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Glycogen storage disease (GSD) is a group of rare inherited metabolic disorders characterized by 
abnormal glycogen storage and breakdown. These disorders are caused by mutations in G6PC1, 
which is essential for proper glucose storage and metabolism. With the advent of continuous glucose 
monitoring systems, development of algorithms to analyze and predict glucose levels has gained 
considerable attention, with the aim of preemptively managing fluctuations before they become 
problematic. However, there is a lack of research focusing specifically on patients with GSD. Therefore, 
this study aimed to forecast glucose levels in patients with GSD using state-of-the-art deep-learning 
(DL) algorithms. This retrospective study utilized blood glucose data from patients with GSD who 
were either hospitalized or managed at Yonsei University Wonju Severance Christian Hospital, Korea, 
between August 2020 and February 2024. In this study, three state-of-the-art DL models for time-
series forecasting were employed: PatchTST, LTSF N-Linear, and TS Mixer. First, the models were 
used to predict the patients’ Glucose levels for the next hour. Second, a binary classification task 
was performed to assess whether hypoglycemia could be predicted alongside direct glucose levels. 
Consequently, this is the first study to demonstrate the capability of forecasting glucose levels in 
patients with GSD using continuous glucose-monitoring data and DL models. Our model provides 
patients with GSD with a more accessible tool for managing glucose levels. This study has a broader 
effect, potentially serving as a foundation for improving the care of patients with rare diseases using 
DL-based solutions.

Glycogen storage disease (GSD) is a rare inherited metabolic disorder characterized by aberrant glycogen 
storage and mobilization1–4. The types of GSD range from Type I (Von Gierke Disease) to Type XIV, each 
manifesting differently and requiring a nuanced management approach. Among these, type I GSD exhibits the 
most severe symptoms. This condition results from a mutation in G6PC1, which plays a crucial role in glucose 
storage and degradation. It affects approximately 1 in 20,000 to 40,000 individuals due to its autosomal recessive 
inheritance. This mutation leads to the inability of the body to consume large amounts of glycogen, resulting 
in its accumulation in the liver and kidneys. This accumulation causes glucose intolerance, leading to several 
complications including hypoglycemia, elevated lactic acid levels, and secondary metabolic abnormalities5. 
Affected individuals may experience growth retardation, osteoporosis, and pulmonary hypertension, with 
hypokinesis as a potential complication. Moreover, chronic liver and kidney damage can impair their 
function6. Patients with GSD are prone to severe hypoglycemia because of their inability to produce glucose 
owing to enzyme deficiency. Although proper dietary intake, including cornstarch, has been used to prevent 
hypoglycemia, these measures alone have limitations in managing glucose levels. Complications, such as hepatic 
adenoma, hepatocellular carcinoma, kidney disease, lactic acidosis, and hypertriglyceridemia, which occur in 
patients with GSD, ultimately arise due to uncontrolled glucose levels. These complications are not inevitable 
but result from a lack of optimal metabolic control. Therefore, patients with GSD require precise diagnostic and 
treatment approaches because of the complexity of the disease.

GSD cannot be treated clinically, except for gene therapy, and there are difficulties in the development of 
effective treatments. However, GSD can be managed by controlling glucose levels. Traditionally, management 
involves dietary interventions, notably a cornstarch-based diet, to maintain appropriate glucose levels in patients 
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with GSD7. Such dietary management ensures a consistent and stable glucose supply for those who are unable 
to store or adequately utilize glycogen. Moreover, this continuous dietary approach aids in controlling blood 
lactate levels, preventing organ damage and supporting normal growth and lifestyle8,9. Despite these efforts, 
the inherent nature of this genetic condition means that patients may still experience sudden hypoglycemic 
episodes, in which glucose levels drop sharply, even with diligent dietary management10. To mitigate the risk of 
hypoglycemia and ensure proper patient care, key clinical metrics, including patient height and weight, along 
with blood biomarkers such as glucose, cholesterol, and lactic acid levels, are regularly tracked and assessed. 
Nevertheless, the limited number of medical specialists relative to the number of patients, along with the costs 
of hospital and outpatient care, make continuous staff-dependent monitoring a challenging and labor-intensive 
task.

Checking and monitoring glucose levels is the easiest way to managing patients with GSD11,12. This test 
is often performed using the finger-prick glucose test, a method aimed at preventing hypoglycemia and its 
associated side effects13. Despite its widespread use, this approach faces challenges in the accurate detection 
of rapid fluctuations in glucose levels, which can be significantly influenced by the timing of blood sample 
collection.

The requirement for continuous blood glucose tracking has prompted the development of continuous 
glucose-monitoring (CGM) systems. Initially designed for individuals with diabetes, the convenience and 
ability to provide real-time glucose information have broadened its use in effectively managing glucose levels. 
Moreover, these systems have led to therapeutic advancements in the care of patients with GSD14. In addition, 
the introduction of CGM systems revolutionized the management process. The CGM system, a wearable device, 
continuously tracks glucose concentrations at set intervals and displays the data on a dedicated smartphone 
app or receiver15. This technology offers a detailed view of glucose fluctuations, enabling better management 
strategies beyond traditional dietary adjustments and symptomatic treatments.

