism Sequentially trains weak learners, 
reweights misclassified samples

Sequentially adds weak learners to 
minimize loss function

Optimized Gradient Boosting 
with regularization

Builds independent trees, 
aggregates via voting/averaging

Adaptability to 
Misclassified Samples

High, focuses on difficult-to-predict 
samples

Moderate, depends on loss function 
design Moderate to high, requires tuning Low, no targeted reweighting 

mechanism

Integration with 
Mechanistic Model

Strong, sequential adjustments align 
with mechanistic errors

Moderate, overall optimization may 
dilute mechanistic input

Moderate, similar to Gradient 
Boosting

Weak, independent trees 
cannot directly leverage 
mechanistic output

Computational 
Complexity Moderate, fewer hyperparameters High, requires tuning multiple 

hyperparameters
Very high, additional 
regularization and optimization

Low to moderate, simple 
hyperparameters

Suitability for Time-Series 
Data

High, iterative correction fits time-
series nature Moderate, relies on data preprocessing Moderate, similar to Gradient 

Boosting
Low, lacks temporal 
dependency

Relevance to This Study High, simple and synergistic with 
hybrid framework

Moderate, added complexity with 
limited gains Moderate, high optimization cost Low, limited ability to utilize 

mechanistic model

Table 1.  Advantages and disadvantages of each algorithm.
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model. To evaluate the model’s effectiveness, the previously mentioned metrics provide comprehensive insights 
into various aspects of performance. By appropriately adjusting parameters and model design, AdaBoost can 
achieve excellent results in many practical applications.

The advantages of AdaBoost are particularly evident in this study. Its iterative reweighting mechanism 
prioritizes samples with higher prediction errors, which is crucial for addressing the highly nonlinear and lag-
dominated dynamic characteristics of the CZ crystal growth process. Unlike Bagging-based methods (e.g., 
Random Forest), which treat all samples equally, AdaBoost explicitly focuses on the residual errors of preceding 
weak learners, enabling targeted compensation for systematic biases in the mechanistic model’s predictions. 
Additionally, compared to methods like Gradient Boosting or XGBoost, which rely on gradient descent to 
optimize complex loss functions, AdaBoost’s additive model structure is more suitable for real-time control in 
industrial crystal growth environments. Its simplicity allows for seamless and efficient integration with BiLSTM 
outputs without introducing excessive computational overhead. Given that the features generated by BiLSTM 
inherently possess temporal dependencies and noise, AdaBoost effectively combines diverse weak regressors—
even those with moderate individual accuracy—into a robust ensemble model. This helps mitigate the risk of 
overfitting, particularly in scenarios with limited training data, which is a common constraint in industrial 
settings.

Hybrid driven modeling approach based on BiLSTM and Adaboost algorithm
The proposed hybrid modeling approach integrates the BiLSTM algorithm and the Adaboost algorithm, where 
the former bi-directionally processes the data related to the prediction of the input crystal diameter through two 
independent LSTM networks in both the forward and backward directions, thus capturing the information of the 
past and future directions in the input sequences; and the latter iteratively trains multiple weak classifiers based 
on the data generated by the BiLSTM algorithm and gradually optimizes the overall prediction performance by 
assigning different weights to the results of each classifier. The latter iteratively trains multiple weak classifiers 
based on the data generated by the BiLSTM algorithm, and assigns different weights to the results of each 
classifier to gradually optimize the overall prediction performance.

As shown in Fig. 7, the steps to realize the prediction of crystal diameter during SSC growth are as follows:

	1.	 Data Acquisition:Collecting data from the actual SSC growth process as well as the crystal growth model 
constructed based on the first-principles model under different working conditions in multiple furnaces to 
enrich the sample data set of the experiment.

	2.	 mechanistic model simulation: Through Simlink simulation, input the lifting speed and heater power under 
actual working conditions, and get the prediction data of the diameter of the mechanistic model with large 
error.The diameter predicted by the purely mechanistic model only reaches about 70% of the actual crystal 
diameter.

	3.	 Data preprocessing: the data to be put into the model training, the missing values, outliers processing, and 
filter out the random noise in the data, normalize the data, divided into training set and test set.

