
Research on water body 
information extraction and 
monitoring in high water table 
mining areas based on Google 
Earth Engine
Anya Zhong, Zhen Wang & Yulong Gen

The extensive and intensive exploitation of coal resources has led to a particularly prominent issue of 
water accumulation in high groundwater table mining areas, significantly impacting the surrounding 
ecological environment and directly threatening the red line of cultivated land and regional food 
security. To provide a scientific basis for the ecological restoration of water accumulation areas in coal 
mining subsidence, a study on the extraction of water body information in high groundwater level 
subsidence areas is conducted. The spectral characteristics of land types within mining subsidence 
areas were analyzed through the application of the Google Earth Engine (GEE) big data cloud platform 
and Landsat series imagery. This study addressed technical bottlenecks in applying traditional 
water indices in mining areas, such as spectral interference from coal slag, under-detection of small 
water bodies, and misclassification of agricultural fields. An Improved Normalized Difference Water 
Index (INDWI) was proposed based on the analysis of spectral characteristics of surface objects, in 
conjunction with the OTSU algorithm. The effectiveness of water body extraction using INDWI was 
compared with that of Normalized Difference Water Index (NDWI), Enhanced Water Index (EWI), 
and Modified Normalized Difference Water Index (MNDWI). The results indicated that: (1) The INDWI 
demonstrated the highest overall accuracy, surpassing 89%, and a Kappa coefficient exceeding 80%. 
The extraction of water body information in mining areas was significantly superior to that achieved 
by the other three prevalent water indices. (2) The extraction results of the MNDWI and INDWI water 
Index generally aligned with the actual conditions. The boundaries of water bodies extracted using 
MNDWI in mining subsidence areas were somewhat ambiguous, leading to the misidentification 
of small water accumulation pits and misclassification of certain agricultural fields. In contrast, 
the extraction results of INDWI exhibited better alignment with the imagery, with no significant 
identification errors observed. (3) Through the comparison of three typical areas, it was concluded 
that the clarity of the water body boundary lines extracted by INDWI was higher, with relatively fewer 
internal noise points, and the soil ridges and bridges within the water bodies were distinctly visible, 
aligning with the actual situation. The research findings offer a foundation for the formulation of land 
reclamation and ecological restoration plans in coal mining subsidence areas.

Coal is acknowledged as the primary energy source and a critical raw material in the country, thereby ensuring 
national energy security and facilitating the rapid growth of the national economy1,2. Nonetheless, coal mining 
activities are associated with a range of adverse ecological and environmental consequences, directly influencing 
regional land use and sustainable development. The incidence of surface subsidence attributable to coal extraction 
is escalating, resulting in the degradation of farmland, impairment of public infrastructure, and, in extreme 
instances, endangering the life safety of local inhabitants3. The eastern region of China with a high groundwater 
table constitutes a significant farmland protection zone within the country, marked by a dense population, 
extensive cultivated land, and elevated soil fertility4. Owing to the elevated groundwater levels in the region, 
the occurrence of surface subsidence results in the formation of numerous depressions within the farmland, 
characterized by central low-lying areas that are susceptible to waterlogging. The resultant subsidence-induced 
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water accumulation extensively damages agricultural lands and necessitates the relocation of villages, thereby 
engendering a multitude of environmental and social challenges5,6. Consequently, the accurate extraction of 
information pertaining to subsidence water bodies within mining zones, coupled with targeted land reclamation 
initiatives, serves as a critical safeguard for the sustainable and environmentally-friendly development of regional 
mining operations.

The ongoing evolution of remote sensing technology has led to a continuous enhancement in the temporal, 
spatial, and spectral resolutions of satellite imagery, thereby facilitating the precise, comprehensive, dynamic, 
and near real-time monitoring of surface water resources7. Traditional water body extraction methods can 
be classified into visual interpretation, automatic classification and semi-automatic classification8. The visual 
interpretation method involves the manual differentiation of water bodies from other land features on remote 
sensing images, based on the experience of researchers, to delineate the boundaries of the water body sections. 
While the visual interpretation method is highly reliable, it requires substantial manpower support, making 
it difficult to extract water body information from large volumes of remote sensing data9. Secondly, the 
automatic classification method employs programs to establish rules for land feature classification. Based on 
the performance differences of various land features, algorithms are utilized to analyze these features, achieving 
automatic classification. Common automatic classification methods include machine learning, ISODATA, and 
K-means clustering, among others10,11. To a certain extent, the automatic classification method reduces the 
influence of human judgment factors, with a moderate improvement in universality. However, its classification 
accuracy is still inferior to that of the semi-automatic classification method when compared, resulting in less 
extensive application in remote sensing image classification. The semi-automatic classification method takes 
advantage of the reflectance differences between water bodies and other land features in remote sensing images 
to set classification rules, and extracts water body information through various software and algorithms. At 
present, commonly used semi-automatic classification methods mainly include the water body index method, the 
inter-band relationship method, and the object-oriented method, among others12,13. Water index methodologies 
employ algebraic operations between spectral bands to accentuate the distinctions between water bodies 
and background features. Characterized by their simplicity, these methods facilitate rapid and effective data 
processing, yielding elevated classification accuracies. Consequently, they demonstrate significant advantages 
in the large-scale extraction of water bodies14,15. The Normalized Difference Water Index (NDWI) was first 
proposed by the foreign scholar Mcfeeters. On the basis of the NDVI, he analyzed the spectral ranges of different 
bands of water bodies on TM images and constructed the NDWI using the green band and the near-infrared 
band. Although the NDWI can suppress vegetation information, it is affected by various environmental factors 
when dealing with images of complex land cover compositions, resulting in a reduction of water body extraction 
accuracy16. In addressing this challenge, Xu introduced an enhanced version of the Modified Normalized 
Difference Water Index (MNDWI) replaced the near-infrared band with the mid-infrared band. Despite its 
advancements, the MNDWI method was found to be susceptible to the effects of mountain shadows17. Feyisa 
et al. proposed a new automated extraction method, termed the Automated Water Extraction Index (AWEI), 
which employed TM imagery to enhance spectral contrast, thereby improving the accuracy of mapping. This 
method has shown excellent effectiveness in eliminating mountain shadows18. Jiang et al.19 proposed the Shadow 
Water Index (SWI), utilizing Sentinel-2 imagery, which exhibited effective extraction performance for pure 
water, turbid water, saltwater, and floating ice. Despite the endeavors of researchers to develop optimal water 
indices customized for specific regions through the utilization of various data sources, a specialized index for the 
extraction of water bodies within mining subsidence areas remains undeveloped.