With the evolution of CGM systems, there has been a surge in the development of algorithms for analyzing 
and predicting glucose levels to forecast and prevent issues before glucose levels increase or decrease16,17. Owing 
to its high prevalence, it has developed significantly, and the application of blood glucose prediction models 
has preceded. Statistically based models such as autoregressive (AR), autoregressive exogenous (ARX), and 
autoregressive moving average (ARMA) have been proposed18, and machine learning (ML)-based models such 
as support vector regression (SVR)19 and random forest (RF)20 have been utilized. However, these models often 
fall short because of their inability to consider a myriad of factors that influence glucose levels, such as lifestyle 
and physiological changes. To overcome these limitations, the application of deep learning (DL) algorithms 
is expected to integrate variables affecting blood glucose fluctuations and analyze a wide range of patterns in 
diabetes.

Despite advances in DL algorithms for diabetes management, research specifically targeting patients with 
GSD remains lacking. This study aimed to forecast glucose levels in patients with GSD using state-of-the-art 
(SOTA) DL algorithms in the time series forecasting field.

We assessed the predictive accuracy of the model using CGM in patients with GSD as part of their management 
strategy. Additionally, we trained the models while accounting for patient-specific characteristics to enhance the 
prevention of sudden hypoglycemia (Fig. 1). The contributions of this study are as follows: patients with GSD 
can effortlessly track and manage their glucose level through an app or online platform powered by algorithm. 
This approach promises personalized healthcare tailored to each patient’s glucose data and lifestyle, potentially 
diminishing the reliance on expensive medical interventions by averting complications.

To the best of our knowledge, this is the first study focusing on forecasting glucose levels in patients with 
GSD.

Materials and methods
Data collection
Blood glucose data were collected from patients with GSD who were hospitalized or managed at Yonsei University 
Wonju Severance Christian Hospital, Wonju, Korea, from August 2020 to February 2024 (IRB-CR324074). A 
total of 46 patients who wore the CGM system for at least 14 days were included in this study. The maximum 
duration of the CGM was 524 days (Fig. 2).

The Freestyle Libre (Abbott, Chicago, Illinois, USA) was used. The Freestyle Libre continuously measures 
glucose concentrations in the interstitial fluid via sensors attached to a patient’s skin. These sensors measure 
glucose concentration in the interstitial fluid beneath the skin, which closely mirrors the glucose concentration 
in the blood. The sensor estimates the glucose levels every 15 min based on these data. This device periodically 
collects glucose concentrations in the interstitial fluid data and provides real-time information to patients who 
can access the stored information using a reader or smartphone app. The collected data were automatically 
uploaded to the Libreview platform for analysis and shared with the medical staff. To the best of our knowledge, 
the dataset used in this study was collected from medical institutions that manage and treat the largest number 
of GSD patients in Korea.

Preprocessing of CGM data
Preprocessing of the CGM data was conducted in three steps: interpolation, normalization, and slicing. Filtering 
was not applied during preprocessing to avoid potential distortions in the CGM data pattern, which could 
complicate the medical interpretation. First, interpolation was performed to address instances in which patients 
replaced their CGM devices or missed glucose measurements owing to device errors. Referring to the preceding 
literature21, and sampling rate and reference specifications of the blood glucose meter used in the study, the 
interpolation period was set to 3 h. The referenced literature utilized a 1-h interval with a 5-min sampling rate. 
In contrast, our study employed a 15-min sampling rate, warranting a 3-h interval. Consequently, the missing 
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values spanned more than 3 h, these sections were excluded from the slicing process and were not used for 
model training. For gaps of 3 h or less, quadratic interpolation was applied using the preceding and succeeding 
10 data points to fill in missing values. Subsequently, robust scalar normalization was applied to minimize the 
impact of outliers based on the median and interquartile range of the CGM data. Finally, slicing was performed 
to create data-label pairs. The look-back window and forecast size for slicing were set to 48 and 4, respectively, 
based on previous studies and a grid search, allowing prediction of the future 1 h of glucose levels from the 
past 12 h of data. The collected data included only blood glucose measurement readings and real-time data, 
without any details on life events such as ingestion or exercise. Therefore, a long length of look-back window was 
considered to allow the model to capture the morphology and trends in blood glucose fluctuations as effectively 
as possible. Consequently, during the slicing process, the look-back window was set to 12 h, ensuring that all 
datasets (training, validation, and testing) included sufficient data for analysis.

Data-label pairs where glucose levels were ≥ 300 mg/dL or < 40 mg/dL were retrospectively reviewed and 
considered outliers due to potential inaccuracies, and thus, were excluded from the dataset. Furthermore, 
retrospective analysis revealed that external pressure artifacts, particularly during sleep or daily activities, could 
lead to artificially high or low readings, compromising measurement accuracy. The device used in this study 
had a lower detection limit of 40 mg/dL, but occasional readings below this threshold were recorded during the 
first day after CGM placement and toward the end of its lifespan. These readings were deemed erroneous and 

Fig. 1.  Schematic overview of the study. (a) Preprocessing of the data extracted from the CGM device. (b) 
Training process for personalized DL models. (c) Input/output and inference process for the blood sugar level 
prediction task. (d) Input/output and inference process for the hypoglycemia classification task. The data 
collected from the CGM device undergoes a series of preprocessing steps to ensure accuracy and consistency. 
Each patient’s data is then used to train a personalized DL model. For the prediction task, the input consists 
of historical blood glucose data, and the output is the predicted blood sugar level for a specific future time 
horizon. In the classification task, the output is the probability of hypoglycemia occurring within a specified 
future time frame. CGM continuous glucose monitoring, DL Deep Learning.
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inconsistent with clinical expectations. Finally, each CGM dataset was sorted in chronological ascending order 
and then divided at a ratio of 6:2:2 to construct the dataset.