	4.	 Training the BiLSTM Model: A bidirectional BiLSTM network is established to create the BiLSTM model. 
This network encompasses the following layers: an input layer, a bi-directional LSTM layer, a flattening layer, 
a fully connected layer, a ReLU activation layer, and an output layer. The data gathered in the earlier steps, 
including variables such as lifting speed, heater power, the diameter actually measured, and the discrepancy 
between the simulated and real diameters, are fed into the model. Subsequently, hyperparameters—includ-
ing the learning rate, the number of training epochs, and the gradient threshold—are fine-tuned to optimize 
model training. The predictive outputs for the input samples from the trained individual BiLSTM model 
serve as a weak learner for the subsequent stage of the AdaBoost algorithm.

	5.	 Adaboost Integrated Learning: This approach develops multiple weak classifiers by utilizing features pro-
duced by BiLSTM as input. Initially, each sample is assigned equal weights. The features generated by BiL-
STM are iteratively trained to build the weak classifiers; if a sample is correctly classified, its weight is de-
creased for the next training set, while incorrectly classified samples see their weights increased. The adjusted 

Fig. 6.  ADABOOST training flow.
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sample set is then employed to train the subsequent classifier. Ultimately, all weak classifiers’ outputs are 
amalgamated to create a robust classifier. After the completion of training for each weak classifier, the weights 
of those with lower classification error rates are elevated, while weights for classifiers with higher error rates 
are diminished. The final bias compensation is based on the difference between the predicted actual diameter 
and the diameter modeled mechanically.

	6.	 The prediction of crystal diameter during SSC growth can be realized by inputting the measured data into 
the constructed module of hybrid modeling after summing up the difference with the difference prediction 
value.

The bidirectional structure of BiLSTM can capture both past and future information simultaneously (such 
as the lag effects of pulling speed and heating power), thereby enhancing the feature extraction capability for 
time series data. AdaBoost, through iterative weighting of weak learners (BiLSTM), reduces the influence of 
high-error samples, decreases overfitting, and improves robustness. The hybrid modeling approach combines a 
mechanistic model with a data-driven model—the former provides physical constraints, while the latter corrects 
residual errors—achieving a balanced trade-off between interpretability and accuracy.

BiLSTM-AdaBoost feature importance analysis
In the BiLSTM–AdaBoost hybrid-driven modeling proposed in this paper, the base learner is a deep network 
(BiLSTM) rather than a decision tree, so it cannot directly output “feature importance” metrics like tree-based 
models. Therefore, the Permutation Feature Importance method is used to compare feature importance. The 
specific steps are as follows:

First, the model’s prediction error (MSE) on the unperturbed data is calculated as the baseline performance. 
Then, the values of a single feature are randomly permuted (i.e., shuffled), disrupting the association between 
that feature and the target variable, while keeping all other features unchanged. The prediction error (MSE) 
of the model on the perturbed data is then computed and compared with the baseline error. If the error 
increases significantly after the perturbation, it indicates that the feature is important for the model’s prediction. 
Conversely, if there is little to no change, the feature is considered unimportant.

For the initial dataset D, the mean squared error (MSE) of model fk  is:

Fig. 7.  Hybrid modeling predictions based on BILSTM-ADABOOST.
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MSEk = 1

M

M∑
i=1

(fk (Xi) − yi)2� (39)

Feature j is permuted to generate the perturbed dataset D(j), and the mean squared error (MSE) of model fk  
on D(j) is:

	
MSE

(j)
k = 1

M

M∑
i=1

(
fk

(
X

(j)
i

)
− yi

)2
� (40)

The importance score of feature j for model fk  is:

	
∆MSE

(j)
k = 1

M

[
MSEK − MSE

(j)
K

]
� (41)

where Xi is the dataset input, yi is the dataset output, and fk  is the network model used—in this paper, it refers 
to the k-th BiLSTM model.

After integrating k weak learners, the global importance of feature j is:

	
Pj =

K∑
k=1

[(1
2 ln(1 − εk

εk
)
)

.
(

∆MSE
(j)
k

)]
� (42)

where εk  is the weighted classification error, which is normalized to obtain a percentage form.
As shown in Fig.  8,The global feature importance scores are 0.1714, 0.2312, 0.1389, 0.2415, and 0.2169, 

respectively, indicating that Table 2 (heating power of the heater), Feature 4 (the discrepancy between the actual 
crystal radius and that predicted by mechanical models), and Feature 5 (radius measurement value) play a more 
significant role in model training. This is consistent with the previously mentioned Pearson correlation analysis 
and also aligns with real-world conditions.