Mining areas characterized by high groundwater levels predominantly occur in the eastern region of China. 
Over the past two decades, Chinese scholars have engaged in extensive research on the monitoring of mining 
subsidence water bodies, encompassing a series of investigations into the methodologies for identifying such 
water bodies and the utilization of relevant data20,21. Since the 1980s, the delineation of mining subsidence 
water bodies by Chinese scholars was predominantly achieved through field surveys, employing geodetic and 
leveling techniques to precisely determine the water body area. The rapid advancement of remote sensing 
technology resulted in an increasing number of scholars initiating the use of remote sensing data for research 
purposes, thereby facilitating the direct interpretation of water body areas within mining regions from imagery. 
Thereafter, the emergence of high-resolution images facilitated a concomitant enhancement in monitoring 
accuracy. Peng et al.22 employed Principal Component Analysis (PCA) to extract the extent of subsidence 
water bodies from remote sensing images of various periods, thereby aiding in the dynamic monitoring and 
remediation of these subsidence water bodies. Li et al. developed a comprehensive method for identifying water 
bodies, which combined the strengths of the MNDWI method and the HIS spatial water body model, utilizing 
Landsat TM imagery. This approach was specifically tailored for Jining City and exhibited notable efficacy in 
detecting scattered surface water accumulations resulting from surface subsidence23. Wang et al.24 found that the 
integration of the improved normalized difference water index with GIS spatial overlay technology, utilizing TM 
imagery, could effectively facilitate the dynamic monitoring of water bodies in mining areas.

The water index extraction method, grounded in remote sensing technology, is recognized for its simplicity 
and convenience. Nonetheless, as of now, no index has been specifically devised for the extraction of water bodies 
in mining areas characterized by high groundwater levels. This study addresses the technical issues associated 
with the application of traditional water indices in mining areas characterized by high groundwater levels. These 
issues include spectral interference from coal slag, the omission of small water bodies, and the misclassification 
of agricultural land. An INDWI was proposed based on the MNDWI to eliminate the influence of extraneous 
factors on water bodies and to accurately capture information regarding subsiding water bodies in these areas. 
The findings are of practical significance for land reclamation and ecological protection in mining regions.
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Materials and methods
Study area
The Guqiao Coal Mine, positioned in the northwest of Fengtai County, Huainan City, Anhui Province, 
encompasses an area of 92.68 km2 (Fig. 1). The study area, characterized as a subtropical monsoon climate zone, 
witnesses frequent convergence of cold and warm air masses. The climate is temperate with moderate rainfall. 
It features distinct seasons, having long summers and winters, short springs and autumns, ample sunlight, and 
significant influence from monsoons. The mining operations are conducted underground. The geomorphological 
classification of the area is the Huaibei accumulation-erosion plain, characterized by a gentle slope from the 
northwest to the southeast. The predominant soil types within the region are fluvo-aquic soils and sandy ginger 
soils, with their distribution exhibiting the following traits: in riverine areas, these soils are developed on loess-
like sediments, predominantly consisting of fluvo-aquic and yellow fluvo-aquic soils; in the interfluve plains, 
the soil parent material is akin to that found in riverine areas, with sandy ginger black soils being formed due to 
elevated groundwater levels. The study area has been mined for many years since its commencement in 2007. 
Most of the subsided land has been altered from its original topography due to human activities. As a result of 
coal mining, large areas of the surface have gradually formed accumulations of water, leading to the relocation 
of villages, inundation of farmland, and the conversion of extensive building plots, roads, and farmland into 
subsided water bodies, among other issues.