Deep learning models
For the deep-learning model, the latest three state-of-the-art deep-learning models in time-series forecasting 
were utilized (Fig. 1). First, we employed the PatchTST model proposed for 202222. This model was inspired by 
the application of transformer models in natural language processing (NLP) and computer vision. The PatchTST 
architecture processes time-series data in a manner similar to how images are processed by transformers. This 
effectively captures long-range dependencies through self-attention mechanisms. Second, an LTSF N-linear 
model was used23. This model emphasizes the development of time series forecasting using multiple linear 
layers. It features an architecture designed to capture various aspects of time-series data, while maintaining 
efficient computational complexity and scalability. Multiple linear layers alone have proven to be effective in 
handling high-dimensional time-series data, which can often be challenging for the other methods. Finally, a TS 
Mixer is employed24.

The TS Mixer effectively extracts information from time-series data by leveraging a mixing mechanism 
that integrates both temporal and feature dimensions. This architecture is particularly suitable for multivariate 
prediction and has demonstrated effectiveness across several benchmarks. The three models (PatchTST, LTSF 
N-Line, TS Mixer) achieved state-of-the-art performance in 2023, 2022, and 2023, respectively, in time series 
forecasting. These models were selected as they represented the most recent SOTA approaches available during 
the stages of research planning and experimentation. The hyperparameters for all the models were set to the 
default parameters proposed in their respective papers. Specifically, the parameters related to the input and 
output, such as the lookback window and forecast size, were set to be the same across all three models.

Forecasting of future CGM data
In this study, the patient’s glucose concentrations in the interstitial fluid levels over the future 1 h were predicted 
using a model (Fig. 1c). Predictions were based on the past blood glucose values of patients with GSD using 
an independent model for each dataset. The input to the model included both glucose levels and timestamps 
recorded by the CGM device. Time was segmented into years, months, days, and minutes and encoded using 
sine and cosine functions to capture the cyclical nature of time over a 24-h period. There were differences in 
the measurement periods among the patients participating in this study, and there were cases in which the year 
changed during the measurement. To account for this, all segmented time variables were incorporated as inputs. 
DL models receive 7-channel multivariate time series data, and because the models used in the study were 
designed for multivariate prediction, the 7-channel future data were predicted. Optimization was performed by 
selecting the mean squared error (MSE) loss as the optimization function to minimize the discrepancies between 
the predicted and actual values of the model. The loss for each channel was calculated and the average loss across 
all channels was determined. To predict the glucose levels, we defined the optimal model as the one with the 
lowest mean absolute percentage error (MAPE) between the predicted and actual blood glucose channel values. 
The model with the lowest MAPE is saved as the optimal model.

Fig. 2.  Flow diagram of patient selection and dataset configuration. This diagram illustrates the process of 
patient selection and configuration of the dataset used in the study, including inclusion/exclusion process. 
CGM continuous glucose monitoring, DL deep learning.
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Classification of future hypoglycemic event
In this study, a binary classification was conducted to determine the feasibility of predicting hypoglycemia in 
addition to direct glucose levels (Fig. 1d). Hypoglycemia was defined as a blood glucose level of < 80 mg/dL. 
Readings below this threshold were labeled as 1, indicating hypoglycemia. The 80 mg/dL threshold was chosen 
to facilitate the effective use of a cornstarch-based diet, enabling timely interventions to stabilize glucose levels 
and prevent further declines. This approach ensures a steady glucose release, which is essential for maintaining 
metabolic stability in patients with GSD. For the model input, 12 h of data was utilized, similar to the forecasting 
task. In terms of the model structure, the window size was set to 1, and a linear layer was added to process the 
7-channel outputs for binary classification. The output node was set to one, with a sigmoid activation function. 
Optimization was performed using binary cross-entropy loss to minimize the discrepancy between the actual 
hypoglycemia occurrences and model predictions. In particular, the number of actual hypoglycemic events was 
significantly lower than the number of normal events, resulting in an imbalance between the two classes. To 
address this imbalance, class weights are applied to the loss function during the learning process. Finally, the 
model with the highest area under the receiver operating characteristic (AUROC) curve was selected as the 
optimal model for predicting hypoglycemia.

Performance metrics
In the forecasting task, the primary outcome of the DL model is the direct prediction of glucose levels. The 
MAPE was selected as the main indicator because of its interpretability, adaptability to changes in data value 
sizes, and suitability for comparing the performance of various models. The MAPE provides a probability value 
between 0 and 100%. The mean absolute error and root mean square error were used as supplementary statistical 
indicators. For the forecasting task, each model generated predictions for 4-h intervals (15, 30, 45, and 60 min). 
Therefore, statistical indicators were calculated by comparing the predicted values with the actual values at each 
time point.