Weight distribution:

Industrial experiment simulation
In the previous section, we developed a hybrid BILSTM-ADABOOST driven model designed to more accurately 
predict the diameter of crystals during the growth of CZ SSC. In this section, we compare the performance of 
this model with other data-driven modeling methods.

Indicators for evaluating the performance of each model
To enable a comprehensive comparison of model performance, this study employs five evaluation metrics, 
summarized in Table 3. MSE measures the average of squared differences between actual and predicted values, 
highlighting the accuracy of the predictions. RMSE further indicates the magnitude of these errors. MAE 
tracks average absolute differences between observed and predicted outcomes, reflecting the model’s reliability. 
MAPE captures forecasting accuracy as a percentage error. Lastly, R2 gauges the proportion of variance in the 
dependent variable explained by the independent variables, delivering a thorough assessment of the model’s 
explanatory power.

Forecast results and analysis
In this instance, the SSC diameter during the CZ SSC growth process is established as the target variable. Utilizing 
data on the growth of the 12 inch SSC collected from the TDR-180 single crystal furnace between October 13 
and October 20, 2020, the predictive capability of the proposed model is assessed by continuously sampling data 
throughout the constant diameter growth phase of the crystals. Figure 9 Actual diameter measurements in the 
constant diameter stage of the crystal.

In the experimental processing section, the core method for selecting 2,000 samples from 6,000 original time-
series data points is based on a sliding window extraction mechanism and a data timeliness filtering principle. 
Using the sliding window approach, the window moves with a step size of 2, meaning each adjacent sample is 
spaced by 2 time points, thereby avoiding excessive data overlap. After theoretically generating approximately 
3,000 candidate samples, the most recent 2,000 windowed samples at the end of the time series are retained with 
priority. This aims to optimize computational efficiency (reducing memory usage by 33%), enhance learning of 
recent dynamic patterns, and avoid interference from outdated data.

The dataset is partitioned using a non-random chronological split strategy (the first 80% for training, the 
last 20% for testing), strictly preserving temporal causality to prevent future data leakage, ensuring that model 
evaluation aligns with the physical constraints of real-world forecasting scenarios. This strategy adheres to 
common standards in the time-series prediction field, balancing engineering feasibility with academic rigor.

Handling outliers
When analyzing experimental data, a small number of data points may significantly deviate from the expected 
data distribution. If these outliers are not identified and removed, they can adversely affect the accuracy of 
To properly handle outliers in the dataset, this study adopts the 3-sigma rule. Let the actual measured value 
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be x1, x2, · · · , xn, the arithmetic mean be x = 1/n · (
∑n

i=1 xi), the absolute error be ∆xi = xi − x, and 
the standard error be σ̂ = [

∑
∆x2

i

/
(n − 1)]1/ 2. If the absolute error xd of the measured value ∆xi satisfies 

condition |∆xi| > 3σ̂, then xd is identified as an outlier and should be eliminated.

Data normalization processing
In data-driven soft sensing modeling, the use of auxiliary variables is essential. Due to potential differences in 
the numerical scales of various auxiliary variables, directly using raw values for computation may prolong the 
network’s learning time. Therefore, it is particularly important to perform normalization on both input and 
output data. Specifically, the normalization is carried out using the formula shown in Eq. (39).

	
x̂i = xi − x

xmax − xmin
� (39)

Serial number Feature name Value

1 The lifting speed of the apparatus 0.1714

2 Heating power of the heater 0.2312

3 Crucible lifting speed 0.1389

4 The discrepancy between the actual crystal radius and that predicted by mechanical models 0.2415

5 Radius measurement value 0.2169

Table 2.  Analysis of parameters for different feature values.

 

Fig. 8.  Feature importance analysis.
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In the equation:xi and x represent the i-th variable of x and its mean value, respectively; xmax and xmin 
represent the maximum and minimum values of x, respectively; x̂i is the normalization result.