Data resources and pre-processing
Based on the GEE cloud platform, this study conducts a before-and-after comparison of coal mining activities. 
In the process, image data sources significantly affected by cloud cover are eliminated. Ultimately, six Landsat 
series (Landsat5 TM and Landsat8 OLI) remote sensing images during the wet season (from June to September) 
in 2005, 2007, 2010, 2013, 2018, and 2021 are selected. Among them, the data from 2005 serve as a control before 
coal mining. With 2007 as the reference, images are selected at an interval of three years. Due to the poor quality 
of the data in 2016, the data from 2018 is used as a substitute to study the changes in the area of subsidence water 
bodies throughout the mining area (Fig. 2). Following the exclusion of remote sensing images characterized 
by significant cloud cover and diminished visibility, a final selection of 55 instances of remote sensing imagery 
that fulfilled the fundamental criteria for water body extraction was made. The selected images underwent 
preprocessing, which included radiometric calibration, atmospheric correction, and image trimming, resulting 
in the acquisition of the definitive imagery. The relevant details of the imagery are recorded in Table 1.

Methodology
INDWI model construction
The subsided zones at Guqiao Coal Mine, predominantly comprising arable land, are a consequence of coal 
extraction. The water-filled depressions resulting from surface subsidence exhibit unmanaged edges, integrating 
indistinguishably with the adjacent farmland, which is heavily vegetated. The soil along the peripheries of 

Fig. 1.  Map of study area; (a) Location of the study area in Anhui Province, China, (b) Topographic 
characteristics of the study area.
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these water pits is notably water-logged. Furthermore, coal and mining detritus are stored in the open within 
the mining zone, and substantial coal dust is dispersed during coal transport. These conditions introduce 
interference in the delineation of water body areas25. Research indicated that the MNDWI performed poorly 
in distinguishing soils with high water content. During the experiment, MNDWI, relying solely on the Green 
and MIR bands, tended to blur the boundaries of extracted water bodies, leading to the misidentification of 
other mining area features as water bodies. Consequently, the obtained area of water bodies in the mining zone 
was significantly overestimated26. Therefore, it is necessary to identify a more suitable method for extracting 
subsided water bodies in mining areas with high water tables.

Within remote sensing imagery, water bodies are characterized by an overall lower reflectance relative to 
other land features, especially in the infrared spectral range. In the shortwave infrared (SWIR) band, water bodies 
exhibit the capacity to absorb almost all incident energy, resulting in a precipitous drop in their reflectance values. 
Conversely, the reflectance values of other land features are significantly higher than those of water bodies27. A 
comparison of reflectance values among different features on the imagery reveals that water bodies, pit edges, 
and vegetation along the water’s edge display comparable reflectance values in the visible light spectrum. In 

Satellite Band Sensitivity spectrum (μm) Spatial resolution (m)

Landsat 5 TM

Blue 0.45–0.52 30

Green 0.52–0.60 30

Red 0.63–0.69 30

Near IR 0.76–0.90 30

SWIR 1.55–1.75 30

Landsat 8 OLI

Blue 0.45–0.52 30

Green 0.53–0.60 30

Red 0.63–0.68 30

Near IR 0.85–0.89 30

SWIR 1 1.56–1.66 30

SWIR 2 2.10–2.30 30

Table 1.  Landsat image parameters information.

 

Fig. 2.  Technical flow chart of the study.
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the infrared band, their brightness trends are generally similar; however, the disparities are evident, with water 
bodies demonstrating the lowest reflectance values, while all other features present higher values (Fig. 3). The 
pronounced absorption by water bodies in the infrared spectrum, particularly at wavelengths extending beyond 
the mid-infrared, provides a clear advantage for distinguishing water bodies from other land features. This is 
particularly evident for features that are prone to confusion with water bodies, including collapsed pit edges, 
aquatic vegetation, and bare land.

Analysis of Fig.  3 demonstrates that the SWIR band is characterized by substantial absorption by water 
bodies, with vegetation, pit edges, and bare land all exhibiting higher reflectance values in this band. Studies have 
shown that SWIR offers notable advantages in the identification of vegetation cover, moist soil, and minerals28,29. 
On the basis of the MNDWI, by subtracting the SWIR from the numerator and adding it to the denominator, 
the differentiation between water bodies and other land features becomes more pronounced due to the minimal 
reflectance values of water bodies at this stage. The Preliminary Water Index (PWI) constructed accordingly is 
as follows:

	
P W I = βG − βMIR − βSW IR

βG + βMIR + βSW IR
� (1)

where βG represents the green band, βMIR denotes the mid-infrared band, and βSWIR signifies the shortwave 
infrared band. In Landsat TM, the green band corresponds to the second band, and the mid-infrared band is the 
fifth. For Landsat OLI data, the green band is the third, and the mid-infrared band is the sixth. In both Landsat 
TM and OLI, the shortwave infrared band is the seventh.

Furthermore, the opposing reflectance change trends between water bodies and background features 
are essential for differentiating water bodies from background features. To accentuate this trend, differential 
enhancement processing is applied to the water information within mining areas and the surrounding land 
types. For the numerator of PWI in Eq.  (1), using a monotonically increasing function with a slope greater 
than 1 can enhance the downward trend of water body reflectance. Considering that the reflectance of various 
background features in both bands ranges from 0 to 1, four commonly used monotonically increasing functions, 
y = sin x, y = tan x, y = ex, and y = ln x, are selected as enhancement functions30. As the function y = x with a slope 
of 1 accurately reflects the inherent reflectance differences of background features between bands, it is employed 
as the control function. The curves of the five functions within the reflectance range of 0–1 are depicted in Fig. 4.