In the classification task, the primary outcome was the model’s predictive power for hypoglycemic events. 
In binary classification, the AUROC was used as a major indicator and criterion for determining the optimal 
state of the model. The model’s prediction results were classified into four categories: true positive (TP), false 
negative (FN), true negative (TN), and false positive (FP), compared to the actual answer. Based on these results, 
additional statistical indicators, including sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and F1 score were used. The optimal cutoff to minimize model misclassification was 
calculated based on the Youden index (J) within the ROC curve. In the classification task, each model outputs 
a result at a single time point. Therefore, independent models were developed to predict hypoglycemic events 
at each future time point. In summary, the models predicting hypoglycemic events after 15, 30, 45, and 60 min 
were independently trained.

Independent models were trained for each patient to build a personalized predictive model. This approach 
is expected to effectively capture each patient’s unique blood glucose level variability and enable more accurate 
predictions. We calculated the statistical metrics for each task by synthesizing the prediction results at each time 
point. All statistical metrics were reported as point estimates and 95% confidence intervals (CIs). The data were 
analyzed and visualized using Python 3.9.5 (Python Software Foundation).

Results
Participant characteristics
Table 1 summarizes the demographic and clinical characteristics of the study group. A total of 46 subjects wore 
CGM devices for blood glucose measurements, with only those who wore the device for at least 14 days included 
in the study (Fig. 2). The study group comprised 26 male subjects with an average age of 13.27 years, and 20 
female subjects with an average age of 14.85 years. The average duration for the male group was 151 days, while 
that for the female group was 171 days (Table 1). All participating patients were of Asian descent.

Glucose level forecasting result
The results of each model for forecasting glucose levels are summarized in Fig. 3; Table 2. Additionally, the results 
of the clinical error grid analysis are summarized in Fig S1. To enable a clearer comparison of classification 
performance across models, the results derived from Equal Error Rates are presented in Table S1. Among 
the three models, the LTSF N-Linear demonstrated the highest performance. It exhibited low MAPE across 
all prediction horizons, with a particularly low MAPE of 5.95% (95% confidence interval (CI), 5.64–6.26%) 
for the 15-min prediction. For the 60-min prediction, which had the longest temporal length, the MAPE was 
11.14% (95% CI, 10.39–11.89%), indicating the lowest error at this horizon. In contrast, the TS Mixer exhibited 
the lowest performance. It exhibited high MAPE values across all prediction horizons, with errors of 16.14% 
(95% CI, 13.72–18.57%), 16.50% (95% CI, 14.03–18.97%), 16.57% (95% CI, 13.90–19.23%), and 16.77% (95% 
CI, 13.59–19.95%) for each time point. The Patch TST model demonstrated a relatively moderate performance 
compared with the other two models.

Hypoglycemia classification result
The results of each model for hypoglycemia prediction are summarized in Fig. 4; Table 3. In the classification 
task, the TS Mixer model demonstrated relatively high performance among the three models. Notably, the 
prediction of hypoglycemia 15 min ahead achieved an AUROC of 0.866 (95% CI, 0.829–0.904) with an average 
sensitivity of 72.27% (95% CI, 63.97–80.56%). Although the predictive power decreased as the temporal horizon 
was extended, the model still performed reasonably well, with an AUROC of 0.672 (95% CI, 0.635–0.708) for 
predictions made 60 min in advance. Conversely, the LTSF N-linear model exhibits poor predictive power for 
classification tasks. Across all prediction horizons, the AUROC values were 0.600 (95% CI, 0.556–0.644), 0.570 
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(95% CI, 0.539–0.602), 0.562 (95% CI, 0.533–0.591), and 0.566 (95% CI, 0.532–0.587). Again, the Patch TST 
model exhibited a relatively moderate performance.

Discussion
Traditionally, patients with GSD have had to be hospitalized or rely on fingerprick tests at home to monitor 
and manage their glucose levels. However, these methods have limitations because they do not provide a 
comprehensive view of glucose levels throughout the day. Although the CGM was originally designed for patients 
with diabetes with blood glucose issues, it is also considered applicable to patients with GSD. Derks’s research on 
15 patients with GSD demonstrated that an in-depth analysis using CGM data can effectively evaluate glucose 
management25. Additionally, a study in 2022 involving 10 adult patients with GSD showed that CGM may be 
beneficial26. Another study demonstrated the ability of an artificial neural network to predict glucose levels in 
patients with type 1 diabetes using an artificial neural network27,28.

Therefore, we hypothesized that metabolic predictions could be made based on the results of previous studies 
and data from patients with GSD accumulated at the Yonsei University Wonju Severance Christian Hospital. 
Our objective was to validate and analyze this hypothesis using the results generated by the DL models. This 
study yielded meaningful outcomes, confirming that by analyzing the CGM data from patients with GSD, it is 
possible to manage and predict their glucose levels. This finding supports the feasibility of precision medicine 
tailored to each individual, highlighting the potential for customized care that addresses the unique metabolic 
needs of each patient.

From a big data-based perspective, the data is typically divided by the number of individuals, followed by 
learning and testing. However, to predict the aspects related to human metabolism, we considered individualized 
data learning to be more appropriate. Therefore, we adopted an approach in which an independent model was 
trained for each study subject and quantification indicators were subsequently calculated. Given that the number 
of models to be tested increases the time and computational costs exponentially, we focused our efforts on 
deriving research results using the latest models that have achieved SOTA performance in the field of time-series 
forecasting.