The growth environment and process of CZ SSC is notably intricate, marked by a multitude of interrelated 
factors that can influence outcomes. This paper focuses on examining specific variables that pertain to the crystal 
radius at the constant diameter stage of growth. In a real industrial setting, various variables exert significant 
influence over the crystal radius. These include, among others, the speed at which the crystal is lifted, the rotation 
speed of the crystal, the lifting speed of the crucible, the rotation speed of the crucible, as well as the turn speed 
of the crystal and the rise speed of the crucible. In addition to these mechanical parameters, thermal factors 
such as the temperature of the liquid surface and the temperature within the hot field further contribute to the 
overall growth dynamics.To refine the prediction accuracy for the crystal diameter, the paper employs data 
gathered from practical crystal pulling experiments alongside statistical analysis through Pearson’s correlation 
coefficient. This analysis identifies several key variables that play a crucial role in diameter prediction, namely 
the heating power of the heater,pulling rate, the discrepancy between the actual crystal radius and that predicted 
by mechanical models, as well as the measured radius itself. Subsequently, these primary influencing variables 
are utilized in further modeling activities aimed at improving the predictive capabilities regarding the crystal 
diameter, enhancing the efficiency and quality of the crystal growth process.

Fig. 9.  Actual diameter measurements in the constant diameter stage of the crystal.

 

Norm Define Formulas

MSE Mean square MSE = 1
N

N∑
i=1

(y(i) − ŷ(i))2

RMSE Root mean square RMSE =

√
N∑

i=1

(y(i) − ŷ(i))2

MAE Mean absolute value error MAE = 1
N

N∑
i=1

|y(i) − ŷ(i)|

MAPE Average absolute percentage error MAE = 1
N

N∑
i=1

∣∣ y(i)−ŷ(i)
y(i)

∣∣ × 100%

R2 Coefficient of determination R2 = 1 −

N∑
i=1

(y(i)−ŷ(i))2

N∑
i=1

(y(i)−y(i))2

Table 3.  Model performance evaluation indicators.
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In this paper, hybrid modeling is used to complete the crystal radius prediction, firstly, we need to get the 
diameter prediction value of the mechanistic model in simulink simulation, as shown in Fig. 10, and then make 
difference with the actual measurement value to compensate for the error of the simple mechanistic modeling 
and improve the prediction accuracy, and then we will use the difference value and other variables as the inputs 
and outputs to train the data-driven BILSTM-ADABOOST model.

To evaluate the metrics of the BILSTM-ADABOOST model, various models including CNN, LSTM, GRU, 
CNN-BILSTM, CNN-LSTM, and LSTM are employed alongside BILSTM and the BILSTM-ADABOOST for 
diameter prediction and comparative analysis. The prediction outcomes of the BILSTM-ADABOOST algorithm, 
including prediction errors, are illustrated in Fig.  11. Figure  12 presents a comparison of the prediction 
performance of the different modeling approaches, while Fig. 13 depicts the prediction error comparison among 
these methods (Table 4).

Based on the data in Table 5, the comparison algorithms are CNN, GRU, CNN-BILSTM, CNN-LSTM, 
LSTM, BILSTM, and BILSTM-ADABOOST.From the R2 perspective, the value increases from 56.434% (CNN) 
to 95.483% (BILSTM-ADABOOST). This indicates that the latter can capture data trends and features more 
thoroughly, achieving the highest prediction accuracy.

Fig. 11.  Prediction results of BILSTM-ADABOOST algorithm and prediction errors.

 

Fig. 10.  Mechanistic model crystal diameter predictions.
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Table 5 presents the training times for each model. As shown in the table, the standalone models have 
relatively short training times, generally within 10 s. Due to the increased complexity of the hybrid model, its 
training time is comparatively longer. However, considering the slow-changing nature of semiconductor silicon 
single crystal production, the training time of the BiLSTM-AdaBoost model remains within practical limits. 
Furthermore, the training time can be reduced through model structure optimization (e.g., limiting the number 
of weak learners and adjusting the number of LSTM layers) as well as the use of parallel computing.