Analysis reveals that the slope (growth rate) of the function y = ln x exceeds those of other functions when 
reflectance ranges between 0 and 1. Furthermore, the growth trend of y = ln x becomes increasingly pronounced 
as reflectance diminishes below 0.3, thereby enhancing the reflectance disparity between the green and infrared 
bands for water bodies. Therefore, the function y = ln x is selected to enhance the reflectance difference of water 

Fig. 3.  Spectral characterization curves of typical features in the mining area.
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bodies in the red edge and near-infrared bands. For the denominator term of PWI in Eq. (1), considering that 
an increase in the denominator would lead to a decrease in the overall value, thereby offsetting the effect of 
reflectance difference, the denominator term is maintained in its original form without stretching. The final 
result is INDWI:

	
INDW I = ln βG − ln βMIR − ln βSW IR

βG + βMIR + βSW IR
� (2)

where the expression’s meaning is as defined in Eq. (1).

Otsu algorithm
The Otsu method (Nobuyuki Otsu method, OTSU) is an algorithm used for determining the binary threshold 
of an image31,32. OTSU is based on the gray-level characteristics of image pixels and measures the uniformity 
of the gray-level distribution by calculating the interclass variance. A greater interclass variance between the 
foreground and background indicates a larger difference between the two components of the image, thereby 
enhancing the distinction between the foreground and background33.

Some researchers applied the Otsu method to water extraction studies based on water indices, and the results 
demonstrated the ability to obtain reliable water information, significantly improving the accuracy of water 
extraction34,35. In this study, the Otsu method was employed to determine the optimal segmentation threshold. 
For an image I (x, y), the parameter θ is designated as the segmentation threshold between the foreground (water 
body) and background (non-water body). Initially, a gray level from the water index is established as the initial 
segmentation threshold θ, and the corresponding interclass variance g is computed. Subsequently, the gray levels 
are iteratively processed, with the corresponding g values calculated until all gray levels within the water index 
image are exhausted. The segmentation threshold θ associated with the maximum g value is then identified as 
the optimal segmentation threshold. The algorithm for determining the g value is delineated as follows:

	 g = w0w1 (u0 − u1)2� (3)

	
w0 = N0

M
� (4)

	
w1 = N1

M
� (5)

Fig. 4.  Curves of each function as a function of reflectance between 0 and 1.
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u0 =

∑N0
i=1 u0i

N0
� (6)

	
u1 =

∑N1
j=1 u1j

N1
� (7)

where w0 denotes the ratio of the number of pixels occupied by the water body to the total number of pixels in 
the image; w1 signifies the ratio of the number of pixels occupied by non-water bodies to the total number of 
pixels in the image; u0 represents the average gray level of the foreground, namely the water body, within the 
image; u0i indicates the gray level of the ith pixel within the water body; u1 denotes the average gray level of the 
background, which encompasses all non-water bodies, within the image; u1j signifies the gray level of the jth 
pixel within the non-water bodies; N0 is the count of pixels constituting the water body; N1 is the count of pixels 
constituting the non-water bodies; M represents the aggregate number of pixels in the selected image data.

Comparative water body index
To validate the effectiveness of the INDWI water index, the NDWI, MNDWI, and EWI water indices are selected 
for comparison. The formulas for these three water indices are as follows:

	
NDW I = βG − βNIR

βG + βNIR
� (8)

	
MNDW I = βG − βMIR

βG + βMIR
� (9)

	
EW I = βG − βNIR − βMIR

βG + βNIR + βMIR
� (10)

whereβG, βNIR, and βMIR denote the reflectance of the Landsat series images in the green, near-infrared, and 
shortwave infrared bands, respectively.

Accuracy evaluation index
The Overall Accuracy (OA), Kappa coefficient, User’s Accuracy (UA), and Producer’s Accuracy (PA) are used to 
evaluate the precision of water body extraction for each water index. The OA is defined as the ratio of the number 
of correctly classified category pixels (samples) to the total number of category pixels. The Kappa coefficient 
quantifies the proportionate reduction in error relative to a purely random classification. UA is defined as the 
ratio of the number of samples correctly classified as a specific land cover type to the total number of samples 
classified as that type. PA is defined as the ratio of the number of samples accurately classified as a specific feature 
to the total number of actual samples for that feature. The formula for each evaluation indicator is shown below:

	
OA =

n∑
k=1

pkk/p� (11)

	
Kappa =

p
∑n

i=1 pii −
∑n

i=1 (pi+p+i)
p2 −

∑n

i=1 (pi+p+i)
� (12)

	
UA = Pii

Pi+
× 100%� (13)

	
P A = Pii

P+i
× 100%� (14)

where Pkk signifies the count of samples accurately classified into category k; P represents the aggregate sample 
count; Pii denotes the count of samples correctly categorized into category i; Pi+ is the total number of samples 
assigned to category i through classification; P+i indicates the total number of samples in category i derived from 
visual interpretation.