We conducted both forecasting and classification tasks to assess the performance of the model in predicting 
and managing immediate blood glucose levels (Fig.  1). In the forecasting task, the LTSF N-Linear model 
demonstrated relatively strong forecasting ability. For blood glucose level prediction 15 min ahead, the Pearson’s 
R correlation coefficient was 0.887 (95% CI, 0.886–0.888), indicating a high predictive accuracy (Fig. 3). Even 
at the 30- and 45-min prediction horizons, the Pearson’s R values remained relatively high than those of the 
compared models, with values of 0.721 (95% CI, 0.719–0.724) and 0.617 (95% CI, 0.614–0.621), respectively. 
However, at the 60-min prediction horizon, the predictive power significantly decreased, with a Pearson’s R 
of 0.561 (95% CI, 0.557–0.565). The LTSF N-Linear focuses solely on the temporal relationships between data 
points in a linear manner. It performs well when complex modeling of the data structure is not required, owing 
to the simplicity of its architecture. The participants in this study continuously managed their diet to maintain 
stable blood sugar levels. Since changes in metabolic blood sugar primarily occur through food intake29,30, it 

Male (N = 26) Female (N = 20) P-value

Demographic characteristics

 Age (years) 13.27 (4.47–22.06) 14.85 (3.97–25.73) 0.713

 Glucose data length (h) 3638.94 (919.3–6358.58) 4126.30 (1177.26–7075.34) 0.572

Clinical characteristics

 Time below range (< 54 mg/dL) (%) 0.42 (− 0.06 to 0.89) 0.40 (− 0.06 to 0.86) 0.850

 Time below range (< 70 mg/dL) (%) 4.43 (− 0.19 to 9.05) 4.30 (1.40 to 7.21) 0.918

 Time in range ([70, 180] mg/dL) (%) 95.14 (90.38 to 99.9) 95.42 (92.46 to 98.38) 0.819

 Time above range (> 180 mg/dL) (%) 0.44 (− 0.97 to 1.84) 0.28 (− 0.14 to 0.69) 0.101

 Low blood glucose index 0.00 (− 0.00 to 0.00) 0.00 (− 0.00 to 0.00) 0.204

 High blood glucose index 6.33 (5.50 to 7.15) 6.32 (5.88 to 6.76) 0.972

 Average daily risk range 3.16 (2.75 to 3.57) 3.16 (2.94 to 3.38) 0.972

 Inter-day coefficient of variation (%) 9.98 (8.05 to 11.91) 11.38 (8.95 to 13.81) 0.039

 Intra-day coefficient of variation (%) 13.99 (10.39 to 17.59) 15.22 (12.53 to 17.91) 0.217

 Mean glucose level (mg/dL) 100.24 (91.23 to 109.25) 100.16 (95.34 to 104.97) 0.971

 Median glucose level (mg/dL) 99.23 (90.54 to 107.92) 98.65 (93.88 to 103.42) 0.793

 Coefficient of variation of glucose levels (%) 17.53 (13.49 to 21.57) 19.17 (16.0 to 22.35) 0.150

Table 1.  Dataset characteristics. The values presented in the table represent the mean, lower limit, and 
upper limit, respectively. The lower and upper limits were calculated using the formula mean ± standard 
deviation, where the lower limit corresponds to mean − standard deviation and the upper limit corresponds 
to mean + standard deviation. Despite each group having a sample size of fewer than 30, statistical tests were 
performed to compare characteristics. Normality was first assessed for each variable. If normality was met, 
an equal variance test and a t-test were conducted; otherwise, the Wilcoxon rank-sum test was used. No 
statistically significant differences were observed across all variables.
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is likely that the LTSF N-Linear benefited structurally from this process. The blood sugar data in this study 
followed a relatively linear trend over short prediction periods with few complex nonlinear relationships. As a 
result, LTSF N-Linear delivered excellent short-term prediction results, as demonstrated in this study; however, 
its performance for long-term predictions indicates areas for improvement. However, only the variables directly 
related to blood sugar levels and time were used in this study. As the input data were already time-series data, 
temporal information may have been inherently included, making it difficult for the model to capture additional 
dependencies, particularly those related to metabolism. Furthermore, the relatively complex architecture of the 
model may have led to overfitting, as it may have been more sensitive to noise than to learning meaningful 
patterns. Patch TST, which employs a patch-based approach, was designed to capture both short- and long-term 
trends. Although its performance was slightly lower than that of the LTSF M Linear, the difference between the 
two models was not significant. The patch-based TST produced reasonably predictable results, demonstrating 
its capability to handle tasks effectively.