From the MSE/RMSE perspective, the BILSTM-ADABOOST model has the lowest MSE of 5.038 × 10⁻⁹, with 
a corresponding RMSE of only 7.098 × 10⁻5. This shows that BILSTM-ADABOOST has a smaller overall error 

Algorithm Parameter settings

CNN Kernel size = 3, Number of kernels = 128, Pooling window = 2, Dropout = 0.2, Learning rate = 0.001

LSTM Hidden units = 128, Number of layers = 1, Dropout = 0.2, Learning rate = 0.001

GRU Hidden units = 128, Number of layers = 1, Dropout = 0.2, Learning rate = 0.001

CNN-BiLSTM Kernel size = 3, Number of kernels = 128, Pooling window = 2, BiLSTM hidden units = 128, Layers = 1, Dropout = 0.2, Learning rate = 0.001

CNN-LSTM Kernel size = 3, Number of kernels = 128, Pooling window = 2, LSTM hidden units = 128, Layers = 1, Dropout = 0.2, Learning rate = 0.001

BiLSTM-AdaBoost BiLSTM hidden units = 128, Layers = 1, Dropout = 0.2, AdaBoost weak classifiers = 50, Learning rate = 0.001

Table 4.  Parameter configuration for each algorithm.

 

Fig. 13.  Comparison of prediction errors between modelling methods.

 

Fig. 12.  Comparison of the prediction effect of each modeling method.
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in terms of numerical scale.From the MAE perspective, the absolute error decreases from 2.501 × 10⁻4 (CNN) to 
5.917 × 10⁻5 (BILSTM-ADABOOST). This demonstrates that deeper or integrated deep learning methods have 
an advantage in reducing absolute error.From the MAPE perspective, all models have relatively small values 
(0.031%–0.131%), showing good overall performance. However, BILSTM-ADABOOST has the lowest MAPE 
of 0.031%, indicating a very small percentage error compared to the true value. This reflects higher predictive 
accuracy and stability.

In summary, hybrid models tend to achieve better results than single models, especially BILSTM-ADABOOST 
outperforms other comparative models in all indicators, suggesting that: the combination of two-way LSTM’s 
ability to capture time-series features and AdaBoost algorithm’s idea of iterative weighting of the weak learners 
jointly improves the model-fitting ability, significantly reduces the error,and improves the recognition accuracy.

Conclusion
This study proposes a novel hybrid-driven modeling approach for predicting the crystal diameter during the 
isothermal stage of CZ SSC growth. The method integrates a mechanistic model with a data-driven framework 
that combines BiLSTM networks and the AdaBoost algorithm. Compared to traditional mechanistic models 
and standalone data-driven models, the proposed hybrid model significantly improves prediction accuracy. 
Experimental results demonstrate that the BiLSTM-AdaBoost model achieves an R2 of 95.483%, a mean 
absolute error (MAE) of 5.917 × 10⁻5, and a mean absolute percentage error (MAPE) of 0.031%, indicating 
its superior capability to capture the complex nonlinear dynamics of the CZ process. Moreover, by leveraging 
AdaBoost’s error-driven adaptability and BiLSTM’s temporal dependency modeling, the hybrid model exhibits 
strong robustness to noise and fluctuations in input data, making it particularly suitable for real-time industrial 
applications with variable data quality. The lightweight ensemble structure of AdaBoost and the parallel 
processing capability of BiLSTM also ensure computational efficiency, enabling real-time control of crystal 
diameter under high-temperature, multi-physics environments. Importantly, this hybrid approach maintains 
the physical interpretability of mechanistic models while incorporating the flexibility of data-driven methods, 
ensuring that predictions align with the underlying physical dynamics of crystal growth. Overall, the proposed 
method provides a robust framework for real-time diameter control in industrial SSC production, contributing 
to defect reduction, yield improvement, and the advancement of semiconductor manufacturing technology.

Data availability
The data related to the silicon crystal growth process involved in this study are considered confidential corporate 
information and trade secrets. In compliance with the confidentiality agreement signed with our collaborators, 
the relevant data cannot be made publicly available. However, the deep learning model code and materials used 
for academic research in this study can be requested by contacting the corresponding author. We will provide 
the relevant code after a reasonable assessment, provided it does not violate any confidentiality clauses, to sup-
port further related research. Moreover, the paper has provided detailed information on the model architecture, 
training process, and key parameters to enhance the reproducibility and reference value of the research.
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