Results and analysis
Accuracy verification
The extraction accuracy of the constructed INDWI index was validated, and the classification results of NDWI, 
EWI, MNDWI, and INDWI were evaluated using a confusion matrix. In this study, image data from the year 
2021 was selected, and optical remote sensing data with a resolution of 0.75 m from Jilin-1 was utilized to 
choose the same 50 random points as the validation sample areas. The overall accuracies of the classification 
results obtained from Landsat images for NDWI, EWI, MNDWI, and INDWI were 80.85%, 90.84%, 91.49%, 
and 93.62% respectively. The Kappa coefficients were 71.65%, 81.72%, 82.82%, and 87.08% respectively.

To address the impact of image changes in different years on water body extraction results, visual interpretation 
characteristics were summarized based on the 2021 high-resolution image data. Water body areas were extracted 
from Landsat images in 2007, 2010, 2013, 2018, and 2021 using the expert interpretation method as verification 
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data. The same random points were selected from the verification data of each year as validation samples to 
evaluate the accuracy of the classification results of various water body indices (Table 2).

The findings revealed that the NDWI index provided the lowest accuracy in water body extraction, ranging 
from approximately 60% to 70%. The INDWI index, developed in this study, attained the highest overall accuracy, 
surpassing 89%, accompanied by a Kappa coefficient exceeding 80%. The accuracy of both UA and PA indicators 
is above 80%. Conclusively, the INDWI index exhibited superior efficacy in extracting water information within 
mining areas compared to the other three widely utilized water indices, demonstrating elevated accuracy.

The preceding analysis of water extraction overall accuracy demonstrated that the MNDWI and INDWI 
indices exhibited the highest precision. Accordingly, the subsequent investigation employed these two indices 
to extract water bodies from Landsat imagery and superimposed the outcomes with Jilin-1 data at a resolution 
of 0.75 m (Fig. 5). The map in Fig. 5 was created using ArcGIS Desktop (version 10.8, https://www.esri.com/). 
Upon comparative analysis, it was ascertained that the overall extraction outcomes of the two water indices 
were largely congruent with the actual circumstances. Nonetheless, nuances in detail emerged. Specifically, the 
MNDWI-derived boundaries of subsided water bodies appeared indistinct, especially proximate to the mining 
site, encompassing several small-scale water accumulation pits and occasional misclassification of farmland, 
thereby inflating the water area estimate. Conversely, the INDWI extraction results fitted better with the images, 
and the boundaries of collapse water accumulation areas and roads were recognized more clearly, without 
obvious recognition errors.

Additionally, area accuracy was applied in this paper to compare MNDWI and INDWI. Area accuracy 
denotes the proportion of the area of subsided water bodies in mining regions acquired via the water index 
method in relation to the actual area. The on-site measured water body area data were utilized as the true values, 
and the water body areas obtained from MNDWI and INDWI were compared with them respectively (Table 3).

The findings revealed that the calculated area accuracy of INDWI was as high as 96.41%, surpassing that of 
MNDWI by 6.61%. This index exhibited superior efficacy in extracting water body information from mining 
areas with high groundwater levels, characterized by elevated overall accuracy. Conversely, while MNDWI was 
capable of generally capturing the water body area within mining regions, its area accuracy was inferior. The 
water body area extracted by MNDWI exceeded the actual, manifesting substantial discrepancies even at a 
minor scale. Therefore, its application to broader study areas would exacerbate these errors, compromising the 
precision of the extraction outcomes. The principal cause may have been the misclassification of water-adjacent 
vegetation, farmland, and collapse pit edges as water bodies by MNDWI, resulting in an overestimation of the 
extraction outcomes. In mining areas characterized by high groundwater levels, the precise delineation of water 
body extents is pivotal for subsequent land reclamation efforts. The Landsat data, when utilized with the INDWI 
index for water body extraction, exhibited congruity with the 0.75m resolution high-resolution imagery data 
employing supervised classification, maintaining comparable accuracy levels. The integration of the INDWI 
index with Landsat data could thus be more effectively deployed in the investigation of subsided water bodies 
within areas of elevated groundwater levels.

Year Index OA (%) Kappa (%) UA (%) PA (%)

2007

NDWI 66.14 60.97 63.58 62.47

EWI 76.32 68.25 65.34 67.32

MNDWI 87.17 78.63 75.21 73.88

INDWI 92.36 87.21 85.96 86.63

2010

NDWI 65.89 60.83 62.39 61.15

EWI 75.78 69.06 68.22 69.11

MNDWI 89.24 75.75 74.13 73.52

INDWI 95.08 88.62 86.67 87.48

2013

NDWI 68.28 63.41 64.91 63.89

EWI 74.56 68.37 66.72 66.43

MNDWI 88.63 76.24 77.36 77.32

INDWI 90.74 80.32 81.47 80.06

2018

NDWI 61.66 52.64 55.28 53.67

EWI 77.42 63.68 61.35 63.93

MNDWI 83.61 70.27 71.20 69.38

INDWI 89.71 81.10 82.34 80.82

2021

NDWI 80.85 71.65 73.37 72.66

EWI 90.84 81.72 79.55 80.53

MNDWI 91.49 82.82 83.99 84.08

INDWI 93.62 87.08 86.37 88.76

Table 2.  Classification accuracy of different water body indices by year.
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Results of water body classification
The study area, endowed with abundant coal resources, constitutes a pivotal energy foundation in Anhui 
Province. The region’s elevated groundwater levels, compounded by the consequences of underground coal 
mining, have progressively given rise to expansive zones of standing water. This development has subsequently 
led to the displacement of villages, the flooding of agricultural lands, and the conversion of extensive tracts of 
construction land, roadways, and farmlands into subsided water bodies. Analysis of Landsat series data pre- and 
post-underground coal mining indicated that prior to extraction, the mining area’s water bodies were exclusively 

Water body extraction data types Acquisition Time Area of water body (km2) Precision (%)

Measured data on-site 2021-03-20 10.37 –

Jilin-1 Oversight classification 2021-03-28 10.04 96.82

Landsat 8 MNDWI 2021-03-24 11.18 89.80

Landsat 8 INDWI 2021-03-24 9.68 96.41

Table 3.  Comparison of MNDWI and INDWI extracted water body areas.