Fig. 3.  Model performance for the forecasting task. (a) Linear correlation for the 15-min prediction horizon. 
(b) Linear correlation for the 30-min prediction horizon. (c) Linear correlation for the 45-min prediction 
horizon. (d) Linear correlation for the 60-min prediction horizon. The horizontal axis represents the patient’s 
actual glucose levels, while the vertical axis represents the model’s predicted values. The LTSF N-Linear 
model demonstrated a relatively high Pearson R across all prediction intervals. Pearson R Pearson correlation 
coefficient, CI confidence interval.
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In the classification task, the TS Mixer demonstrated a strong classification performance. Notably, an 
AUROC of 0.866 (95% CI, 0.829–0.904) for the 15-min prediction horizon (Fig. 4). Although the predictive 
power decreased for the 45- and 60-min prediction horizons, it still achieved a specificity of 74.09% (95% CI, 
66.97–81.22%) and 75.42% (95% CI, 69.75–81.1%) for these horizons, respectively. Additionally, the model 
maintained a NPV of 91.21% (95% CI, 86.52–95.90%) and 92.72% (95% CI, ̀  90.72–94.71%), even at longer time 
intervals (Table 3). Conversely, the LTSF N-Linear model showed little classification ability, with AUROC values 
close to 0.5. Specifically, it recorded an AUROC of 0.556 (95% CI, 0.600–0.644) for the near-term prediction 
horizon. For the TS Mixer, the model constructs a predictive decision boundary for binary classification based 
on nonlinear patterns. Conversely, LTSF N-Linear, which operates on a simple linear basis, is well suited for 
trend prediction but struggles in classification tasks where nonlinear patterns are crucial. In this study, even after 
adding an additional linear layer, the performance deteriorated, with AUROC values close to 0.5. This outcome 
reflects the challenges that linear classifiers face in achieving good performance in binary classification31,32. The 
patch TST sits between the relatively simple LTSF N-Linear and the more complex TS Mixer, and its quantitative 
performance indicators fall in the middle range. While Patch TST is capable of capturing dependencies and 
nonlinear patterns in waveforms, it is likely to be less effective at considering global patterns compared with the 
TS Mixer, as it relies on patch-based processing. Additionally, when analyzing the overall metrics, certain models 
demonstrated effective performance in hypoglycemia classification. However, a slight low PPV was observed 
in some cases. This reduction could result in inaccurate predictions, leading to false alarms or unnecessary 
treatments or interventions, highlighting the need for further refinement and improvement.

This study has some limitations. First, there is a lack of input data for predicting changes in glucose levels; 
human metabolism is highly complex, and incorporating additional information, such as meal timing, physical 
activity, and other events, could improve the model’s predictive accuracy. For example, in the OhioT1DM 
dataset33, a well-known dataset for blood glucose prediction, biometric information, such as insulin dosage 
and heart rate, and behavioral factors, such as meal intake, sleep, and physical activity, were systematically 
monitored. In contrast, this study relied solely on the blood glucose data obtained from the CGM device and 
time annotations. Although the patients in this study had already maintained optimal metabolic control, the 
data were retrospective, and it was difficult to obtain additional inputs owing to the limitations of the CGM 
device. As a result, information such as biometric data or behavioral factors could not be incorporated into 
this study. Because34,35, the absence of this information is considered one of the primary reasons for the poor 
predictive power of the model over longer prediction horizons in this study. In summary, several studies on 
glucose levels prediction have achieved acceptable or expected results using blood glucose data alone. However, 
given the characteristics of GSD patients, who frequently require dietary control, it is expected that incorporating 
additional information could help compensate for the model’s limited predictive capability. Second, this study 
was conducted using retrospective data. Future studies should incorporate prospective data to verify the 
applicability of the model to real-world GSD cases. If future studies can predict glucose levels using CGM data 
from patients who are not yet in optimal metabolic control, this could lead to a groundbreaking management 
method. Third, a relatively high sampling rate was used in this study, and the CGM device was set to measure 
blood glucose every 15 min in real time. In general, a shorter sampling rate21,27,36. Furthermore, this study aimed 
to explore the potential of DL models to help patients with GSD efficiently manage their glucose levels in daily 
life and proactively prevent possible hypoglycemic symptoms. Therefore, the sampling rate used in this study is 
considered a factor that directly influences the model’s predictive power. In future research, it will be important to 
adjust the sampling rate, considering both model performance and real-life applicability, and to evaluate whether 
the adjusted rate enhances efficiency37,38. Fourth, the general applicability and interpretability of error grid 
analysis are limited. Various analysis methods, such as the clinical error grid methodology, have been proposed to 
validate39,40. In contrast, this study was conducted in a group of patients with GSD, a condition with an extremely 
low prevalence. The type 2 diabetes is typically associated with elevated blood sugar levels, while hypoglycemia 
is a major concern in type 1 diabetes. In contrast, GSD is characterized by low blood sugar levels caused by 

Model Prediction horizons MAE (mg/dL) RMSE (mg/dL) MAPE (%)

TS Mixer

15 min 16.40 (13.83–18.97) 20.38 (17.8–22.96) 16.14 (13.72–18.57)

30 min 16.65 (14.32–18.99) 20.64 (18.28–22.99) 16.50 (14.03–18.97)

45 min 16.82 (14.06–19.59) 20.83 (18.08–23.58) 16.57 (13.90–19.23)

60 min 17.01 (13.55–20.46) 20.99 (17.58–24.4) 16.77 (13.59–19.95)

Patch TST

15 min 8.94 (7.91–9.97) 11.96 (10.8–13.12) 8.85 (7.79–9.9)

30 min 10.74 (9.87–11.61) 14.37 (13.26–15.47) 10.61 (9.77–11.46)

45 min 11.69 (10.76–12.62) 15.70 (14.42–16.99) 11.54 (10.67–12.41)

60 min 12.46 (11.26–13.65) 16.73 (15.11–18.35) 12.42 (11.21–13.63)

M Linear

15 min 6.01 (5.67–6.35) 8.15 (7.68–8.61) 5.95 (5.64–6.26)