 

Fig. 5.  Comparison of MNDWI and INDWI waterbody information overlay high score data. (a) MNDWI 
superimposed high score images; (b) INDWI superimposed high score images; (c) MNDWI overlay map in 
study area 1; (d) MNDWI overlay map in study area 2; (e) MNDWI overlay map in study area 3; (f) MNDWI 
overlay map in study area 4; (g) INDWI overlay map in study area 1; (h) INDWI overlay map in study area 2; 
(i) INDWI overlay map in study area 3; (j) INDWI overlay map in study area 4.
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confined to the old Xifei River segment, with no detection of additional aquatic regions. Consequently, the river 
area was systematically omitted during the subsequent delineation of subsided water bodies within the mining 
area.

Remote sensing imagery obtained post-mining from the study area was chosen for the analysis of dynamic 
subsidence changes in water bodies. The MNDWI and INDWI methodologies were utilized to delineate the 
subsided water bodies within the mining zone spanning from 2005 to 2021 (Fig. 6), with the Otsu algorithm 
employed to establish an optimal water threshold. Subsequently, ArcGIS 10.8 was leveraged for statistical 
analysis, culminating in the quantification of the area encompassed by the subsided water bodies in the mining 
region (Fig. 7, Table 4).

The statistical analysis revealed that prior to mining, no subsidence was observed on the surface of the 
mining area, resulting in a water body area of 0. Following the commencement of mining, the area of subsided 
water bodies within the mining zone exhibited a sustained increase over the subsequent decade. Notably, the 
area delineated by MNDWI was substantially larger than that by INDWI, with discrepancies in the annual 
proportions of subsided water body areas amounting to 0.85%, 1.15%, 0.35%, 1.58%, and 1.50%, respectively. The 
areas of subsided water bodies within the study region, delineated by the MNDWI and INDWI methodologies, 
escalated from 1.54 and 0.75 km2 in 2007 to 10.36 and 8.97 km2 by 2021, respectively. Corresponding growth 
rates were quantified at 85.14% and 91.64%, respectively. These findings underscore the substantial influence of 
underground mining operations on the surface landscape configuration. Additionally, it was discernible that 
the surface subsidence induced by the initial phase of mining within the mining area exerted a minimal impact, 
with the subsidence depth failing to reach the water table, thereby facilitating the identification of subsided water 
pits. As a result, the extraction efficacy of the two water indices was equivalent during the period from 2007 to 
2013. Subsequent to this, the expansion of underground mining operations led to an escalating discrepancy in 
the areas delineated by the two water indices between 2018 and 2021.

Discussion
Comparison of extraction results for different water body indices
The Guqiao Coal Mine area exemplifies a high water table coal mining region, where decades of mining activities 
have culminated in the development of extensive water bodies. Employing the Jilin-1 imagery from March 2021 
as validation, the Landsat OLI data were utilized to delineate the extent of water bodies within the mining area 
through the application of four distinct water indices. In order to assess the extraction efficacy of INDWI across 
diverse regions of the study area, three representative zones were chosen: river bridges, edges of subsidence pit 
waters, and urban water bodies. The outcomes of the various water indices’ extraction across these regions are 
illustrated in Fig. 8.

Examination of Fig. 8a–f indicated that NDWI demonstrated the least effective extraction of river bridges, 
predominantly classifying them as water bodies, with EWI being the next least effective. The extraction outcomes 
of MNDWI and INDWI showed negligible discrepancies, the only variation being that INDWI yielded more 
distinct water body boundary delineations and fewer erroneous internal classifications.

Analysis of Fig. 8g–l revealed that NDWI and EWI erroneously identified certain residential areas as water 
bodies, leading to an inflated water area. Conversely, MNDWI and INDWI circumvented this misclassification. 
Nevertheless, MNDWI exhibited a tendency to incorrectly categorize dry farmland as water bodies. INDWI, on 
the other hand, showcased enhanced extraction precision, characterized by more distinct and smoother water 
boundaries, and clear delineation of soil ridges within the water bodies, thereby accurately reflecting the actual 
scenario.

Fig. 6.  Extraction results of subsidence water area in the study area.
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Examination of Fig. 8m–r during the urban water body extraction comparison revealed that the red-boxed 
areas corresponded to urban construction zones. INDWI was capable of extracting the fragmented water bodies 
in the city with minimal misclassification, in contrast to NDWI, EWI, and MNDWI, which suffered from severe 
misclassification of background features. Furthermore, the green-boxed areas, representing the water body edge 
regions, showed that NDWI, EWI, and MNDWI were significantly affected by noise, whereas INDWI effectively 
delineated the water body boundaries.