30 min 9.04 (8.53–9.54) 12.32 (11.56–13.09) 8.91 (8.5–9.33)

45 min 10.38 (9.62–11.14) 14.13 (12.98–15.27) 10.23 (9.56–10.9)

60 min 11.23 (10.4–12.07) 15.19 (13.94–16.45) 11.14 (10.39–11.89)

Table 2.  Performance metrics for forecasting task with 95% CI. CI Confidence interval, MAE mean absolute 
error, RMSE root mean squared error, MAPE mean absolute percentage error.
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genetic mutations affecting glucose storage and release due to genetic mutations. Consequently, the blood sugar 
range in patients with GSD differs significantly from that in patients41, making it difficult to apply the analytical 
frameworks designed for diabetes to GSD. When performing clinical error grid methodology on the model used 
in this study, it was observed that most characteristics of GSD patients fell within Region A (Fig. S1). However, 
the sizes of Regions B and D, which are critical for identifying in-application treatment failures or instances of 
hypoglycemia, differed from the average blood glucose range of GSD patients. While some quantification results 
demonstrated excellent accuracy, the overall persuasiveness of the methodology is limited by the constraints. 
These challenges limit the applicability of previously proposed glycemic analysis methodologies for GSD and 
consequently impose restrictions on the analysis of model outcomes in this study. Fifth, further research on 
interpretability is needed to understand how patient-specific factors influence the model’s performance. To 
investigate whether pattern-specific factors, such as gender, affect glucose level fluctuations and subsequently 
impact model outcomes, we analyzed test results by gender (Tables 4 and 5). However, no significant differences 

Fig. 4.  Model performance for the classification task. (a) AUROC for hypoglycemia prediction at the 15-min 
prediction horizon. (b) AUROC for hypoglycemia prediction at the 30-min prediction horizon. (c) AUROC 
for hypoglycemia prediction at the 45-min prediction horizon. (d) AUROC for hypoglycemia prediction at the 
60-min prediction horizon. The thin lines represent the results for individual patients, whereas the thick lines 
represent the mean. The shaded area on either side of the thick lines indicates the 95% CI. TS Mixer achieved 
a relatively high AUROC across all prediction horizons. AUROC area under receiver operating characteristics 
curve, CI confidence interval, ERR equal error rate.
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were observed between the two groups across any task. One potential explanation for these findings is that 
statistical analysis of Table 1 revealed no significant differences between the two groups. This trend is likely 
reflected in the model results. Additionally, due to the limitations of the retrospective dataset, the collected data 
lacks explanatory power, as it only includes glucose levels and does not provide additional relevant information. 
Consequently, these constraints make it challenging to analyze patient-specific factors and limit the examination 
of other variables beyond gender. In the future, follow-up studies should not only refine the research design but 
also enhance model interpretability and incorporate additional analyses using Explainable AI methods. Finally, 
this study requires external validation. Although many DL models produce promising results based on specific 
datasets, it is crucial to verify whether they generalize well to data from other42. This study was no exception. 
Although an independent model was developed for each individual to achieve personalized optimization, all 
data used for learning were obtained from a single hospital. In particular, owing to the rarity of GSD, there is a 
bias in the age range of the participants, and the study population was limited to Asian populations. The data 
used in this study were primarily collected from medical institutions in Korea that diagnose and treat the largest 

Gender Prediction horizons AUROC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Male

15 min 0.86 (0.81–0.91) 65.07 (51.53–78.6) 83.71 (77.06–90.36) 37.02 (26.35–47.69) 94.57 (91.02–98.13)

30 min 0.71 (0.66–0.77) 48.02 (34.68–61.35) 78.11 (70.19–86.03) 19.98 (12.58–27.37) 91.26 (87.04–95.47)

45 min 0.70 (0.65–0.75) 53.04 (40.24–65.84) 70.67 (61.39–79.96) 21.22 (13.58–28.86) 92.27 (89.18–95.36)

60 min 0.65 (0.61–0.7) 47.48 (35.85–59.12) 71.50 (63.42–79.59) 19.98 (12.13–27.83) 91.18 (88.01–94.35)

Female

15 min 0.88 (0.82–0.93) 81.74 (75.34–88.13) 76.69 (65.63–87.75) 32.82 (22.98–42.67) 92.40 (81.55–103.24)

30 min 0.80 (0.74–0.86) 57.59 (42.76–72.41) 84.52 (77.64–91.41) 25.89 (17.28–34.5) 96.25 (94.95–97.55)

45 min 0.74 (0.68–0.8) 51.02 (35.92–66.13) 78.59 (66.79–90.39) 23.61 (15.21–32.01) 89.81 (79.14–100.48)

60 min 0.70 (0.64–0.76) 44.10 (29.71–58.49) 80.58 (72.66–88.51) 19.28 (13.03–25.53) 94.74 (92.79–96.69)

Table 5.  Performance of the TS mixer by gender for classification task with 95% CI. CI confidence interval, 
AUROC area under receiver operating characteristics curve, PPV positive predictive value, NPV negative 
predictive value.