In summary, three representative areas including river bridges, collapse pit water edges, and urban water 
bodies were selected to verify the water body extraction effect of INDWI. Compared with the other three water 
body indices, INDWI was able to extract water body boundaries more clearly, reduce internal misclassification 
points, and produce clear and smooth boundaries that better matched the actual situation. Moreover, it could 
accurately extract fragmented water bodies with very few misclassifications and effectively suppress noise in the 
water body edge areas. These findings indicate that INDWI has significant advantages in water body extraction 
accuracy and boundary recognition capability in complex ground object backgrounds. However, it is worth 
noting that misclassification still occurs at the edges of collapse pit water bodies when using INDWI, which 
requires further investigation in subsequent studies.

In mining areas characterized by high groundwater levels, underground coal extraction leads to extensive 
surface subsidence, subsequently resulting in waterlogging, alterations in the land use structure, soil pollution, 
and disruption of the groundwater system. These factors collectively hinder the sustainable development of 
mining areas36. Furthermore, high groundwater level mining areas are primarily situated in the Huang-Huai-
Hai Plain region of China, characterized by a high proportion of basic farmland. The shallow groundwater is 
susceptible to surface waterlogging as a result of ground subsidence. The ongoing expansion of waterlogging 
zones leads to the submersion of a considerable amount of high-quality arable land, thereby impacting farmland 
protection and food security37. Consequently, there exists a necessity for the precise identification and extraction 

Water body index

Area of water body subsidence by year/
km2

2005 2007 2010 2013 2018 2021

MNDWI 0 1.54 2.76 5.58 9.59 10.36

INDWI 0 0.75 1.70 5.25 8.13 8.97

Table 4.  Statistics on the area of sunken water bodies in mining areas.

 

Fig. 7.  Percentage of area of sunken water bodies in mining areas.
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of information regarding subsided water bodies, thereby facilitating the timely implementation of interventions 
such as land reclamation and ecological restoration.

Upon the extension of coal mining impacts to the surface, the surface undergoes subsidence from its original 
elevation, thereby forming a subsided area above the mined-out zone, known as a subsidence basin or surface 
movement basin. In areas characterized by elevated groundwater levels, even minor surface subsidence can 
result in water accumulation within the movement basin, leading to a significant reduction in the arable land 
area within the mining zone38. Ground subsidence inevitably results in alterations to water depth, surface area, 
and the spatial location of the water body, subsequently affecting water area, reservoir capacity, and flood storage 
capabilities. Guqiao Coal Mine, situated in a high groundwater level region in eastern China with a shallow 
groundwater table, experiences the unavoidable formation of subsided areas as coal mining activities expand. 
The accumulation of water in mining areas due to coal mining subsidence, to a certain extent, enlarges the water 
area within the mining zone, concurrently instigating a series of ecological and production challenges. Extensive 
water accumulation inundates crops, leading to the destruction of substantial quantities of high-quality farmland 
and a dramatic decline in local grain production. Furthermore, this situation deprives numerous farmers of their 
essential land for livelihood.

Utilizing the INDWI constructed in this study, it was possible, to a certain extent, to accurately extract water 
bodies in high groundwater level mining areas. The extraction results and spatial distribution information served 
as foundational data and references, facilitating the subsequent scientific management of high groundwater level 
mining areas. Ecological restoration and land reclamation are required for the damaged land in mining areas. In 
2011, the State Council implemented the Land Reclamation Regulations, aimed at improving the management of 
land reclamation and standardizing associated activities. These regulations mandated that land reclamation must 
adhere to principles of scientific planning, suitability to local conditions, comprehensive management, economic 
feasibility, and rational utilization. Emphasis was placed on the enhancement of mine ecological environment 
restoration and management, adhering to the principles of "whoever damages, reclaims, mines while restoring, 
and subsides while managing," thereby ensuring synchronization between mine ecological environment damage 
and restoration management39. The extraction of thick coal seams constitutes the majority of coal seam mining 

Fig. 8.  Comparison of the effectiveness of NDWI, EWI, MNDWI and INDWI in mining water extraction. 
(a) Landsat OLI false colour composite image (band 432) identified river bridges; (b) Jilin-1 high-resolution 
image (0.75 m resolution) identified river bridges; (c) Binary image from the NDWI method; (d) Binary 
image from the EWI method; (e) Binary image from the MNDWI method; (f) Binary image from the INDWI 
method; (g) Landsat OLI false colour composite image (band 432) identified the edge of the water body in the 
collapse zone; (h) Jilin-1 high-resolution image (0.75 m resolution) identified the edge of the water body in the 
collapse zone; (i) Binary image from the NDWI method; (j) Binary image from the EWI method; (k) Binary 
image from the MNDWI method; (l) Binary image from the INDWI method; (m) Landsat OLI false colour 
composite image (band 432) identified urban water body; (n) Jilin-1 high-resolution image (0.75 m resolution) 
identified urban water body; (o) Binary image from the NDWI method; (p) Binary image from the EWI 
method; (q) Binary image from the MNDWI method; (r) Binary image from the INDWI method.
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in the study area. Since 2007, mining depths have ranged from − 550 to − 780 m, with cumulative mining 
thicknesses of 1.29 to 7.88 m. Post-extraction, surface subsidence occurs, resulting in the formation of subsidence 
areas exhibiting varying degrees of subsidence. Furthermore, owing to the high groundwater level in the study 
area, the bottoms of these subsidence areas are susceptible to water accumulation, leading to the formation 
of extensive water-logged areas. For the management of subsidence land in this region, it is recommended to 
employ a flexible approach by utilizing various subsidence land management techniques to improve the efficacy 
of such interventions. The specific measures should be tailored to the unique subsidence conditions of each 
coal mine, adhering to the principle of "agriculture where suitable for agriculture, fishery where suitable for 
fishery, forestry where suitable for forestry, construction where suitable for construction." This approach ensures 
the rational utilization of subsidence land in accordance with local conditions. For areas with seasonal water 
accumulation and shallow subsidence, techniques such as coal gangue filling, ditching and drainage, and cutting 
high and filling low can be implemented. Subsequently, the leveled land can be utilized for continued cultivation 
or partially reclaimed as forest land, grassland, etc. In areas with perennial water accumulation, measures such 
as excavating fish ponds and constructing wetland parks can be adopted.

Limitations and future research
To address the spectral characteristics of easily confusable land types in high groundwater level mining areas, this 
study introduced a method that integrates the INDWI water extraction index with the Otsu algorithm. When 
compared to three alternative indices, this integrated approach effectively mitigated the influence of mining area 
vegetation, pit edges, and coal and mining waste, thereby enhancing the clarity of the water body delineation 
and the accuracy of the extracted area. Nonetheless, this study exhibits areas requiring enhancement. Primarily, 
during image selection, due to the influence of factors such as clouds and cloud shadows on some images, it is 
difficult to ensure that high-quality TM/OLI images acquired during the plant growing season are available for 
every year. Additionally, there are differences in the actual acquisition times of the images, which can still affect 
the accuracy of the results to a certain extent40,41. To address this issue, in the future, image accuracy can be 
improved through multi-source data integration, time series analysis, and cloud detection and repair. Secondly, 
the extraction of water bodies fails to adequately address the issue of mixed pixels, resulting in a small degree of 
misclassification and omission in the constructed water body index. Here, the accuracy of water body extraction 
can be improved through a multi-source data fusion method, utilizing the spatial information of high-resolution 
images and the spectral information of medium-resolution images42,43. For example, the introduction of DEM 
terrain data can aid in better handling the issue of water body extraction in areas with undulating terrain44. 
Alternatively, the introduction of deep learning models allows for automatic learning of the differences between 
water body and non-water body features, thereby more accurately identifying water body information in mixed 
pixels. Deep learning models can learn complex spectral and spatial characteristics through a large amount of 
training data, thus improving the accuracy of water body extraction45,46. Lastly, while the GEE platform has 
automated the extraction of long-term water body sequences in the identification of subsided water bodies, the 
process of identifying subsided water bodies based on time-series water body results requires further automation. 
Moreover, the temporal evolution patterns of subsided water bodies could be subjected to additional analysis 
and validation, including the precise identification of individual subsided water bodies and the observation of 
the gradual evolution of multiple sub-subsidence water bodies into a single subsided water body.

In recent years, the rapid advancement of high-resolution Earth observation programs has led to the 
deployment of numerous high-resolution remote sensing satellites, including ESA’s Sentinel series and China’s 
Gaofen series. The imagery from these satellites boasts ground resolutions at the decimeter and meter scales, with 
some even achieving sub-meter resolution at nadir, exemplified by the Jilin-1 and Gaojing-1 satellite imagery. 
This level of detail significantly aids in the precise delineation of water body boundaries47,48. The formation 
of subsided water bodies progresses from small to large. Over time, high-resolution remote sensing imagery 
develops into a time series. In future research, employing higher-resolution remote sensing imagery for the 
extraction of high-resolution water bodies in a time-series context will facilitate a more detailed portrayal of the 
formation process of subsided water bodies, thereby enhancing the precision of their identification.

Conclusions
In mining areas with high groundwater levels, coal mining subsidence causes surface sinking, leading to the 
formation of waterlogged collapse zones. These zones inundate large areas of arable land and trigger ecological 
and environmental issues. To address the challenges of accurately extracting water body information in mining 
areas with high groundwater levels, an innovative water body index, INDWI, was developed using the OTSU 
algorithm.

In this study, the influence of extensive vegetation along the edges of waterlogged areas, as well as the 
presence of large quantities of fly ash and coal gangue resulting from coal mining activities, was considered 
during water body extraction. Through comparative experiments involving various indices and enhancement 
functions, the SWIR band was incorporated, and the natural logarithm (ln) function was introduced to improve 
the MNDWI index, leading to the development of the INDWI index. Compared to NDWI, EWI, and MNDWI, 
INDWI demonstrated a superior ability to clearly delineate the edges of subsidence water bodies in mining 
areas, reducing misclassification and omission errors. The index effectively minimized the impact of vegetation 
near water bodies, resulting in more accurate classification outcomes, with an overall accuracy exceeding 89% 
and a Kappa coefficient above 80%. This study aims to provide decision support for the sustainable development 
of mining areas with high groundwater levels, the efficient utilization of water and soil resources, and ecological 
restoration efforts.
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