 

Gender Prediction horizons MAE (mg/dL) RMSE (mg/dL) MAPE (%)

Male

15 min 5.89 (5.54–6.23) 7.99 (7.47–8.5) 5.95 (5.63–6.28)

30 min 8.90 (8.22–9.57) 12.10 (11.01–13.19) 8.95 (8.37–9.53)

45 min 10.26 (9.24–11.29) 13.94 (12.32–15.56) 10.33 (9.42–11.25)

60 min 10.88 (9.56–12.21) 14.75 (12.74–16.76) 10.99 (9.76–12.22)

Female

15 min 6.17 (5.49–6.85) 8.35 (7.46–9.25) 5.95 (5.34–6.56)

30 min 9.23 (8.4–10.06) 12.62 (11.46–13.77) 8.87 (8.21–9.53)

45 min 10.53 (9.29–11.76) 14.38 (12.63–16.12) 10.10 (9.02–11.17)

60 min 11.68 (10.74–12.63) 15.76 (14.36–17.16) 11.33 (10.54–12.12)

Table 4.  Performance of the M linear by gender for forecasting task with 95% CI. CI Confidence interval, 
MAE mean absolute error, RMSE root mean squared error, MAPE mean absolute percentage error.

 

Model Prediction horizons Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 score (%)

TS Mixer

15 min 72.27 (63.97–80.56) 80.68 (74.77–86.59) 35.21 (28.07–42.35) 93.63 (88.78–98.48) 40.36 (33.37–47.34)

30 min 52.15 (42.53–61.77) 80.88 (75.6–86.16) 22.53 (17.08–27.98) 93.41 (90.92–95.91) 27.65 (21.78–33.52)

45 min 52.17 (42.81–61.54) 74.09 (66.97–81.22) 22.25 (16.82–27.69) 91.21 (86.52–95.90) 19.66 (13.54–25.78)

60 min 46.02 (37.32–54.72) 75.42 (69.75–81.1) 19.68 (14.66–24.7) 92.72 (90.72–94.71) 23.16 (17.46–28.87)

Patch TST

15 min 70.82 (62.99–78.65) 69.91 (64.41–75.41) 21.20 (15.43–26.97) 94.43 (92.46–96.41) 29.00 (22.94–35.06)

30 min 64.16 (57.93–70.39) 67.60 (62.85–72.34) 20.26 (15.16–25.37) 93.78 (91.65–95.91) 27.26 (21.9–32.63)

45 min 58.41 (50.92–65.91) 64.60 (58.93–70.26) 15.98 (11.26–20.69) 92.31 (89.77–94.86) 21.89 (17.05–26.73)

60 min 55.97 (50.02–61.91) 63.98 (58.52–69.44) 16.37 (11.83–20.92) 91.72 (88.95–94.49) 21.50 (17.27–25.73)

M Linear

15 min 70.82 (62.99–78.65) 69.91 (64.41–75.41) 21.20 (15.43–26.97) 94.43 (92.46–96.41) 16.10 (11.49–20.7)

30 min 64.16 (57.93–70.39) 67.60 (62.85–72.34) 20.26 (15.16–25.37) 93.78 (91.65–95.91) 14.91 (10.26–19.56)

45 min 58.41 (50.92–65.91) 64.60 (58.93–70.26) 15.98 (11.26–20.69) 92.31 (89.77–94.86) 13.08 (9.25–16.92)

60 min 55.97 (50.02–61.91) 63.98 (58.52–69.44) 16.37 (11.83–20.92) 91.72 (88.95–94.49) 13.27 (9.21–17.34)

Table 3.  Performance metrics for classification task with 95% CI. CI confidence interval, PPV positive 
predictive value, NPV negative predictive value.
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number of GSD patients. In contrast, other medical institutions rarely manage patients with rare diseases such 
as GSD, making it relatively difficult to collect external datasets. This limitation may reduce reliability due to the 
small number of contributors and raises. Additionally, there is a potential bias related to the CGM device used, 
particularly with respect to the sampling rate. Therefore, external validation is necessary to address these biases 
and verify the model’s performance across a more diverse set of subjects.

Despite these limitations, this study is significant, as it is the first to demonstrate the ability to forecast glucose 
levels using CGM and DL in patients with GSD. GSD is a genetic disorder for which no definitive treatment is 
currently available. Even if gene therapy becomes available in the future, its cost may be prohibitive for many 
patients. However, the use of CGM, which is relatively affordable and easily accessible, combined with DL-based 
personalized blood glucose management, can offer an accessible method for managing this condition. If this 
method is further refined, hypoglycemia can be predicted in advance and alerts can be provided, enabling better 
management of cornstarch intake, diet, and exercise based on blood glucose predictions. Although patients 
must continue to consume cornstarch and follow an appropriate diet, this approach is highly beneficial from a 
cost perspective. In this study, predictions were conducted using a single variable, glucose levels. While some 
DL models demonstrated promising results depending on the task, it is crucial to acknowledge that fluctuations 
in glucose levels can be highly sensitive to patient-specific factors such as fat metabolism, physical activity, and 
cornstarch intake. Follow-up studies are planned to address these variables. Additionally, the consideration 
of interpretability is being planned by leveraging explainable machine learning techniques. This approach is 
expected to provide clinicians with intuitive and actionable insights through the development of visualization 
dashboards.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to privacy and 
ethical restrictions but are available from the corresponding author on reasonable request with permission from 
the Ethics Committee (irb@yonsei.ac.kr; 82-033-741-1715).
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